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Abstract— The problem considered here involves the design
and application of a recursive algorithm to extract and predict
the position of an object in a 3D environment from one
feature correspondence from a monocular image sequence.
Translational model involves an object moving in a parabolic
path using projectile physics. A state-space model is constructed
incorporating kinematic states, and recursive techniques are
used to estimate the state vector as a function of time.

The measured data are the noisy image plane coordinates
of object match taken from image in the sequence. Image
plane noise levels are allowed and investigated. The problem is
formulated as a tracking problem, which can use an arbitrary
large number of images in a sequence. The recursive estimation
is done using Recursive Least Squares (RLS). Results on both
synthetic and real imagery illustrate the performance of the
estimator.

I. INTRODUCTION

Visual ability to locate and track rigid objects undergo-

ing motion from monocular or binocular image sequences

is an important issue in computer vision, because of its

potential application in object recognition, robot vision and

autonomous navigation.

The problem of determining location and motion from

a sequence of images has been studied extensively [1]-

[7]. A major difference exists between motion and struc-

ture estimation from binocular image sequences and that

from monocular image sequences. With binocular image

sequences, once the baseline is calibrated, the 3-D position of

the object with reference with the cameras can be obtained.

Motion recovery techniques can be divided generally into

two categories; flow based and correspondence based. This

paper uses the later.

The research in [1] considers the problem of reconstructing

the 3D coordinates of a moving point seen from a monocular

camera under motion using trajectory triangulation. Using a

single moving camera with known projection matrices is the

same as using a number of cameras, but the fact that the

object is moving impides the use of position triangulation

to obtain the position in 3D. When the object follows a

lineal trajectory, the algorithm was able to predict the object’s

movement, but results when the object moves following a
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Fig. 1. Coordinate frame from the camera.

conic trajectory, the reconstructe points in 3D of a radious

5 percent off from the ground truth and around 4 degrees in

orientation.

Extended Kalman Filter has been by several researchers to

solve pose estimation and motion [5]-[7]. In these researches,

previous knowledge of the structure or a model of the object

is considered. Recursive and batch estimation approaches

to extract the object motion parameters of an object under

2D constant translation and rotation from a sequence of

monocular images of known structures are presented in [7].

II. GENERAL PROBLEM AND NOTATION

Taking 3D points to a 2D plane is the objective of

projective geometry. Due to its importance in artificial vision,

work on this area has been used and developed thoroughly.

The approach to determine motion consists of two steps: 1)

Extract, match and determine the location of corresponding

features, 2) Determine motion parameters from the feature

correspondences. In this paper, only the second step is

discussed.

A. Camera model

The standard pinhole model is used throughout this article.

Consider an isolated rigid body viewed by a camera as shown

in Fig. 1. The camera coordinate system is assigned so as

the x and y axis form the basis for the image plane, the z-

axis is perpendicular to the image plane and goes through its

optical center (cu, cv). Its origin is located at a distance f

from the image plane. Using a perspective projection model,

every 3-D point P = [X, Y, Z]T on the surface of an object

is deflated to a 2D point p = [u, v]T in the image plane via

a linear transformation known as the projection or intrinsic

matrix A.
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A =





−fu 0 cu

0 −fv cv

0 0 1



 (1)

where fu and fv are conversion factors transforming distance

units in the retinal plane into horizontal and vertical image

pixels.

The projection of a 3D point on the retinal plane is given

by

sp̃ = AP (2)

where p̃ is an augmented vector and s is an arbitrary scale

factor. From this model, it is clear that any point in the line

defined by the projected and original point produces the same

projection on the retinal plane.

B. 3D Rigid-Body Motion

In this coordinate system, the camera is stationary and

the scene is moving. For simplicity, assume that the camera

takes images at regular intervals. As the rigid object move

with respect to the camera, a sequence of images is obtained.

The motion of a rigid body in a 3D space has six degree

of freedom. These are the three translation components of an

arbitrary point within the object and the three rotation vari-

ables about that point. Matematically, it can be represented

by

cP(ti) = cR(ti)o
oP(ti) + ct(ti)o (3)

where the vector oP(ti) consists of the coordinates

x(ti), y(ti), z(ti) relative to a selected object axis, the vector
cP(ti) consists of the coordinates x(ti), y(ti), z(ti) relative

to a camera axis, the matrix cR(ti)o represents the rotation

matrix around the focal point and the translation vector
ct(ti)o describes the displacement of the center of the

coordinate system.

The position of a point at time ti can be calculated with

xi = C1 + C2ti + C3t
2

i (4)

yi = C4 + C5ti + C6t
2

i (5)

zi = C7 + C8ti + C9t
2

i (6)

where C1, C4, C7 are initial positions, C2, C5, C8 are veloc-

ities and C3, C6, C9 are accelerations in x, y, z axis respec-

tively.

C. Observation Vector

From (2), let the perspective of Pi be pi = (u′

i, v
′

i, 1)T .

Its first two components u′

i, v
′

i represent the position of the

point in image coordinates, and are given by

u′

i = −fu

xi

zi

+ cu (7)

v′i = −fv

yi

zi

+ cv. (8)

If ui = u′

i − cu and vi = v′i − cv , (7, 8) can be expressed

as

ui = −fu

xi

zi

(9)

vi = −fv

yi

zi

. (10)

Substituting (4, 5, 6) into (9) and (10) to obtain

ui = −fu

C1 + C2ti + C3t
2

i

C7 + C8ti + C9t
2

i

(11)

vi = −fv

C4 + C5ti + C6t
2

i

C7 + C8ti + C9t
2

i

. (12)

Reordering and multiplying (11) and (12) by a constant d

yields

d(C7ui + C8uiti + fuC1 + fuC2ti + fuC3t
2

i ) =
−dC9t

2

i ui,
(13)

and

d(C7vi + C8viti + fvC4 + fvC5ti + fvC6t
2

i ) =
−dC9t

2

i vi.
(14)

By considering

dC9 = 1 (15)

we have the equation describing the state observation as

follows

Hiai + µi = qi, (16)

where µi is a vector representing the noise in observation,

Hi is the state observation matrix given by

Hi =

[

fu futi fut2i 0 0 0 ui uiti
0 0 0 fv fvti fvt2i vi viti

]

,

(17)

ai is the state vector

ai =
[

dC1 dC2 dC3 dC4 dC5 dC6 dC7 dC8

]T

(18)

and

qi = [−uit
2

i ,−vit
2

i ]
T (19)

is the observation vector.

Considering one point in the space as the only feature

to be tracked (the center of mass of an object), the issue of

acquiring feature correspondences is dramatically simplified,

but it is impossible to determine uniquely the solution. If the

rigid object was n times farther away from the image plane

but translated at n times the speed, the projected image would

be exactly the same.

In order to be able to calculate the motion, one constraint

in motion has to be added. We consider the case of a not-self

propelled projectile, in this case, the vector of acceleration

is gravity.

C2

3
+ C2

6
+ C2

9
=

g2

4
(20)
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Equation 20 is a constraint given by the addition of

the decomposition of the vector of gravity in its different

components on each axis for a free falling object.

Substituting C3, C6 and C9 from (15) and (18) into (20)

yields

1

d2
a2

3
+

1

d2
a2

6
+

1

d2
=

g2

4
. (21)

From (21) the constant d can be calculated as

d = 2

√

a2

3
+ a2

6
+ 1

g2
. (22)

III. ESTIMATION METHOD

Recursive least squares is used to find the best estimate of

the state from the previous state. The best estimate for time

i is computed as

âi = âi−1 + Ki(qi − Hiâi−1). (23)

where Ki is the gain matrix, qi is the measurement vector

for one point, and Hi is the projection matrix and given by

the camera model and time.

The equation that describes the computation of the gain

matrix is

Ki = PiH
T
i . (24)

Pi is the covariance matrix for the estimation of the state

i, and can be expressed mathematically as

Pi = (P−1

i−1
+ HT

i Hi)
−1. (25)

The accuracy of the estimation depends of the number of

points projected in the camera plane. This number is directly

related to the position, orientation and focus of the camera

with respect to the path of the object. Assuming we can

observe enough points, the error from the calculated path

and the projected path tends to zero.

IV. EXPERIMENTS

To assess the performance of the presented algorithm,

simulations as well as experiments with real monocular

image sequences have been conducted.

The performance of the presented algorithm was tested on

simulated as well as real image sequences. The algorithm is

the same in both cases, but the performance analysis is done

differently because the correct values are only known for the

experiments using simulated data.

A. Trajectory prediction using synthetic data

Camera internal parameters and operation parameters (ro-

tation angles) are specified. The trajectory of the object is

modeled using projectile physics in which the horizontal and

vertical motion are independent of each other. Due to absence

of acceleration in the horizontal direction, the velocity in

horizontal direction remains unchanged. The velocity in

vertical direction changes due to free fall acceleration.
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Fig. 2. Path of the object in a)world and b) camera coordinates

 

 

Camera data point 

Fig. 3. Projection of points in the image plane

The object motion in world coordinates considered for this

simulation (Fig. 2.a) is given by

wxsim(t) = 1.465 − 1.5t (26)

wysim(t) = 0.509 − 0.25t (27)

wzsim(t) = 0.8 + 4.318t +
1

2
gt2 (28)

The coordinates of the object with respect to the camera

can be calculated by

cX(t) = cRw
wX(t) + ctw (29)

where cRw is the rotation matrix from world to camera

coordinates. First, a rotation about the x-axis, then about the

y-axis, and finally the z-axis is considered. This sequence

of rotations can be represented as the matrix product R =
Rz(φ)Ry(θ)Rx(ψ).

The image of the simulated camera is a rectangle with

a pixel array of 480 rows and 640 columns. The number

of frames used is 60 at a sampling rate of 69 MHz, which

accounts for a flying time of 0.87 seconds. Experimental

results for four different noise levels in two different camera

configurations are conducted.
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The performance of the estimation algorithm in each frame

is evaluated by comparing the simulated position with the

fitted position for the whole trajectory. The error ei is given

by

ei =
T

∑

t=0

((cxsim(t) − cxfit(t))
2 + (cysim(t) − cyfit(t))

2+

(czsim(t) − czfit(t))
2)

(30)

1) Camera position 1: In this simulation, the camera pose

is given by rotating ψ = 3.1806135, θ = −0.0123876 and

φ = .0084783 radians in the order previously stated. The

translation vector is given by t = [0.889;−0.209;−2.853]
meters. Using the previous parameters in (29), the object’s

motion in camera coordinates is given by

cxsim(t) = −0.599 + 1.374t + 0.137t2 (31)

cysim(t) = 0.317 − 0.299t + 0.030t2 (32)

czsim(t) = 2.091 − 4.356t + 4.898t2 (33)

as shown in Fig. 2.b.

The coordinates (u, v) projected in the image plane ob-

tained when focal lengths fu = 799, fv = 799 and centers

of image cu = 267.2, cv = 205.7 were utilized in (7,8) can

be seen in Fig. 3.

Considering only this projected points and time known,

the algorithm calculates the path in camera coordinates (31,

32, 33)

Case 1 No measurement error was considered in this

case. The trajectory error converges quite well, after 10

frames, the error is smaller than the desired threshold

of 0.005 meters. When all the frames have been cal-

culated, the error has converged to 0 m. The obtained

vector C = [−0.599, 1.374, 0.137, 0.317,−0.299, 0.030,

2.091,−4.357, 4.898]T

Case 2 A moderately measurement error of 0.5 pix-

els was considered in this case. The trajectory er-

ror converges to less than 0.005 meters in frame 38.

When the data of all the frames have been calcu-

lated, the error converges to 0.0002 m. The obtained

vector C = [−0.6000, 1.3768, 0.1377, 0.3175,−0.2978,

0.027, 2.093,−4.356, 4.898]T

Case 3 In this case, a measurement error of 1

pixels was considered. The trajectory error converges

to less than 0.005 meters in frame 43, and the er-

ror for the last frame is 0.0009 m. The obtained

vector C = [−0.608, 1.413, 0.096, 0.321,−0.309, 0.034,

2.118,−4.408, 4.898]t

Case 4 The measurement error in this case was fairly

high (2 pixels). The trajectory error converges in frame

45, with an error for the last frame of 0.0005 m. and

vector C = [−0.607, 1.424, 0.064, 0.320,−0.306, 0.026,

2.117,−4.446, 4.899]T

Fig. 4.a shows the error of the fitted trajectory with

different measurement errors considered. Fig. 4.b shows the
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b) Result of the estimation of fitted path in xyz

Fig. 4. Results of trajectory estimation with camera position 1

fitted trajectory on xyz with different measurement errors

considered.

2) Camera position 2: In this other example, the camera

pose is given by rotating ψ = −0.1299, θ = 0.0218 and φ =
−1.6545 radians, with translations tx = −0.2697 meters,

ty = 1.2121 meters , tz = 0 meters, focal lengths fu = 550,

fv = 550 and centers of image cu = 267, cv = 205. The

same object trajectory was used for comparison effects.

For this camera pose, the trajectory of the object in camera

coordinates is given by

cxsim(t) = 0.212 + 0.427t − 0.623t2 (34)

cysim(t) = −0.314 + 1.374t + 0.158t2 (35)
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Fig. 5. Path of the object in a)world and b) camera coordinates
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Fig. 6. Projection of points in the image plane

czsim(t) = 0.695 + 4.345t − 4.857t2 (36)

The path in world coordinates and camera coordinates

for this camera pose can be seen in Fig. 5. Because of the

parameters chosen for this camera, not all the points of the

trajectory are projected into the image. Positions that are not

projected in the image plane are shown in the figure with a

¤. The image observed by the camera is shown in Fig. 6.

Case 1 No measurement error was considered in this

case. The trajectory error converges quite well, after 10

frames, the error is smaller than the desired threshold

of 0.005 meters. When all the frames have been cal-

culated, the error has converged to 0 m. The obtained

vector C = [0.212, 0.428,−0.623,−0.314, 1.374, 0.159,

0.695, 4.346,−4.857]T

Case 2 A moderately measurement error of 0.5 pix-

els was considered in this case. The trajectory er-

ror converges to less than 0.005 meters in frame 38.

When the data of all the frames have been calcu-

lated, the error converges to 0.0002 m. The obtained

vector C = [0.212, 0.430,−0.624,−0.313, 1.368, 0.175,

0.694, 4.360,−4.856]T

Case 3 In this case, a measurement error of 1 pixels

was considered. The trajectory error converges to less than

0.005 meters in frame 43, and the error for the last frame is
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b) Result of the estimation of fitted path in xyz

Fig. 7. Results of trajectory estimation with camera position 2

0.0009 m. The obtained vector C = [0.2120.399 − 0.614 −

0.3121.383 0.0500.6904.204 − 4.861]t

Case 4 The measurement error in this case was

fairly high (2 pixels). The trajectory error converges

in frame 45, with an error for the last frame of

0.0005 m. and vector C = [0.206, 0.341,−0.599,−0.308,

1.472,−0.341, 0.683, 3.831,−4.8511]T

Fig. 7.a shows the error of the fitted trajectory with

different measurement errors considered. Fig. 7.b shows the

fitted trajectory on X-Y-Z axes with different measurement

errors considered.
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B. Trajectory prediction using data from images

For this experiment, 58 images were taken with a Drag-

onfly Express Camera at 70 fps, the center of gravity of

the object (a flipping coin) in the image plane (u, v) is

used to calculate the trajectory. Camera calibration to obtain

the intrinsic parameters was realized. Because the coin is

turning, the calculated center of gravity varies accordingly

to the image obtained, blur in the image might cause errors

in the calculation of the center of the coin. With real data,

the algorithm takes longer time to fit the path than with

simulated data, this maybe due the noise in the images. The

center of mass as observed by the camera is shown in Fig.

8. After the object was tossed, it landed on a table parallel

to the ground and approximately 2.1 meters away from the

center of the camera on its Z-axis. As observed in Fig. 9,

the position in Z closely resembles that of our setup. It is

difficult to corroborate the validity of the found path in 3D,

but the results obtained for the path resembles the values

obtained with simulated data. The fitted path in the image

plane converges after 38 frames.

Mean absolute error was used to measure the performance

of estimator. After all the positions were calculated, the error

in v was 0.396 pixels, and in u was 1.0862 pixels. This

difference is due to the error in the calculated center of

gravities of the coin. In other words, the path calculated

and projected into the image is more correct than the values

obtained directly from the camera.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper presented a recursive least squares (RLS)

algorithm to extract and predict the position of a flying object

in a 3D environment from one feature correspondence from

a sequence of noisy monocular images. The trajectory path

was obtained successfully even under high noise images.

The recursive estimation technique presented in this paper

has numerous advantages over other methods currently in

use. First, using only one feature point, the issue of feature

points correspondence is simplified. Another advantage is

the recursive nature of the computations makes it suitable

for real-time applications. Results on simulation and real

imagery illustrate the performance of the estimator. The

results obtained in both simulation and experiments were

good. Current research is directed towards the obtainment of

the rotation parameters of the camera from the relation that

exists between the accelerations in the camera coordinates

and gravity.
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