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Abstract— The majority of work related to grasp planning
has centered on the understanding of what constitutes a good
grasp. However, to reach a good grasp we must first find the
relative position of the gripper, its approach vector, and finger
configuration. This search problem is the focus of our paper. We
propose an on-line method that uses pairwise shape descriptors
to quickly find good alignments between the gripper contact
surface and the target. Having found a good fit, we then evaluate
how alignment quality relates to grasp quality and what can
be done to speed up the exploration of the DOF space.

I. INTRODUCTION

Our interest in grasp planning is motivated by the ap-

plication of robotics in surgical environments. In our case

the robot is required to assist the surgeon during micro-

surgery. Microsurgery procedures are common in the field

of Otolaryngology. For the sake of precision and timing

the surgeon needs to keep constant eye contact with the

working area. Because of that the instruments are handled

by a specially trained technician who delivers them when

requested. To automate this instrument delivery process, a

set of delicate grasping tasks has to be performed. Beyond

the usual complications such as obstacles in the environment,

this particular case also demands that grasp planning be

recast as planning a grasp on an instrument already being

grasped by the surgeon. In effect the grasp planning that

is required is one where the target surface is only partially

reachable and graspable.

We propose a method for finding correspondence between

contact points on the target and the gripper. Unlike most

existing approaches, we utilize shape alignment to find the

correspondence between the gripper and the target in an effi-

cient manner. We use pairwise shape descriptors invariant to

rotation and translation to determine partial or full alignments

between the gripper and the target. We hypothesize that good

alignments (as defined later) should lead to good grasps. The

end-result is an algorithm that finds grasps based on on-line

evidence as opposed to using off-line precomputed results

and that executes the planning process in time, when needed.

In the rest of the paper we initially review the existing

work in grasping, object alignment, and shape descriptors.

We then formulate the problem, describe our method in

detail, and finally present an empirical evaluation of our

approach.

A. Related Work

For an overview of grasp planning we refer the reader

to [1] and [2]. While grasp planning overlaps with other

fields such as haptics, one can define it as the search for the

best way to grasp an object. This problem is complicated

by the geometry of the object, modeling of the grasp con-

tact, number of contacts, nature of external forces, and the

parameterization of the gripper. The earliest attempts were

based on the idea of “form closure” which tries to determine

when an object becomes immovable. Form closure is mostly

determined by the geometry but it requires more contacts

than are absolutely necessary. If one considers friction as

part of the contact model, we can find grasps with fewer

contacts. Such grasps are based on force closure.

Work done in [3] and [4] is arguably the basis for many

efforts in this area. It starts by considering point contacts with

friction. The friction cone is approximated by a pyramid. The

overal impact of external wrenches or forces is combined into

a convex hull which contains the origin if we have achieved

force closure. The distance of the origin to the border of such

a convex hull is usually used as the quality metric. Another

example of analytic grasp synthesis can be found in [5]. The

authors formulate a quality metric based on the Q-distance

which is differentiable and therefore allows simple gradient

descent to be used in the search process. An attempt to

overcome non-uniformity of the geometry is presented in [6].

Here a grasp quality measure is derived which approximates

the grasp wrench space via spherical shapes that account

for the worst-case disturbances. Another approach to grasp

quality functions is shown in [7]. However the assumption

here is that the geometry is smooth and numerically well

behaved. For a more realistic contact model soft contacts

have to be considered. The initial attempt at soft contacts

addressed the issue of sliding [8]. Soft contact modeling

demands the application of the more elaborate Hertzian

analytic model [1][9]. According to this model moments and

forces at a contact are coupled. The friction cone of the

Coulomb model is replaced with a friction limit surface. This

appears to be the primary reason why soft contact modeling

has not found wider usage. More recently in [10] an approach

was presented which treats limit surfaces in a similar fashion

as friction cones in [3]. The limit surface is approximated by

a convex polyhedron.

Even if the contacts are understood and a quality metric

is formulated, there still remains the issue of gripper param-

eterization. The problem is one of correspondence and the

question is how we position, orient, and articulate the gripper

in order to maximize the grasp quality. One interesting

approach has been proposed in [11][12]. The idea is to find

the gripper parameters if one knows the contact points on

the target which yield a stable grasp. Both sources settle

on an optimization scheme to find the best parameterization.

The dilemma here is whether contacts generate a gripper
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configuration or if it is the other way around. As a purely

analytic method, the need for optimization means that real-

time application is limited. In this paper we assume that the

gripper configuration determines contacts.

The impact of geometry is considered by the authors in

[13]. The shape is assumed concave and convex decompo-

sition is used to divide and conquer the problem. Along

similar lines use of shape primitives has been proposed [14].

In fact the authors pursue a more heuristic methodology.

Besides using shape primitives for geometry representation,

the search for grasps occurs over a predetermined set of

gripper preshapes. The grasp quality evaluation happens on-

line by means of a grasping simulator. Building on the

heuristic method of using simple geometric preshapes the

authors in [15] propose a more generic means of object

representation. They use hierarchical decomposition trees

in terms of quadrics. One disadvantage of the approach

is the tree decomposition which is a clustering problem

coupled with the actual fitting of superquadrics. Quadrics

were chosen over other decompositions because they encode

normals naturally. Similarly in [16] authors present work

on a prosthetics system to enable human teleoperation of

robotic grasping. The system achieves real-time performance

by reducing the dimensionality of the gripper DOF space.

While this simplifies the search, it yields suboptimal results

which requires an on-line validation step to fine-tune the

grasp. Instead of looking for the optimal grasp analytically,

the aim of the authors was to reduce the search space while

still preserving most of the good grasps.

Having considered geometry, contact modeling, grasp

quality, and gripper parameterization the remaining problem

is reachability. The search for a good grasp will inevitably

yield multiple possible grasps [1]. In [17] the authors exam-

ine a scoring method as a way to rank the identified grasps.

In particular this approach looks at how nearby clutter might

affect a grasp planning algorithm. The method is based on

force closure.

Alignment of 3D objects is a research field in its own

right. The field is mainly driven by media content retrieval

problems and registration of medical data [18]. The methods

can be roughly split into optimization-based approaches

where object geometry is directly used [19], and methods

which use a variety of local and global features usually

invariant to certain transformations. An interesting idea is

the use of spherical harmonics [20]. For a solid review of

specific pose recovery methods the reader is referred to [21].

The problem with the majority of these methods is that they

try to solve the alignment problem between whole objects.

Partial matching is evidently more difficult.

Shape descriptors have found wide usage in computer

vision where they have lead to decent results in classification

[22]. An early example of shape driven grasp planning is

presented in [23]. Here we observe the use of antipodal

grasps. The underlying basis is found in force closure and

as such this can be considered part of the more general

approaches complicated by visual sensing.

Two works that are very similar to this paper are [24] and

[25]. In [24] we find a method for cluttered environments.

The goal is to find high probability grasps which is a very

attractive way to simplify and improve grasping. While it

strives to find utility for unstructured environments, it starts

out with a set of precomputed preshapes which are then

adapted to the situation. This work highlights the cost of

computing pose and the importance of an efficient solution

to this problem. Unlike our method it uses a nonlinear

optimizer combined with SVD decomposition to solve it.

The work in [25] comes from the field of animation. The

authors recognize and use invariant features very much like

this work but the approach here is to start with a database

of preshapes which are then queried by using geometric

similarity. The problem of pose recovery is addressed by

using three correspondences and clustering in high dimen-

sional space as compared to our approach which uses one

correspondence and 3D-space for clustering. In addition it

does not examine if shape matching leads to good grasps

and in which situation.

II. PROBLEM STATEMENT

In this section we present our problem formulation. In

addition we outline conventions and assumptions which we

use throughout the paper.

Given a gripper G(~π) and a target object T we seek to find

the set of optimal parameterizations ~π that yield good grasps.

We divide the problem into a number of subproblems. First

and foremost we need to define the quality metric of a given

valid grasp. By itself however the metric by which optimality

of a DOF parameterization is evaluated is not enough.

Equally crucial is the problem of correspondence and the

closely related pose recovery given the correspondence. In

this light it could be said that we find the optimal DOF

parameterization by finding the pose which is valid and

yields the best grasp quality.

The gripper is modeled as a triangulated mesh and pa-

rameterized by ~π whose dimension equals the number of

degrees of freedom in addition to the three dimensions for

wrist position and three for wrist orientation (6D + DOF ).

Furthermore the gripper is subdivided into “N” fingers with

each finger having “M” links. The mesh surface of each link

is partitioned into active facets and inactive facets. The active

facets are commonly on the inside of the fingers and only

they form contacts with the target. Please note that commonly

we would expect the finger tips to be included in the contact

surface. We do not do that here because we use uniform

area sampling of the contact surface. We expect that good

alignment will produce good grasps because of improved

surface contacts not point contacts. Along these lines we

observe that the active facets usually subtend convex shapes

[26] also known as grasping convex (Figure 1).

The target is also modeled as a triangulated mesh. The

mesh is partitioned into occluded and free facets. It is the task

of the sensor to paint the facets according to this partitioning.

What constitutes a good grasp depends on the application.

Frequently a stable grasp is a good grasp but a good grasp

might be the one that is sufficiently stable while providing
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Fig. 1. Gripper Sampling

the surgeon the opportunity to also grasp the object in a

stable manner. We define an objective function Q(G(π), T )
that is at maximum for an optimal value of π. Given the

grasp quality function our primary goal can be reformulated

as

~̂π = argmax
π

Q(G(~π), T ). (1)

During a grasp active facets of the gripper are in contact

with facets on the target. To limit the complexity we sample

a set of “P” contacts {p1, . . . , pP } evenly over the facets.

The set of these P samples will be called a constellation.

For each of these contacts the set of valid forces within the

friction cone can be expressed as an approximation over the

“R” edge vectors {d(pi)1, . . . , d(pi)R} of the cone:

f(pi) =

R
∑

j

αijdj(pi) (2)

1 ≥
R

∑

j=1

αij , (3)

where f(pi) denotes a contact force at point pi, and αij

are non-negative coefficients. If the sum of all forces acting

on a body is zero, that body will not move but it might rotate.

We therefore consider both forces and torques. The contact

wrench is defined as

w(pi) = [f(pi), pi × f(pi)]
T

. (4)

The overall wrench acting on the target is then

wT =

P
∑

i=1

R
∑

j=1

αijwij (5)

where wij = [dj(pi), pi × dj(pi)]
T

.

With the above derivation which follows [5] the target is

in force closure if

0 ∈ interior(ConvexHull [w11, . . . , wPR]). (6)

One common quality measure is the minimal distance of

the origin to the surface of the convex hull.

Q = min
~w∈W

||~w||. (7)

We will make use of it and in addition consider only

painted facets on the target as reachable. Finally in the

end a ranking metric can be used to order and consolidate

alignment and grasp metrics.

III. PROPOSED METHOD

A robotic assistant in microsurgery must be able to grasp

objects held by a surgeon. All other issues aside, we need a

grasping method that will run in real-time and is capable of

planning grasps over partially covered objects.

Our proposed method is inspired by the use of pairwise

features in computer vision. We observe that the search for

a good grasp necessitates an efficient identification of corre-

spondence (which finger goes where). The same problem

is also present in computer vision and object alignment.

Another inspiration has been the work done with the GraspIT

simulator. By studying it, one realizes that their use of

preshapes and heuristics to obtain gripper approach vectors

is an attempt to simplify the problem of how to align the

gripper to the target to obtain a stable grasp. This is where we

contribute novel work. For a given DOF parameterization of

the gripper we find the optimal geometric alignment between

the gripper and the target. By maximizing the contact surface

between the two, we should obtain a subset of poses leading

to a good grasp. In order to match 3D object with different

parameterization we utilize pairwise feature vectors. These

features are invariant to translation and rotation and therefore

simplify the pose estimation problem. Please notice that

unlike in vision we do not need more invariance and so

designing the features is easier.

Given an “N" finger gripper our method finds partial and

full grasp alignments and works even if certain parts of

the target object are occluded (i.e., surgeons hands). Direct

geometry alignment is an expensive proposition. Partial

matching makes it even more difficult. Our method lifts the

representation of the target and the gripper into an invariant

space. The only requirement is that the facets we match are

normalized to have approximately equal size. Such unit facet

will ensure that we test the target face multiple times if there

is room for the finger to move.

The end result of alignment is to obtain the orientation
~R and the position ~P of the gripper wrist. Since multiple

results are possible, we rank the results by means of an

alignment quality metric. The quality metric we choose

considers average distance within the estimated pose and the

number of votes or correspondences reporting it:

QA =
V oteCount

1 + DistanceV ariance
. (8)

We now describe the construction of our feature vectors.

As illustrated by Figure 2, we consider two unit facets

sampled over the active surface of the gripper. Each facet will

have a position pi and a normal vi. From this information

we compute three quantities. The distance dij between two

facet positions:

dij = ||~pi − ~pj||. (9)
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Fig. 2. Design of Features

The cosine similarity φij between the normals ~vi and ~vj :

φij = ~vi · ~vj . (10)

As the third quantity we compute the cosine similarity

between the normals and the line between the points pi and

pj :

βij =
~vi · (~pi − ~pj)

||~vi||||~pi − ~pj||
. (11)

We now construct our feature vectors as:

eij(π) = (dij , φij , αij + βji)
T . (12)

Note we could have kept βij and βji separate which

would give us a directional feature. However when they

become equal we lose the directionality and have to deal with

ambiguity, so we assume the ambiguity is there by design.

To find all possible combinations of “N” contacts of the

gripper over the geometry of the target having “V" vertices

including the partial matches, we consider both gripper and

target as point sets (centered on unit facets). Then the size

of the search space is given by

NC =

N
∑

i=1

(

V

i

)

(13)

if we sample the gripper active surface once per finger (i.e.,

tip of the finger).

Our method obtains
V (V −1)

2 pairs for a target object with

“V" unit facets. For a gripper sampled at “P" unit facets

across all fingers we obtain
P (P−1)

2 pairs.

One way to do pairwise matching is all against all. A

more efficient way is to build a volume hierarchy of the

target using Axis Aligned Boxes (AAB). For a well balanced

binary tree the size of the search space becomes:

C =

(

ln
V (V − 1)

2

)

×
P (P − 1)

2
. (14)

A. Pose Recovery

Once pairwise correspondences are found, we estimate

the orientation first and then the position. This is in line

with mainstream methods described in [21] where the same

approach is taken. In our case finding these quantities

consecutivelly is benefitial because of memory constraints

even if it has stability implicaions. The main reason for

developing a novel approach lies in the formulation of these

methods. They all solve the problem by least square error of

an objective function. The problem with such an approach

is that all points are considered at once which makes

them succeptible to outliers. In addition the matrix from

which rotation is obtained by means of SVD or eigenvector

decomposion are as big as the point set. In contrast our

method works like Hough Transform. The benefits are geared

towards resource limited embedded systems. Our method

has much smaller memory footprint because it accumulates

results, it is amenable to filtering as a way to combat outlier

isses and because it does not rely on matrix operations it is

significantly faster.

When we say we have correspondence it also means we

have two unit vectors ~A and ~B that are related by a rotation.

~B = Rq(θ) ~A. (15)

A naive approach for orientation recovery would be to pick

the three vectors a correspondence gives us (two normals and

a difference) and invert the rotation matrix. We can obtain

two possible rotations this way because we do not have point

correspondence. However this requires matrix inversion and

provides no means of dealing with singular cases (i.e., where

two or more vectors are co-linear). Our approach is more

efficient in terms of computation and stability. We find six

rotations from a single correspondence of which three should

agree.

It helps to visualize what we mean with Figure 3. Any

rotation can be expressed using unit quaternions or versors.

A versor encodes an axis of rotation and an angle. In Figure

3 the axis of rotation goes through the south and north pole
~N . The angle of rotation is depicted as a thick arc on the

equator. One would think that to recover the rotation we

could simply take the cross product of ~A and ~B. The problem

is that an entire set of of quaternions can rotate A into B.

Any quaternion lying on the great circle that travels half

way between ~A and ~B will do the job. The versor having

axis ~N rotates our points using the smallest angle. Versor
~AB is the other extreme and rotates by 180 degrees. A

pairwise correspondence gives us three vectors. For each

vector we can register a great circle on a spherical map and

then pick intersections with the most votes. The problem is

that spherical to cartesian mapping is not uniform. In addition

we would need two coordinates for the axis and one for the

angle requiring a 3D accumulator and it is well known that

Hough transform suffers from artifacts when the bins are

too large. As an alternative we go a step further and actually

find intersections between two great circles. Accounting for

directional ambiguity pairwise correspondence gives us six

vector pairings. Using vector pairings we can find exact

versor agreements. In case of singular cases which are

unconstrained we revert to using the axis with the least angle

(cross product).

First we observe that the set of all versors rotating A into

B can be expressed as:
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~n = cos(t) ~N + sin(t) ~AB. (16)

The intersection of two such great circles is given by:

~mij = ( ~Ni × ~AiBi) × ( ~Nj × ~AjBj). (17)

To test if two circles really intersect at that point, we must

also check that the angle amounts are in agreement. For a

given intersection point we calculate two angles one for each

A,B pair:

θi = ∠( ~Ai − ( ~Ai · ~mij) ~mij), ( ~Bi − ( ~Bi ~·mij) ~mij)

cos(θi) =
[~mij × (~mij × ~Ai)] · [~mij × (~mij × ~Bi)]

|(~mij × ~Ai)||(~mij × ~Bi)|
. (18)

Please notice that two great circle intersect at two antipo-

dal locations and both must be considered as valid. This also

impacts how we determine if two angles are in agreement

since the same rotation results if angles and axis are negated.

We can eliminate the axis ambiguity by choosing only the

upper hemisphere and flipping the angle appropriately. After

that the sign of the angle only depends on the angle between

the found axis ~mij and the cross axis ~Ni.

The position of wrist is obtained in a second pass from

the midpoint of the correspondence (i.e. constellation points).

Given an identified rotation ~q = (θi, ~mij)
T we rotate the

midpoint forward in the gripper frame and then subtract it

from its position in the target frame:

~P = ~PT − Rq(θ) ~PG. (19)

In the end we could theoretically end up with more than

C possible rotations. If that happens, we most likely do not

have a good alignment. If we find correspondences for x
contacts, then 3[x(x − 1)/2] rotations should agree on the

same pose.

A

B

N=AxB

D=NxAB

AB

Fig. 3. Pose Recovery

T e s s e l a t e T a r g e t i n t o u n i t f a c e s

PT=ComputePa i r s ( T )

BVT=ComputeBoundingHierarchy ( PT )

T e s s e l a t e G r i p p e r a c t i v e s u r f a c e i n t o u n i t f a c e s

foreach p i i n ( DOFSpace )

PG= ComputePa i r s (G( p i ) )

foreach g P a i r i n (PG)

b P a i r s = g P a i r i n t e r s e c t BVT

foreach b P a i r i n ( b P a i r s )

q= E s t i m a t e P o s e ( bPa i r , g P a i r )

p= R e c o v e r P o s i t i o n ( q , bPa i r , g P a i r )

VoteFor ( q , p ) i n Q

RankPose (Q)

P r u n e P e n e t r a t i o n (Q)

ComputeGras pQua l i ty (Q)

Fig. 4. Pairwise Feature Alignment Planner

B. Practical Consideration

In Figure 4 we present the pseudocode for our algorithm

that summarizes our method.

The structure of the selected pairwise feature is where a lot

of the application specific engineering occurs. For example

directionality can be desirable. Another desirable property is

that the facets we try to align are of approximately the same

shape and size (compatibility). Measures such as facet area or

facet aspect ratio come to mind. For this paper we preprocess

both surfaces by tessellating them into approximately equal

triangles which we call unit facets.

The next practical issue is the distance metric used to

detect intersection of features, intersection of orientations,

and intersection of positions. For the recovery of position

given an orientation we use the Euclidean distance. The

intersection of features is a bit more tricky. The feature

elements could have different domains such as distances and

angles. We chose to use a weighted distance metric and

picked the weighting parameters by manual introspection.

For orientation distance measure we opted for the angle

measurements. For example the rotation (θi, ~mij)
T is close

to (−θi,− ~mij)
T and so is (π, ~mij)

T and (−π, ~mij)
T .

We present the algorithm as a nested loop to emphasize

that it is local and sequential in nature and amenable to

parallelism. In practice however we converted the loops into

three passes. Pass one would accumulate correspondences,

pass two would accumulate rotation agreements, and pass

three would recover position given rotation.

Post-processing involves actual validation of the alignment

against the grasping kinematics and dynamics. Besides the

actual grasping simulation we also perform interpenetration

testing. We picked a very simple feature to capture shape

characteristics and it would not guard against all eventual-

ities. Figure 5 shows an alignment that is impossible for a

rigid gripper and a rigid body.

IV. RESULTS

The experimental validation of our method was performed

in octave using OpenRAVE as the back-end server. To obtain

the results we run experiments by sampling evenly the four

DOF dimensions and picking the highest alignment at each

step. The gripper was sampled once per finger link giving
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Fig. 5. Case for Penetration Test

us a seven point constellation. The DOF space was sampled

evenly every 0.25 radians over all four DOF dimensions.

The target was sampled differently depending on the polygon

count. After collecting best alignments for each DOF step we

then evaluated the grasp quality. The grasp quality evalua-

tion is based on (7). Configurations where gripper surface

penetrates the object were disqualified. The penetration test

uses ray intersection and thresholding. For the rest we would

perform a fine tuning step during which we slightly perturb

the wrist position and DOF values (within the sampling step).

During the finetuning the best grasp quality is retained. The

majority of our computation occurred on the client side but

collision checks and link transformation states were queried

from the simulator. Because of that timings would give a

skewed picture. Figure 6 shows the type of targets we used

for experimentation. They are arbitrary objects but with an

increasing polygonal count. We selected them because they

are of approximately the same size as the Barrett Hand.

The Barrett Hand was deemed a good testbed because its

parametrization is simple enough to conceptualize yet it

can verify the characteristics of the algorithm. We manually

performed the target facet painting where it was feasible. For

example the flask has a region which is unreachable at the

top of the neck.

Fig. 6. Selected Targets of Varying Polygon Count

We have already discussed algorithmic complexity and

here we present two results that we feel support the premise

of this paper.

First in Figure 7 we show a projection of the gripper and

target constellation in feature space. We have plotted side

by side constellations of a number of grasp configurations

(case 2-case 6) and contrast that with the constellation of the

target (case 1). We used Multi Dimensional Scaling (MDS)

to visualize the data as it is commonly done in machine

learning. The intent of this experiment is to demonstrate that

the gripper constellation has a degree of separability from

the target constellation and that this degree depends to some

extent on the parameterization. Simply put we have proposed

here a method that quickly finds gripper to object alignment

but we still have the problem of sampling the DOF space and

searching it. As Figure 7 demonstrates there is separability,

the search process can thus be optimized. If we can’t reduce

complexity, then at least we can ensure that the least amount

of time is spent at each point.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

 

 

Case 1

Case 2

Case 3

Case 4

Case5

Case 6

Fig. 7. MDS Projection of the Gripper and the Target in Feature Space

The second result follows in Figure 8.

Fig. 8. Quality of Alignment Vs. Quality of Grasp

It establishes by empirical means the relationship between

gripper-target alignment and the resulting grasp quality. The

reasoning here is that if there exists proportionality between

the two, we might be able to cast part of one problem in

terms of the other as we have attempted to do here. While
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this transitivity might not have any benefits, it does provide

one extra tool in pursuing the grasping problem. As can be

seen from this figure, that relationship is not as clear cut as

we initially assumed. Instead of clear proportional relation

we get a more measured behavior. It appears that a good

grasp need not be optimally aligned but at the same time if

we have a good alignment our chances of obtaining a good

grasp are better. The results seem to suggest that a good

alignment could indeed be used as a heuristic in the search

for a good grasp.

Lastly, Figures 9-11 present a qualitative analysis of our

work. They show the top grasps found by the method

described here on the three sample targets. As we can see,

each grasp indeed agrees with the intuitive expectations of a

good grasp. We can observe that in some cases there is some

minimal penetration. This is barely visible but explains why

a finetuning is necessary to adapt the proposed grasp to the

situation. For the same reason Figure 10 appears suboptimal.

Fig. 9. An Example of an Alignment Grasp

Fig. 10. An Example of an Alignment Grasp

V. CONCLUSIONS AND FUTURE WORK

We have presented here a method that addresses a sub-

problem of the grasp planning problem. The sub-problem

arises from the high dimensional search space in which a

grasp planner must operate to find the approach direction and

position of the gripper wrist relative to a target. Our initial

assumption was that good grasps require good alignment.

While we have not tried to reduce the search space spanned

Fig. 11. An Example of an Alignment Grasp

by the Degrees of Freedom (DOF) we have explored the

separability of a gripper and a target in the feature space. The

idea is that absent any means of reducing the DOF space,

we could construct a classifier that might quickly eliminate

certain regions.

This research was performed within the specific context of

a Human Robot Interface (HRI) needed in medical robotics.

We believe that the majority of grippers used today including

the Barrett Hand utilized here are rigid tools and as such

more suitable for industrial tasks. Even if soft rubber fingers

are attached, the active surface is used passively and is blind.

Robots capable of human interaction should feature soft,

deformable active surfaces. For one the softness prevents

damage to the human subject (hand). Additionally the soft

surface provides for embedding of the sensor matrix needed

for the increased dexterity requirements. It also generates

shape conforming surface grasps. In this light even “over-

grasps” such as Figure 5 can be considered as mildly valid.

Future work will involve direct field studies in the op-

erating room during which we intend to record how the

surgeon interacts with an assistant at the haptic level (since

his eyes are on the microscope). Besides collecting evidence

for a touch based communication protocol, this field study

will also examine how the instrument is obscured (partial

coverage) during the interaction. The results here and from

such field studies will allow us to complete a novel shape

conforming gripper for HRI being developed in our lab.
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