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Abstract— Many kinds of sound source localization systems 
have been developed for detecting a direction of sound source. 
They are commonly using time delay of arrival (TDOA) or 
interaural time difference (ITD) algorithm for sound source 
localization where, especially, the ITD is the difference in ar-
rival time of a sound between two ears. It is largely changed 
depending on frequency components of sound even though the 
sound source is located in the same place. In this paper we 
propose a binaural sound localization system using sparse 
coding based ITD (SITD) and self-organizing map (SOM). The 
sparse coding is used for decomposing given sounds into three 
components: time, frequency and magnitude. Moreover we 
estimate the azimuth angle through the SOM. This localization 
system is installed in our robot that has two ears, head and 
body. We use PeopleBot as a body of the robot. 

I. INTRODUCTION 
HERE are many kinds of sound source localization sys-
tems have been developed for detecting a direction of 

sound source. Generally, sound source localization systems 
use time delay of arrival (TDOA) [1] or interaural time dif-
ference (ITD) [2] as a cue to estimate azimuth angle. Espe-
cially the ITD is the difference in the arrival time of a sound 
source between two ears. It changes depending on frequency 
components of a sound source even though the source is 
located in same place. Hence, we have to calculate several 
ITDs corresponding to different frequency bins which are 
chosen by Gammgtone Filterbanks and equivalent rectangu-
lar bandwidth (ERB) Filter cochlear model [8]. For the pur-
pose of ITD calculation, most approaches [11] [12] use short 
time frequency analysis based on FFT. However, it has a side 
effect that small time shift can produce large changes in the 
representation where a particular sound event falls within a 
block. This problem causes errors in the result of sound 
source localization. To overcome this problem, our research 
employs sparse coding [3] which can decompose a sound 
signal into three components: time, frequency and magnitude. 
And the self-organizing map (SOM) [4] is applied to the 
results of the sparse coding to make the related SITD map. 
After performing neuron’s learning in the SOM, we can es-
timate the azimuth angle of sound source through the SITD 
map with a good accuracy. This localization system is in-
stalled in a robot that has two ears and head. And we use 
PeopleBot of ActivRobots Inc. as a body of this robot.  
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II. SYSTEM CONFIGURATION 

A. Overview 
Our robot is composed of two ears, head and body as 

shown in Fig 1. We use KEMAR ear and the head is manu-
factured in Korea Institute of Science and Technology (KIST). 
An 8-channel analog to digital converter (TD-BD-8CSUSB, 
Tokyo Electron Device Ltd.) is installed in the robot. The 
body of this robot is PeopleBot.  

 
 

B. Body Part 
We used PeopleBot as a body of this robot. It is an intel-

ligent mobile robot specially designed and equipped for hu-
man-robot interaction research and application. The software 
platform to operate PeopleBot is Advanced Robotics Inter-
face for Applications (ARIA) [5] which is developed by 
Mobile Robots Inc. The ARIA is a C++-based open-source 
development environment. This robot has 500-tick encoders 
provide 1% dead reckoning error, corrected with gyroscope. 
These differential drive platforms are highly holonomic and 
can rotate in place moving both wheels, or can swing around a 
stationery wheel in a circle of 32cm radius. 
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C. Head and Ears Part 
We designed the robot head such that it can move like 

human neck such as flexible neck solution [6].  It moves three 
degrees of freedom (Pan, Tilt, Swing). Two microphones that 
located in each ear are used to hear the sounds. Fig. 2 shows 
the real shape of the robot head and ear. 

 

 
D. A/D converter 
In order to acquire digitally converted sound data, we used 

an 8-channel analog to digital converter (TD-BD- 8CSUSB, 
Tokyo Electron Device Ltd.). The feature of TD-BD- 
8CSUSB is like this, 

 
1) Simultaneous in-phase sampling: Up to 8ch micro-
phone inputs. 
2) Power is provided for ECM microphones by USB2.0 
or USB1.1 interface from a PC 
3) Board size as small as a business card. (93mm x 
56mm x 13mm) 
4) Operates with USB bus power 
5) Available sampling  frequencies :  48KHz, 32KHz, 
16KHz, 8KHz, 44.1KHz, 22.05KHz, 11.025KHz 
6) Microphone input amplifier, built-in ADC gain con-
trol. SNR is 60dB or higher 

 
Using this A/D converter we can easily get digital values of 

sound though USB communication port. Fig. 3 shows the 
TD-BD- 8CSUSB. 

 
 

 
 

III. SPARSE CODING 

A. Sparse & Kernel Representation 
We used a sparse and shiftable Kernel method of sound 

signal representation [7] since this method can decompose a 
sound signal into three components: time, frequency and 
magnitude. In this method, the sound signal x(t) is encoded 
with a set of kernel functions that can be positioned arbitrarily 
and independently in time. The sound signal will be expressed 
as follows. 
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, where,          is temporal position, 
                       is coefficient of the       instance of kernel     , 
                       indicate the number of instances of      , 
                 M   is the number of      ,  
                        is a noise. 
                 

 

 
Here the Kernel function is a Gammatone filterbank whose 

center frequency and width are set according to an ERB 
(Equivalent Rectangular Bandwidth) filterbank cochlear 
model [8]. Fig. 4 shows the Gammatone filterbanks that have 
64 channels. 
 

 
Fig.5 illustrates a generative model which represents a 

sound signal as a set of kernel functions; Fig. 5 (a) is the 
original sound signal and (b) is the representation of the sig-
nal as a set of kernel functions. We call this plot as a spike-
gram, and a rectangular in the spikegram as a spike. In the 
spikegram, x-axis means the time, y-axis means the frequency, 
and the size is the magnitude of spike. In order to extract the 
spikes from the original sound, matching pursuit algorithm [9] 
is used since to produce a more efficient estimate of the time 
positions and coefficients. 

           

 
 
Fig. 4. The Gammatone filterbanks 

 
Fig. 3. 8 Channel A/D converter board with microphone cables 
 

      
(a) Robot head                        (b) ear and microphone 

 
Fig. 2. Head and ears. 
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B. Interaural Time Difference 
As mentioned in the Introduction chapter, we used the ITD 

as a cue of binaural sound localization. Through eq. (1), we 
can get, for each microphone, the position of max coefficient 
at each kernel function which can be described as follows.  

 
 

                                                                                  (2) 
 
Then, the time difference of two sound signals which are 

inputs from two microphones is calculated using the differ-
ence of max coefficient positions between left and right 
spikegrams (binaural spikegrams), which we call SITD 
(Sparse coding based ITD).  

 

                                                                                     (3) 

 
Where,        is max coefficient position of right signal, 
                    is max coefficient position of left signal, 
               m indicate the number of kernel functions. 
 
Fig. 6 shows the SITD of two sound signals. 
 

 
(a) Sound signals (sound source at 30-degrees left of center) 

 

 
 
The time difference has errors that cause failure in the es-

timation of the direction of sound source. The errors can be 
dealt with various filtering method. The first thing is 
mean-variance filter. The mean can be calculated by the 
summation of Gaussian which has the SITD time positions as 
mean. The second thing is bandpass filter. We use only 500 ~ 
4,000Hz. The third filter is threshold filter in the magnitude of 
the SITD, i.e., the time difference that has smaller coefficient 
is filtered out. Using these three kinds of filter, we can remove 
undesirable spikes and get the precise SITD. Fig. 7 shows the 
time difference of two sound signals after filtering. 
 

 
 
 

    
(a)                                                    (b)  

 

  
(c)                                                     (d) 

 
Fig. 7 (a) is original time difference between two signals. (b) is a result 
which applied mean variance filter from (a). (c) is applied bandpass 
filter in (b). (d) is a result after applied three kinds of filter. 

 

 
(b) The time difference between left and right 
 
Fig. 6. Sound signals and time difference based on binaural spike-
grams. 

 
(a) Original sound signal 
 

 
(b) Spikegram 
 
Fig. 5. A sound signal and spikegram 
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IV. SELF ORGANIZING MAP 

A. Sound collection 
In our research, we fabricate a robot system that collects 

sound at -70 degrees to +70 degrees with 5 degree resolution, 
and build up a database for the learning of SOM. This system 
is shown in Fig. 8. 

 
 
 

B. Learning 
The binaural sound localization system in this research has 

the Self-Organizing Map [4]. We organize 1-dimensonal 
SOM at each frequency bin, because SITD has a different 
characteristic in frequencies. The SOM has 58 neurons for the 
representation of azimuth angle and 3,000 iterations for the 
organizing map. The learning algorithm is like this, 
 
 

Step 1. Initialize weight vectors and neighborhood size.  
 
 
Step 2. Select a ‘winning node’. The winning node is se-
lected by Euclidean distance between input and weight 
vector. This equation is like this, 

 
2( ) arg min ( ( ) ( ) ) .iji
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(4) 

 
Where,  C(t) is the winning node 

W(t) is the weight vector of node i at time t. 
X(t) is the input vector. 

 
 

Step 3. Update the weights using equation (5) ~ (7) 
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Where        is referred to as the neighborhood size,  
                           is a learning rate, 
                           is the Euclidean distance form node i to 

the winning node c, 
                           is the neighborhood size at time t. 

V. ESTIMATION OF AZIMUTH ANGLE 
In our research, we estimate azimuth angle using the sparse 
coding based SITD and SOM. The overview of our inte-
grated system is shown in Fig. 9.  
 

 
 
The trained SOM feed with the sparse coding results re-

quired for the calculation of the azimuth angle. As mentioned 
in Section IV-B, we organized 1-dimensonal SOM at each 
frequency. The estimated results of the azimuth angle are 
made from the average of SOM outputs which can be de-
scribed as follows. 
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Where,  i   is SOM number, 

  is the result of SOM, 
n  is the number of SOM output. 

 
 

VI. EXPERIMENTS 

A. Environments 
We performed an experiment in a demonstration room to 

verify our binaural sound localization system. The demon-
stration room looks like Fig 10. The robot is located in the 
center of the room and the speaker is set in front of the robot. 
The demonstration room also has a table, a bed, and a parti-
tion. 

 

 

Fig. 10.  Integrated System 

 
 

Fig. 9.  Integrated System 

 

 
 
Fig. 8. The robot system that collects sound source 
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B. Results 
We have performed off-line tests. The off-line means es-

timating the direction with recorded sound signals. The sound 
signals are sampled at 16 kHz and a frame is composed of 
1,600 samples (100ms).  Input voice is “Come on, Tirot” in 
Korean. Fig. 11 shows the result of the binaural sound loca-
lization system. 
 

 
The lower right figure represents total sound signals. Here, 

one frame near 3 sec. is zoomed in the upper left figure where 
the left ear’s signals are smaller than right ones, because the 
sound source is located in right side (+30 degree) of the robot. 
The upper right figure shows the results of sparse coding at 
the frame. Since in the first figure which is the representation 
of a frame (100ms) that we estimated, there are exists low 
frequency noises we filtered them out by applying a bandpass 
filter. Also, after applying three filters explained in section 
III-B into the original SITD of the upper right figure, we got 
the clean SITD of the lower left figure where the final result 
of the binaural sound localization is shown. It represents the 
average of sparse coding results. The mean-variance filter 
uses this average. In this case, our system estimates about +33 
degree which is very close to the real direction (+30 degree). 
 

C. Performances 
Performance results are recorded at 29 difference angles. 

The distance between the robot and a speaker is 1m and 2m. 
The experimental results are given in table I. The error range 
for performance measure is ± 10 degrees and the average of 
success rate is 98 % and 94% (we regard as success the results 
within the error range). The statistical results are recorded in 
table II. This table shows mean, SD (Standard Deviation) and 
RMSE (Root Mean Square Error). SNR of the input signal is 
around 13 ~ 15dB during the experiments. 

 
 

 
 

 
 

TABLE II 
EXPERIMENTAL RESULT OF SOUND LOCALIZATION 

ANG
LE 

1m experiment 2m experiment 
mean SD RMSE mean SD RMSE 

-70° -65.95° 1.49° 4.05° -60.80° 1.80° 9.20° 
-65° -63.80° 2.36° 2.30° -61.69° 4.98° 1.67° 
-60° -61.45° 2.48° 3.15° -58.63° 2.88° 3.22° 
-55° -57.84° 2.15° 3.73° -51.44° 3.70° 4.06° 
-50° -53.46° 2.38° 3.52° -48.74° 6.86° 7.15° 
-45° -46.77° 2.15° 2.31° -41.04° 4.44° 4.52° 
-40° -40.50° 1.41° 1.50° -38.18° 3.13° 3.95° 
-35° -37.22° 1.45° 2.22° -31.83° 5.55° 6.02° 
-30° -34.66° 4.11° 5.06° -30.27° 4.62° 4.64° 
-25° -27.31° 2.18° 2.71° -27.94° 5.16° 5.23° 
-20° -20.29° 1.33° 1.34° -23.75° 5.20° 5.63° 
-15° -14.74° 1.04° 1.00° -17.74° 6.59° 6.27° 
-10° -10.35° 1.58° 1.45° -10.77° 2.75° 2.86° 
-5° -4.32° 0.97° 1.09° -3.14° 2.10° 2.44° 
0° 0.12° 3.52° 3.53° 3.17° 2.26° 3.63° 
5° 6.05° 2.93° 2.62° 8.50° 6.17° 6.71° 
10° 8.74° 2.21° 2.07° 9.16° 5.24° 5.39° 
15° 15.21° 0.77° 0.78° 15.89° 5.02° 5.06° 
20° 20.32° 0.98° 0.94° 22.80° 8.14° 8.39° 
25° 25.58° 0.77° 0.84° 28.43° 4.26° 4.92° 
30° 30.63° 1.20° 1.19° 29.38° 6.98° 6.90° 
35° 37.27° 1.26° 2.27° 31.42° 5.38° 5.54° 
40° 42.60° 5.83° 6.21° 41.99° 10.43° 10.83° 
45° 46.86° 4.31° 4.90° 47.96° 4.69° 4.65° 
50° 53.04° 2.10° 3.12° 54.94° 3.03° 5.48° 
55° 57.29° 1.67° 2.51° 58.92° 7.14° 8.30° 
60° 62.10° 2.32° 3.44° 60.30° 5.53° 5.57° 
65° 63.19° 1.69° 1.01° 63.81° 3.06° 2.83° 
70° 66.91° 1.01° 3.09° 63.11° 4.16° 6.89° 

STATISTIC OF BINAURAL SOUND SOURCE LOCALIZATION 

TABLE I 
EXPERIMENTAL RESULT OF SOUND LOCALIZATION 

ANGLE SUCCES RATE of 1m 
experiment 

SUCCES RATE of 2m 
experiment 

 

-70° 100 % 96 %  
-65° 100 % 100 % 
-60° 100 % 94 % 
-55° 100 % 98 % 
-50° 100 % 92 % 
-45° 100 % 100 % 
-40° 100 % 100 % 
-35° 100 % 94 % 
-30° 100 % 100 % 
-25° 93 % 90 % 
-20° 95 % 94 % 
-15° 100 % 83 % 
-10° 100 % 100 % 
-5° 98 % 100 % 
0° 100 % 97 % 
5° 94 % 90 % 
10° 95 % 96 % 
15° 98 % 100 % 
20° 100 % 82 % 
25° 100 % 100 % 
30° 100 % 94 % 
35° 100 % 93 % 
40° 100 % 90 % 
45° 76 % 82 % 
50° 92 % 95 % 
55° 97 % 94 % 
60° 100 % 94 % 
65° 100 % 100 % 
70° 96 % 89 % 
SUCCESS RATE OF BINAURAL SOUND SOURCE LOCALIZATION 

 
 

Fig. 11.  Result of sound localization (Source location: + 30 degree) 
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Fig. 12 and 13 show statistical graph of SD and RMSE at 
1m, 2m. 
 

 
 

 
 

In the graph, x-axis means real angle and y-axis means es-
timated angle. The red points represent the mean and the 
green rectangular show the SD at each angle.  
 
 

VII. CONCLUSION 
In this paper, we have presented a binaural sound locali-

zation system based on the sparse coding and SOM. After 
getting the spikegrams of each ear’s signal, calculating the 
SITD between the binaraul spikegrams, and applying three 
kinds of filtering to the SITD, we have got clean SITD data. 
Also, using SOM’s learning method w.r.t the SITD, we could 
estimate azimuth angle of sound source with high perfor-
mance. SOM is used in other researches but using it together 
with the sparse coding with post filters is a new approach in 
sound source localization. Our next plan is to add online 

learning to make more robust our binaural sound localization 
system. 
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Fig. 13. Statistical graph of 2m experiment. 

 
Fig. 12. Statistical graph of 1m experiment. 
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