
Collective Transport of Robots:

Coherent, Minimalist Multi-robot Leader-following

Megha Gupta, Jnaneshwar Das, Marcos A. M. Vieira,

Hordur Heidarsson, Harshvardhan Vathsangam, Gaurav S. Sukhatme

Abstract— We study the collective transport of robots (CTR)
problem. A large number of commodity mobile robots are to
be moved from one location to another by a single operator.
Joysticking each one or carrying them physically is impractical.
None of the robots are particularly sophisticated in their ability
to plan or reason. Prior work on flocking and formation control
has addressed the transport of a robot group that maintains
its integrity by explicitly controlling coherence. We show how
flocking emerges as a consequence of each robot contending
for space near the human operator. A coherent flock can be
made to follow a leader in this manner thereby solving the CTR
problem. We also present the design of a hand-worn IMU-based
gesture interface which allows the human operator to issue
simple commands to the group. A preliminary experimental
evaluation of the system shows robust CTR with different leader
behaviors.

I. INTRODUCTION AND RELATED WORK

The term flocking [1] is used to describe behavior wherein

multiple robots maintain spatial coherence (i.e., robots stay

within a certain distance of each other). When there is the

added requirement of maintaining the intra-group geometry

according to pre-specified constraints, the problem is called

formation control [2]. Algorithms for robot flocking [3],

[4] are often constructed to achieve a reasonable balance

between two objectives - avoidance and aggregation.

In turn, algorithms for the former cause robots to move

away from each other so as not to collide, and algorithms

for the latter cause robots to move toward each other,

so as to maintain the coherence of the group. Algorithms

for formation control usually rely on robots being able to

sense (and control) precise distances and angles from their

neighbors or a special member of the group, called the

formation leader.

When a number of robots are to be transported from

one location to another, an appealing idea is for the human

operator to simply ’lead the way’ much like the Pied Piper of

Hamelin. This collective transport of robots (CTR) is what

we study here. In this paper the human operator is the (single)

leader and the robots being transported are the followers. In

previous approaches, this problem has been addressed in two

ways. The first set of approaches are based on flocking, they

focus on maintaining flock integrity. Gross mobility of the

This work was supported in part by NSF under grants CCF-0120778, IIS-
0093233 and IIS-0541224. Marcos Vieira was supported in part by Grant
2229/03–0 from CAPES, Brazil.

The authors are with the Robotic Embedded Systems Laboratory
(http://robotics.usc.edu/resl), University of Southern
California, Los Angeles, CA 90089, USA (meghagup, jnaneshd,
mvieira, heidarss, vathsang, gaurav@usc.edu)

flock is achieved by allowing some members of the flock

to follow the leader causing others to be ’dragged along’,

thus causing CTR. In the second set of approaches CTR

occurs in formation [5]–[7]. The leader acts as the formation

leader, and the followers maintain a specified geometric

configuration relative to the leader. While we focus on robot

transport here, we mention briefly that there is significant

prior work on using robots to transport inanimate objects

(e.g., herding [8], caging [9], pushing [10], pulling [11]). Of

particular note is work that exploits the innate tendency of

certain animals/birds to flock and preserve group integrity - a

fact exploited elegantly in [12] to design a robot ’sheepdog’

to ’transport’ a flock of ducks.

In prior work CTR is achieved because the integrity

of the robot group (whether as a flock or a formation)

is maintained through explicit control. Must this always

be the case? Consider the following example from human

behavior. A gaggle of press reporters follows a government

spokesperson, each hoping to get within soundbite range. The

spokesperson (leader) walks briskly, the reporters (followers)

keep up, while shouting out questions. The followers may be

characterized as competing for a single resource - namely

space. This competition is severe, the leader (the term is a

misnomer, but we use it for consistency) may in fact act

as an evader, and the followers are better characterized as

pursuers. Space near the leader is at a premium and members

of the press corps have been known to jostle each other out

of the way in the course of their pursuit. If a video of such

an exemplar ’chase’ was anonymized (e.g., all the followers

were replaced by blue dots and the leader was replaced

with a red dot), the resulting movie could be described

as one where the ’group of blue dots follow the red dot’.

This is an example of the leader causing collective transport

of the followers by exploiting their competition for space.

There are three important characteristics of the behavior in

the above example: Spatial coherence emerges as a side-

effect. As illustrated in the example above, it need not be

the explicit goal of the leader, nor the followers. Transport

of the followers need not be the explicit goal of the leader -

in the above instance it is not. Collisions between followers

are commonplace and not catastrophic.

Inspired by this example and others like it, we design a

control system for CTR. Spatial coherence of the robot group

is not explicitly maintained. Robots track and follow a human

leader, they are programmed to do so by preferring to occupy

space near the leader if it is available. While we build in

simple collision avoidance, our approach unavoidably results

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5834

in collisions, thus we explicitly program collision recovery.

Our approach is based on simple sensors, the Wii sensor-

rich game remote, and increasing commoditization of small

mobile robots (we use the iRobot Create). The primary

contributions of this paper are 1. to show an existence

proof that CTR is possible without explicitly maintaining

the coherence of the group - we do this by giving an

algorithm and implementing it on a system of robots, and 2.

to experimentally evaluate the robustness and performance

of the system. The secondary contribution of the paper is

an intuitive command interface for the leader using which

high-level commands may be issued to the robots using

hand gestures. Gestures are detected using a wrist-mounted,

bluetooth-enabled, Inertial Measurement Unit (IMU). A

Hidden Markov Model (HMM)-based recognition approach

matches time-series IMU data to a dictionary of gestures.

II. SYSTEM INFRASTRUCTURE

Fig. 1 shows the components and the overall dataflow in

our system.

Shared

Memory

Controller

Player

Communication

Gesture

Recognition

Leader

Tracking

Estimation

Bluetooth

Library

Fig. 1. Robot System Components

The hardware testbed for the experiments consists of 1. a

group of mobile robots customized with commodity game

devices for leader-tracking, 2. a wearable harness with IR

sources facilitating leader detection, and 3. a wrist-mounted

IMU for gesture recognition. The robots (Figure 2(a))

are iRobot Creates with an embedded computer running

Player [13] for sensing and control (other groups [14]–[16]

have recently made a similar choice in different contexts).

Each robot uses a front left and front right bumper to detect

collisions. A conscious effort was made to choose minimal

commodity devices for the tracking hardware. The Nintendo

Wii Remote (Wiimote) was chosen for its low cost and

reliable multi-object IR tracking engine. The camera has a

resolution of 1024x768 pixels, 100Hz refresh rate, and a 45◦

horizontal and vertical field of view [17] (as a comparision,

webcams usually only provide 640x480 tracking at 30Hz

and require CPU power to perform real-time tracking). To

enhance the horizontal field of view, an assembly with two

Wiimotes arranged as shown in Fig. 2(c) was designed

and mounted on each robot. The combined wide frame

Wiimote arrangement gives a 88◦ field of view. The robots

communicate with the Wiimote through a wireless Bluetooth

connection.

A wearable IR-harness was designed and equipped with a

vertical assembly of two Nintendo Wii Sensorbars (normally

used as IR sources for gameplay with Wiimotes). This

assembly provides four equispaced vertical IR sources which

are tracked by the Wiimotes on the robots to estimate the

distance and orientation of the leader (Section III-A).

A 6DoF V4 IMU with Bluetooth from Sparkfun Electron-

ics [18] was packaged to be worn on the wrist of the leader

(Figure 2(b)). A microswitch was attached to the assembly

and used by the leader to signal the start and stop of each

gesture. In the experiments described here, IMU data was

transferred to a computer running the gesture recognition

software. This module generates commands for the robots

(e.g., follow, stop, etc.).

Software development for this work was largely focused

on implementing the control system described in the follow-

ing section. An exception is the inter-robot communication

module that provides a channel for all communication. A

simple dissemination protocol was used. Each robot period-

ically broadcasts its position and angle relative to the leader.

When a packet is received, a robot checks the timestamp and

updates the leader’s location with respect to other robots in

its shared memory. In our experiments we used UDP with a

broadcast rate of 1Hz.

III. ALGORITHMS

Our system is an implementation of three sets of algo-

rithms used respectively for leader tracking, robot control,

and gesture recognition. Leader tracking and robot con-

trol are implemented on the robots. Gesture recognition is

implemented on a desktop which accepts data from the

leader-worn IMU, performs gesture recognition and sends

the appropriate command to the robots over WiFi.

A. Leader Tracking

Frames are obtained from each Wiimote at 20Hz. Each

frame may have up to four points, corresponding to one of

the four IR sources on the user-worn IR harness. Frames

are merged and the position of the leader with respect to

the robot is computed as follows. From the true distance h
between the two groups of IR sources, the observed distance

y between the IR sources on the harness, and the focal length

f of the Wiimote (Figure 3), the robot computes the distance

l between itself and the leader as given in Equation 1.

The leader’s bearing θ relative to the robot’s body frame

is computed using Equation 2 (Kw0 and Kw1 are constants

determined through an offline calibration process, xcc is the

image frame center, and xIR is the x coordinate for the

projected center of the IR sources length).

l/h = f/y =⇒ l = (f/y) ∗ h (1)

θ = Kw0 + Kw1(xcc − xIR) (2)

5835

(a) (b) (c)

Fig. 2. System Hardware (a) The team of iRobot Creates, (b) IMU worn on wrist, and (c) Wearable IR harness with two Wii Sensorbars

Consider n image points. n = 0 is interpreted as ’leader

Fig. 3. The camera model

out of view’ and n = 1 means that the leader is either too

far away or too close to the robot. In these two cases, only

the bearing angle to the leader is computed (not the distance

to the leader). For n > 1, the tracker chooses a pair of

neighboring points and uses the distance between them to

calculate the distance and bearing of the leader relative to

the robot using (1) and (2).

B. Robot Control

Each robot runs the same control program. We describe

each of the behaviors below.

Safe-Zone Selection: This behavior attempts to move the

robot so that it maintains a specific distance l and bearing

φ to the leader. An (l, φ) pair defines a safe-zone. S1
and S2 are two such safe-zones in Fig. 4 with (lS1, φS1)
and (lS2, φS2) being the corresponding parameters. A safe-

zone is not unique to a particular robot. A robot can move

from one safe-zone to another in the course of the CTR

task. How are safe-zones determined and assigned? One

approach is to initialize robots at locations near the leader

at comfortable inter-robot distances. Each robot uses its

Wiimotes to measure (l, φ) and broadcasts this value as a

safe-zone value to be shared across all robots in the group for

them to use later in the course of the CTR task. For a small

group of robots, safe-zone values may even be predefined

by the leader. The distance of a robot A to a safe-zone

S1, xS1, can be calculated using (lS1, φS1) and the robot’s

own distance and bearing to the leader, (lA, φ) as given in

(3) (See Fig. 4). Each robot then chooses a safe-zone that

is unoccupied and closest to its current position, declares

the safe-zone as occupied, and moves into it. Each robot

maintains this information in an occupation table. For a

small group of robots, one may assume that there are no

race conditions while choosing a safe-zone. However, for a

larger group, token scheduling can be used, where a token

is passed among the robots based on their IDs. Only the

robot with the token can choose a safe-zone from the list of

unoccupied safe-zones.

θ = φS1 + φ

xS1
2 = lS1

2 + lA
2 − 2 ∗ lS1 ∗ lA ∗ cos(θ) (3)

The safe-zone behavior causes robots to vie for space near

Fig. 4. Showing how a robot chooses a safe-zone for itself. S1 and S2

are two unoccupied safe-zones available to robot A. It uses equation 3 to
calculate which safe-zone is nearest and then occupies it.

the leader. Instead of anarchy, it reduces interference while

the robots compete for space. If each robot selects an exclu-

sive safe-zone, collisions with other robots could be avoided.

However, as we indicated in the introduction, our goal in this

work is not to obsess over collision avoidance. The heuristic

nature of this behavior clearly does not guarantee a collision-

free system, but rather a reasonable effort to reduce collisions

and (as we see below), a behavior to recover from them.

5836

Safe-zones, as we define them, do not enforce a rigid shape

on the robot group and so, this behavior is different from

formation control.

Leader-following: This behavior attempts to keep a robot

in its safe-zone while causing it to follow the leader. It

uses (4) and (5) to determine the velocity of the robot

based on its distance and bearing with respect to the leader.

(lsz , φsz) represent the chosen safe-zone. (l, φ) is the robot’s

position with respect to the leader. va is the angular velocity

and vx the translational velocity of the robot (since the

Creates cannot move sideways, vy is always zero). Ka, Kx,

Kcatchup, and Ksat are constants chosen by the system

designers. The robot determines its velocity based on how

far it is from its chosen safe-zone as given by the first term

in (5). If it is too far away from the leader, it moves faster

to catch up with the group (the second term). The third term

in (5) causes the robot to slow down when it is turning.

va = Ka(φsz − φ) (4)

vx = Kx(lsz − l) + Kcatchup ∗ l − Ksat ∗ va (5)

The robot updates its safe-zone value or moves into a

different safe-zone when required. This is explained in the

following sections.

Fig. 5. Collision recovery in the case of (a) a mobile obstacle, and (b) a
stationary obstacle.

Collision-recovery: When a robot collides with an ob-

stacle, one or both of its bumpers are activated. If the

obstacle is mobile (e.g., another robot), the bumper often

tends to be released relatively soon as the mobile obstacle

moves away (Fig. 5(a)). This is not the case when a robot

collides with a fixed obstacle (e.g., a wall) (Fig. 5(b)). In this

behavior, the robot stops for a short duration (1 second in our

implementation) to judge if the collision was with a mobile

or a fixed obstacle. In the former case, the robot resumes

normal motion; in the latter, it backs up, turns, and moves

forward. Based on which bumper was hit and its angular

velocity prior to the collision, the robot decides the direction

in which to turn in order to avoid the obstacle on the retry.

There are some scenarios where a robot incorrectly de-

termines whether the obstacle it collided with is mobile or

stationary. Fig. 6 shows an example where robots A and B
collide with each other such that bumpers of both robots get

activated. Both of them stop for a second, neither bumper is

released. Both robots deduce that the obstacle is stationary

and back up to avoid it. Even though the deduction about

the nature of the obstacle is wrong in this case, subsequent

behavior is appropriate because both robots back up and turn

away from each other, thus avoiding further collisions with

each other on moving forward.

Fig. 6. Erroneously attributing a collision to a static obstacle.

Safe-zone-switching: This behavior attempts to reposition

a robot relative to the leader because its collision rate is

high. The behavior adjusts the robot’s bearing to the leader

accordingly, as shown in Fig. 7. If multiple collisions happen

with mobile obstacles, the robot is most probably too close

to other robot(s) and it is best to move away from it by

increasing the bearing maintained with the leader (Fig. 7(a)).

This results in an expansion or a bulge. If a high collision

rate is due to static obstacles, the robot moves away from

the obstacle by reducing the angle to the leader (Fig. 7(b)).

This results in the boundary encompassing the group of

robots to compress and causes the group shape to elongate.

When the robots move from an open space to a corridor-

like environment, many collisions are likely with walls - this

behavior attempts to reshape the group to fit better within the

confines of a corridor. On the other hand, when the group

moves from a corridor-like environment to an open space,

collisions would mostly happen among robots themselves

and this behavior causes the group to expand to avoid this.

In addition to repositioning a robot relative to the leader,

we would like to reduce the chance that the robots will

cross each other’s paths in order to maintain the chosen

distances and bearings to the leader. This behavior uses

an algorithm to dynamically alter these parameters. The

algorithm is executed on each individual robot at random

time intervals to avoid race conditions and fluctuations in

the parameters. At random intervals each robot uses a cost

function to calculate the cost of moving to some other safe-

zone (or staying in its currently allocated safe-zone) and

chooses the safe-zone with the minimum cost (Algorithm 1).

If robot A finds a slot that has lower cost than its current

slot, A takes that slot. The swap is trivial if the slot is

unoccupied, involving just an update of the occupation table.

If it is occupied by another robot, B, then A swaps the ids

for A and B in the occupation table. As each robot is reading

5837

Fig. 7. Safe-zone angle adaptation due to multiple collisions in a short time:
(a) multiple collisions with another robot cause robot C to move away from
B by increasing its safe-zone angle from φ1 to φ2, (b) multiple collisions
with a wall cause robot C to move away from the wall by reducing its
safe-zone angle from φ1 to φ2.

the allocations repeatedly, B will update its selected slot (as

A’s former slot) on its next update. This method depends on

the communication system to share states of the robots.

Leader-relocation: This behavior is triggered on a robot

if the leader disappears from view. Algorithm 2 describes the

relocation strategy.

C. Gesture Recognition

The final piece is the gesture recognizer modeled as an

HMM which receives IMU data from the leader and parses

it to recognize gesture from a known vocabulary. In our

prototype system three gestures were used for the three

commands: follow, stop, spin. Each IMU data packet (an

observation) is a 6-element tuple (X, Y, Z accelerations,

pitch, roll and yaw angles). An HMM model is defined by

the parameters λ={A,B,π}. The state transition probabilities,

A={aij} represent the probability of a transition from state

Si to state Sj . These are used to propagate the model at each

stage. An observation probability, B={bj(k)}, represents the

probability of observing symbol Ok given the system was in

state j. π represents a-priori probabilities of the states before

the observation sets start arriving. The observation model is

represented by a lookup table that contains the probabilities

of observing different sensor values given that each value

belongs to a state Si. Recognizing a gesture is equivalent

to identifying which state has the highest probability at the

end of a gesture sequence. The motivation for the gesture

recognition system is to form a intuitive framework for

interaction between human leaders and the robots being

transported. We hope to use a fully-developed version of

this interface in our future work.

Algorithm 1: Dynamic allocation of safe-zones

Input: Robots {R1, ..., RN}, safe-zones {S1, ..., SM}1

Output: Safe-zones, {A1, ..., AN}, chosen by the2

robots

foreach i = 1 to N do3

Xi = current position of Ri4

Ai = currently allocated safe-zone to Ri5

MinCosti = dist(Xi, Ai)6

Bi = Ai7

foreach j = 1 to M where Sj 6= Ai do8

if Sj not allocated then9

Costi = dist(Xi, Sj)10

else11

k = index of robot to which Sj is allocated12

Costi = dist(Xi, Sj) + dist(Xk, Ai)13

end14

if Costi < MinCosti then15

MinCosti = Costi16

Bi = Sj17

end18

endfch19

Ai = Bi20

endfch21

Algorithm 2: Relocating the leader

if leader is out of view then1

Stop and spin to relocate leader.2

Stop if completed a full rotation.3

if leader still out of view then4

Go to leader’s last seen position using odometry.5

Stop and spin to relocate leader.6

if leader still out of view then output failure.7

end8

end9

IV. EXPERIMENTAL SETUP AND RESULTS

We performed a qualitative evaluation of the complete

system with the IR-harness and gesture recognition module

worn by a user. As a quantitative evaluation, the system

was tested in the controlled setting of a lab space with an

overhead camera (Fig. 9). Four markers were pasted on the

floor for calibration. Each robot was dressed with a unique

color marker. A blob filter tracks each robot’s position over

time, providing ground-truth. The IR-harness is designed so

that it can be mounted on a Create at approximately the same

height as a on human leader. This Create serves as a pseudo-

leader (no gestures are used). The leader is programmed to

move along a pre-planned trajectory. By using a robot as a

leader, we can study our system response systematically.

We performed four experiments (5 trials each) with the

leader traveling in a straight line, making a right-turn, dis-

appearing from follower view momentarily, and reversing its

direction of travel. We caused the momentary disappearance

5838

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

X (m)

Y
 (

m
)

Leader

Robot 1

Robot 2

Robot 3

Initial (x,y)

Intermediate (x,y)

Final (x,y)

(a) Leader moves in a straight line

0 5 10 15
0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

ta
n
c
e
 o

f
C

e
n
tr

o
id

 f
ro

m
 L

e
a
d
e
r

(m
)

(b) Distance between group centroid and leader

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (s)

R
a
d
iu

s
 o

f
R

o
b
o
t

G
ro

u
p
 (

m
)

(c) Radius of robot group

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

X (m)

Y
 (

m
)

Leader

Robot 1

Robot 2

Robot 3

Initial (x,y)

Intermediate (x,y)

Final (x,y)

(d) Leader makes a right turn

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

ta
n
c
e
 o

f
C

e
n
tr

o
id

 f
ro

m
 L

e
a
d
e
r

(m
)

(e) Distance between group centroid and leader

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (s)

R
a
d
iu

s
 o

f
R

o
b
o
t

G
ro

u
p
 (

m
)

(f) Radius of robot group

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

X (m)

Y
 (

m
)

Leader

Robot 1

Robot 2

Robot 3

Initial (x,y)

Intermediate (x,y)

Final (x,y)

(g) Leader disappears momentarily

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

ta
n
c
e
 o

f
C

e
n
tr

o
id

 f
ro

m
 L

e
a
d
e
r

(m
)

(h) Distance between group centroid and leader

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (s)

R
a
d
iu

s
 o

f
R

o
b
o
t

G
ro

u
p
 (

m
)

(i) Radius of robot group

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

X (m)

Y
 (

m
)

Leader

Robot 1

Robot 2

Robot 3

Initial (x,y)

Intermediate (x,y)

Final (x,y)

(j) Leader makes a U-turn

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Time (s)

D
is

ta
n
c
e
 o

f
C

e
n
tr

o
id

 f
ro

m
 L

e
a
d
e
r

(m
)

(k) Distance between group centroid and leader

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time (s)

R
a
d
iu

s
 o

f
R

o
b
o
t

G
ro

u
p
 (

m
)

(l) Radius of robot group

Fig. 8. Robot and leader trajectories, distance d of the robot group centroid from the leader, and the radius of the robot group for four leader movement
scenarios (straight line, right turn, blocked-leader, U-turn) .

by manually blocking the LEDs on the IR-harness for a few

seconds. When making a U-turn, the IR-harness is also not

in the field of view of the followers for a brief period (see

attached video).

We report on two metrics. The first is the distance, d,

between the centroid of the robot team (xc, yc) and the

leader, (xL, yL) (7). The coordinates of the centroid are

obtained as shown in (6). The second is the robot group

5839

Fig. 9. Overhead camera view in the labspace

radius, r, defined as the average distance of the robots from

their centroid (8). For each experiment, we plot the time

evolution of the leader and robot trajectories (looking down

on the experiment from above) (Fig. 8(a,d,g,j)), the radius

r of the group, and the distance d from the leader to the

group’s centroid (Fig. 8). Each r and d plot is generated by

averaging over 5 trials. Each plot also shows the respective

standard deviation. The bold line represents the leader and

the different kinds of broken lines represent each of the three

followers. We label the initial, intermediate and final points

of the trajectories.

xc =
1

n

i=1
∑

n

xi; yc =
1

n

i=1
∑

n

yi (6)

d =
√

((xL − xc)2 + ((yL − yc)2)) (7)

r =
1

n

i=1
∑

n

√

((xi − xc)2 + ((yi − yc)2)) (8)

Fig. 8(b,e,h,k) depicts the group distance d to group’s cen-

troid. The distance d varies by a small amount over time on

the straight line and right angle turn experiments. In the lost

leader experiments, the distance d increases a little (<1m)

at Fig. 8(h) as expected. When we blocked the IR-harness,

the leader was still moving away from the followers. When

the IR-harness was unblocked, the followers were able to

find the leader and the group was able to recover. In the U-

turn experiments, the distance d sharply increases (>1.5m)

at Fig. 8(k) as expected. When the leader executed the U-

turn, the IR-harness was briefly out of followers’ field of

view. After finishing the U-turn, the leader moved toward

the followers, decreasing the distance to the group. When

the leader had moved enough to be in the followers’ field

of view, the followers recovered and were able to track the

leader again, as shown in Fig. 8. Overall, the experiments

show that the system is able to track the leader, is robust

and has a reasonable recovery time(<5s).

Fig. 8(c,f,i,l) show the group radius r over time for the four

experiments. The experiments show that although our system

does not maintain a rigid formation, it maintains reasonable

spatial coherence. It is worthwhile to note that without

explicit control of group coherence, r for all the experiments

is almost the same, even when collisions occurred.

V. CONCLUSIONS AND FUTURE WORK

We have defined the collective transport of robots (CTR)

problem wherein a single human operator acts as a leader and

the robots being transported are the followers. In contrast to

previous approaches based on explicit flocking or formation

control, we design a control system for CTR where spatial

coherence of the robot group is not explicitly maintained.

Our approach is based on simple sensors, game devices and

commodity robots. This paper is an existence proof that CTR

is possible without precise control of group coherence. Initial

experimental evaluation of the system and the allied gestural

interface for command and control shows promise.

ACKNOWLEDGMENTS

This work was done as part of a class project for CS

547: Sensing and Planning in Robotics at the University of

Southern California.

REFERENCES

[1] M. Zavlanos, A. Jadbabaie, and G. Pappas, “Flocking while Preserv-
ing Network Connectivity,” Decision and Control, 2007 46th IEEE

Conference on, pp. 2919–2924, Dec. 2007.
[2] Z. Lin, M. Broucke, and B. Francis, “Local Control Strategies for

Groups of Mobile Autonomous Agents,” Automatic Control, IEEE

Transactions on, vol. 49, no. 4, pp. 622–629, April 2004.
[3] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behav-

ioral Model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987.
[4] R. Vidal, O. Shakernia, and S. Sastry, “Following the Flock: Dis-

tributed Formation Control with Omnidirectional Vision-Based Motion
Segmentation and Visual Servoing,” Robotics & Automation Magazine,

IEEE, vol. 11, no. 4, pp. 14–20, Dec. 2004.
[5] S. Monteiro and E. Bicho, “Robot Formations: Robots Allocation and

Leader-Follower Pairs,” in ICRA, 2008, pp. 3769–3775.
[6] Z. Wang and D. Gu, “A Local Sensor Based Leader-Follower Flocking

System,” in ICRA, 2008, pp. 3790–3795.
[7] J. Fredslund and M. Matarić, “A General Algorithm for Robot For-

mations using Local Sensing and Minimal Communication,” Robotics

and Automation, IEEE Transactions on, vol. 18, no. 5, pp. 837–846,
Oct 2002.

[8] M. J. Matarić, “Interaction and Intelligent Behavior,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 1994.

[9] M. F. M. Campos, “Decentralized algorithms for multi-robot manipu-
lation via caging,” International Journal of Robotics Research, no. 23,
pp. 783–795, 2004.

[10] M. J. Matarić, M. Nilsson, and K. T. Simsarian, “Cooperative multi-
robot box-pushing,” 1995, pp. 556–561.

[11] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella,
“Collaboration Through the Exploitation of Local Interactions in
Autonomous Collective Robotics: The Stick Pulling Experiment,”
Auton. Robots, vol. 11, no. 2, pp. 149–171, 2001.

[12] R. T. Vaughan, “Experiments in Automatic Flock Control,” Ph.D.
dissertation, University of Oxford, 1999.

[13] B. P. Gerkey, R. T. Vaughan, K. Støy, A. Howard, G. S. Sukhatme,
and M. J. Mataric, “Most Valuable Player: a Robot Device Server for
Distributed Control,” in Intl. Conf. On Intelligent Robots and Systems,
vol. 3, Maui, HI, USA, 2001, pp. 1226–1231.

[14] J. Reich, V. Misra, and D. Rubenstein, “Roomba MADNeT: a Mobile
Ad-hoc Delay Tolerant Network Testbed,” in MC2R: Mobile Comput-

ing and Communications Review. ACM Sigmobile, 2008.
[15] “The SmURV Robotics Platform,” 2008. [Online]. Available:

http://robotics.cs.brown.edu/projects/smurv/
[16] “Sumo Robot Assembly Instructions,” 2008. [Online]. Available:

http://msdn2.microsoft.com/en-us/robotics/bb403184.aspx
[17] J. C. Lee, “Hacking the Nintendo Wii Remote,” IEEE Pervasive

Computing, vol. 7, no. 3, pp. 39–45, 2008.
[18] “IMU 6 Degrees of Freedom v4 Data Sheet,” Sparkfun Electronics,

6175 Longbow Drive, Suite 200 Boulder, Colorado, Rev1 - 080422,
June 2008.

5840

