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Abstract—In the face of large scale parametric uncertainties,
the single model (SM)-based classical adaptive control approach
demands high observer, controller and adaptation gains in
order to achieve good tracking performance. The well known
problem of having high-gain based design is that it amplifies
the input and output disturbance as well as excites hidden
unmodeled dynamics causing poor tracking performance. In
this paper, a multi-model based adaptive design is proposed to
reduce the level of parametric uncertainty in order to reduce
the observer-controller gains. The key idea of this approach
is to allow the parameter estimate of the SM-based classical
adaptive control design to be reset into a model that best
approximates the plant among a finite set of candidate models.
For this purpose, we uniformly distribute the compact set of
unknown parameters into a finite number of smaller compact
subsets. Then we design a family of candidate controllers for
each of these smaller compact subsets. The derivative of the
Lyapunov function candidate is used as a resetting criterion to
identify a candidate model that closely approximates the plant
at each instant of time. The proposed method is evaluated on
a 2-DOF robot manipulator to demonstrate the effectiveness of
the theoretical development.
Key words:Adaptive Control, Output Feedback, Robotics,

Lyapunov-based Switching.

I. INTRODUCTION
Over the past decades, there have been tremendous ef-

fort in the development of high performance tracking con-
trollers for robotic systems, (see for example [1-10, [16]
and references therein], to name a few). Most of these stud-
ies, however, only provide asymptotic convergence property
while transient tracking behavior do not consider in their
stability analysis. Another important reason for showing
poor transient tracking performance is that the certainty
equivalence (CE)-based design is based on using well-known
dynamical properties of the robotic systems [3], [7], [8],
where nonlinear robot dynamics are required to be appear
linearly with respect to uncertain parameters. Therefore,
if we consider that the unknown parameters and initial
conditions belong to a known, but relatively large compact
set, then the existing single-model CE principle based adap-
tive control, either for state or output feedback, approach
provides poor transient tracking performance. To improve
transient tracking response, one may use high observer-
controller gains to speed up the convergence rate of the
state and parameter estimates. Specifically, state feedback
(position-velocity) based classical adaptive design requires
high learning gains to obtain fast convergence rate of the
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parameter estimator. In output feedback case, high observer-
controller gains are essential to achieve robust reconstruction
of true velocity signal and fast parameter learning to ensure
good transient tracking performance. The requirement of
high observer gain makes the CE-based adaptive output
feedback approach even more complex to realize in real-time
applications as high observer gain amplifies the input and
output disturbance causing high-frequency control chattering
activity. As a consequence, the classical adaptive design,
either for the state or the output feedback design, might
not be practically implementable or might be very expensive
as, in practice, the control effort in most nonlinear control
systems are limited. If applicable, then high controller-
observer gain excites unmodeled high-frequency dynamics
as well as amplifies input-output disturbance resulting poor
tracking performance, see for example [11]-[13].
To deal with the problem associated with high observer-
controller gain as well as the robustness of classical adaptive
control (CAC) approach, we introduce multi-model con-
trol (MMC) technique for multi-input multi-output (MIMO)
robotic systems. This method extends the existing CE-based
CAC approach by allowing the parameter estimate to be
changed into a family of candidate parameters model. First
we propose a pre-routed switching-logic strategy, where an
inequality for the derivative of the Lyapunov function is used
as a resetting criterion. Results in this direction can be found
in the literature [15] and references therein. We show that the
pre-routed switching nature may cause an undesirable tran-
sient tracking errors and high-frequency control oscillation in
the presence of large number of candidate controllers. This
is due to the fact that when the number of the candidate
controllers become large then the supervisor requires to
scan through a large number of candidate controller before
converging to the one that guarantees the resetting criterion.
Moreover, this method is based on a strict assumption that the
position-velocity signals are available for feedback design.
To remove the transient tracking phenomenon from the pre-
routed switching-logic as well as from CAC design, we allow
the controller to be reset instantaneously so that the control
system can improve overall tracking performance. In contrast
with the pre-routed switching design, the proposed approach
can be applied for both state and output feedback control
technique.
The rest of the paper is organized as follows: In section II,
we derive the CE-based CAC approach for robotic systems.
Section III proposes multi-model based adaptive control
design in order to improve transient tracking perfomance
from CE-based CAC approach and the pre-routed switching-
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logic based multiple model/control design. Section IV pro-
vides implementation results to demonstrate the theoretical
development of this paper. Finally, section IV concludes the
paper.

II. CLASSICAL ADAPTIVE CONTROL FOR ROBOTIC
MANIPULATORS

We first represent the robot model [1], [2], [6] in the
following error state space form

ė1 = e2, ė2 = φ1(e) + φ2(e1)τ − q̈d (1)

where e1 = q − qd, e2 = q̇ − q̇d, φ1(e) = −M−1(e1 +
qd)[C(e1 + qd, e2 + q̇d)(e2 + q̇d)+G(e1+ qd)] and φ2(e1) =
M−1(e1 +qd), e1 ∈ �n is the joint position vector, e2 ∈ �n

is the joint velocity vector, ė2 ∈ �n is the joint acceleration
vector, τ ∈ �n is the input torque, M (e1 + qd) ∈ �n×n is
a symmetric and uniformly positive definite inertia matrix,
C(e1 + qd, e2 + q̇d)(e2 + q̇d) ∈ �n is the coriolis and
centrifugal loading vector and G(e1 + qd) ∈ �n is the
gravitational loading vector. The objective of this work is in
two folds. In the first part of this paper, we develop single-
model CE principle based CAC design for the tracking error
model (1). Then, we introduce multi-model based adaptive
control approach. Our main focus of this method is to extend
CAC design in order to reduce the observer-controller gains
through on-line estimation of the derivative of the Lyapunov-
function inequality.
State feedback controller: Let us first design an adaptive

controller as a state feedback such that the manipulator
joint position q(t) asymptotically tracks the desired joint
position qd(t). To obtain this objective, we assume that qd(t),
its first and second derivatives are bounded. Then define
Qd = [qd q̇d q̈d]T ∈ Ωd ⊂ �3n with compact set Ωd.
To meet this control objective, we consider the following
adaptive control law as

τ (e, Qd, θ̂) = Y (e, q̇d, q̈d)θ̂ − KP e1 − KDe2 (2)

with ˙̂
θ = −ΓY T (e, q̇d, q̈d)S, where Y (e, q̇d, q̈d)θ̂ =

M̂ (q)q̈d + Ĉ(q, q̇r)q̇d + Ĝ(q) [1], [2], KP ∈ �n×n, KD ∈
�n×n, S = e2 + λe1, q̇r = (q̇2 − λe1), λ = λ0

1+‖e1‖ , λ0 > 0
and M̂ , Ĉ(.) and Ĝ(.) define the estimates of the M (.), C(.)
and G(.), respectively,. The adaptation mechanism is used to
cope with structured parametric uncertainty. To alleviate the
discontinuous property from θ̂, the learning estimates can
be adjusted with the smooth parameter projection scheme
[5] as, ˙̂

θi = [Proj(θ̂, Φ)]i for θ ∈ Ω = {θ | ai ≤ θi ≤
bi}, 1 ≤ i ≤ p}, where Φi is the i the element of the
column vector −Y T (e, q̇d, q̈d)S and δ > 0 is chosen such
that Ωδ = {θ | ai − δ ≤ θi ≤ bi + δ}, 1 ≤ i ≤ p}. This
adaptive controller design is based on using the following
control Lyapunov function [8]

V (e, θ̃) =
1
2
ST MS +

1
2
eT KP e +

1
2
θ̃Γ−1θ̃ (3)

with S = e2 + λe1 and θ̃ = (θ̂ − θ). The time derivative,
V̇ (e, θ̃), along the closed loop trajectories, formulated by

using the error system (1) and the control law (2) along with
the parameter projection, satisfies the following asymptotic
stability condition

V̇ (e, θ̃) ≤ −λmin(Π)‖e‖2 (4)

∀θ̂(0) ∈ Ω, ∀θ(0) ∈ Ω, ∀e(0) ∈ Ωco, ∀θ̂ ∈ Ωδ ,
∀e ∈ Ωc with Ωc = {e | eT Qsme ≤ c}, c > 0 and

Qsm =
[

0.5M 0.5Mλ
0.5Mλ 0.5

(
λ2 + KP

)
]
, Π = ΘT ΔΘ with

Δ and Θ defined as Δ =
[

K1I 0
0 K2I

]
and Θ =[

λI
2 I

λI
2

0

]
where K1 = [λmin.(KD) − 3λ0MM − 2λ0CM ]

and K2 =
[

4λmin.KP

λ0
− λmax.(KD) − 2λ0MM − 2λ0CM

]
.

Due to space limitation, we remove the details proof.
Output feedback with linear observer: Let us now

consider the practical situation where velocity sensors are not
available, see for example [11], [12], [13]. This means that
the state vector e in the control law (2) is not available for
measurement and is required to be estimated by a suitable es-
timator ê. If e is replaced by an estimate ê in τ (ê, Qd, θ̂), then
one obtains ė2 of (1) as, ė2 = φ1(e)+φ2(e1)τ (ê, Qd, θ̂)− q̈d

with τ (ê, Qd, θ̂) = Y (ê, q̇d, q̈d)θ̂ − KP ê1 − KD ê2, ˙̂qr =
ê2 + q̇d − λê1 and e is replaced by the following model-free
linear estimator as

˙̂e1 = ê2 +
H1

ε
ẽ1, ˙̂e2 =

H2

ε2
ẽ1 (5)

where ẽ1 = e1 − ê1, ê1 is the estimate of e1, ê2 is the
estimate of e2, ε is a small constant design parameters needs
to be specified, H1 and H2 are chosen such that the matrix[ −H1 I

−H2 0n×n

]
is Hurwitz. Then, the observer error can be

written in the following standard singularly perturbed closed-
loop observer error-model as

εη̇ = Aoη + Bε[−q̈d + φ1(e) + φ2(e1)τ (ê, Qd, θ̂)](6)

where ẽ1 = εη1, η2 = e2 − ê2 = ẽ2, η =
[

η1

η2

]
, εη̇1 =

η2 − H1η1, εη̇2 = ε[−q̈d + φ1(e) + φ2(e1)τ (ê, Qd, θ̂)] −
H2η1, ê = e − ζ(ε)η, ζ(ε) =

[
εIn×n 0n×n

0 In×n

]
, A0 =[ −H1 I

−H2 0n×n

]
, H =

[
H1

H2

]
and B =

[
0n×n

In×n

]
. The

resulting adaptive output feedback system has the following
form

ė = B[φ1(e) + φ2(e1)τ (ê−, Qd, θ̂) − q̈d] + Ae (7)

with ˙̂
θ = Proj(θ̂, φ(e − ζ(ε)η, Qd, θ̂)), where A =[

0 In×n

0n×n 0

]
. As the speed of the observer dynamics

increase with the increase of the inertial parameter and
initial condition of interest, then the large control input may
enter into the system resulting poor transient tracking per-
formance. To protect the plant from large control action due
to high speed observer in the presence of large parametric
uncertainty, one requires to saturate the control using known
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saturation level, τmax, outside the region of interest Ωc of the
adaptive state feedback control law τ (e, Qd, θ̂) [14]. We now
present the main results for the SM-based classical adaptive
output feedback (CAOFB) design.
Theorem 1 : Consider the closed-loop system (6) and (7).
Then, for any given ∀e(0) ∈ Ωco ⊆ Ωc, ∀ê(0) ∈ Ωco,
∀θ̂(0) ∈ Ω and ∀θ(0) ∈ Ω, there exists a small ε∗1 such
that for all 0 < ε < ε∗1, all the state variables of the closed
loop system are bounded and their bound can be made very
small using small value of ε.
Proof: The proof of theorem 1 consists of two parts. In
the first part, it is proven that there exists a short transient
period T1(ε) ∈ [0, T2] during which the fast variable η
approaches a function of the order O(ε), while the slow
variables (e, θ) remain in a subset of the domain of attraction.
In the second part, the boundedness of the signal e(t) was
given for all t ∈ [T1(ε), T3], where T1(ε) ∈ (0, T2

2 ] and
T3 ≥ T2 is the first time (e(t), θ(t)) exists from the set
Ωc. In this part, T3 is shown to tend to infinity, which
implies that the state variables (e(t), θ(t)) remain bounded
for t ≥ 0. This proof makes use of the fact that the fast
variable η is of the order O(ε) and there exists a Lyapunov
function for the fast model W (η) = ηT Pη such that the
fast variables converge to the set Ωε = {η | W (η) ≤ ε2β}
where β = 16‖P‖2k2

1λmax.(P ) = 16‖P‖3k2
1, ‖P‖ =

λmax.(P ) and P is the solution of the Lyapunov-equation as
PAo + AT

o P = −I, for all t ∈ [T1(ε), T3]. This implies that
the state trajectory (e, θ) is trapped inside the set which can
be made very small by using small value of observer design
constant ε as

V̇ ≤ −λmin.(Π)‖e‖2 + χε (8)

with χ > 0. The proof can be shown along the line of
the output feedback design proposed in [9], [10] and [16].
So, we omitted the details proof for brevity and can be
obtained from the authors. It is worth noting that, for the
given set of initial conditions of interest, the designer can
calculate the minimum bound on the value of ε a priori
via using combined Lyapunov-function candidate as, VQ =
(1 − d)

[
1
2ST MS + 1

2eT KP e
]

+ d1
2ηT Pη with d > 0 [4].

However, such a priori calculated bound on ε may not
be applied for the real-time applications as the value of
ε depends on the sampling time, the output and the input
disturbance noise [11], [12], [13].

III. ADAPTIVE FEEDBACK USING MULTI-MODEL
CONTROL APPROACH

The main drawback of the CE-based single model CAC
approach for state and output feedback design is its poor
transient tracking response. Specifically, if the initial condi-
tions and parameter errors become large then the transient
tracking performance will also become unacceptably large
values. This is mainly because of the assumption that the
nonlinear functions are assumed to be appeared linearly with
respect to uncertain parameters. The common technique is
to use high values of controller-observer gains in order to
achieve desired transient tracking performance. The main

practical problem, however, is that the observer-controller
gains require to increase with the increase of the parametric
uncertainty resulting very large control efforts. In particular,
when the level of uncertainty is large, two parameters ( 1

ε
and Γ) of the observer-controller design are required to be
very high to ensure good transient tracking performance. To
increase the domain of interest (stability domain), the control
saturation levels [9], [14] (maximum bound on the state feed-
back control input, τmax,) are required to increase causing
unacceptable transient peaking phenomenon. In fact, the use
of high-gains and large saturation levels are not a practical
solution as they may increase the control chattering activity
resulting poor tracking performance. In practice, such a large
control effort based design may not be realizable as available
control input in most system designs is restricted. To tackle
the problem associated with high observer-controller gains,
we propose to use multi-parameter models based adaptive
control technique that allows to keep smaller value of Γ and
higher value of ε. The main idea behind this approach is to
reduce the level of uncertainty via resetting the parameter
estimate of CAC design into a model which best approx-
imates the plant among a finite set of candidate models at
each instant of time. This implies to identify a control vector
corresponding to a model θ that closely approximates the
parameters of the manipulator and its payload that operating
in the workspace. To identify best possible model from a
family of candidates, we propose to use on-line estimation
of the derivative of the Lyapunov-function candidate. The
design steps can be described as follows. First, we consider
that the unknown plant parameters, θ, belongs to a known
but comparatively large compact set Ω. Then, we equally
distribute the parameter set Ω into a finite number of smaller
compact subsets such that θi ∈ Ωi with Ω =

⋃N
i=1 Ωi and

θ ∈ Ωi. Then, for a given compact set of the initial condition
of interest e(0) ∈ Ωco, we design a family of candidate
controllers, bounded in e via saturating outside the region of
interest Ωc, correspond to each of these smaller parameter
subsets as

τ i(e, Qd, θi) = Y (e, q̇d, q̈d)θi − KP e1 − KDe2 (9)

with (θ, θi) ∈ Ωi, such that for every θ ∈ Ωi all the signals
in the closed-loop system (1) and (9) started inside the sets
Ωco are bounded, and the output tracking error trajectories
converge to zero, e(t) → 0 as the time goes to infinity. The
constant diagonal elements of the positive definite matrices
KP and KD are chosen such that they ensures an acceptable
transient and steady state tracking performance of the closed-
loop system [4]. The control gains KP and KD are common
to all the candidate controllers N. The regressors model
Y (e, q̇d, q̈d) [1] is also common to all candidate controllers.
Remark 1: The model selection is based upon the known

bound of the robot dynamics and its operating environments.
If the manipulator parameters and the masses of the working
loads are known to be within a specified range then the
model sets can be distributed within the given specified range
around with the nominal parameters value. To simplify the
control design, the compact parameter sets, Ω, is partitioned
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into a finite number of smaller compact subsets, Ωi,. We
consider nominal parameter for each compact subsets, Ωi,.
The parameter sets can also be split into non-uniform and
non-overlapping regions as long as it covers the entire
parameter space. For non-overlapping and non-uniform case,
one has to use strict assumption that there exists a controller
corresponding to a model that guarantees asymptotic tracking
property.
We now develop resetting-logic to identify a suitable

model/controller , τ (e, Qd, θ), from a finite set of candidates,
τ i(e, Qd, θi),. More specifically, a logic needs to be selected
in such a way that guarantees all the signals in the closed-
loop systems are bounded, and the error trajectories converge
to zero as time goes to zero. We consider that there exists a
small time constant td such that the solution of the closed-
loop system is well defined. This property holds as the
manipulator parameters and the masses of the working loads
belong to the compact subsets Ωi The switching condition
in Algorithm 1 below is based on using the inequality for
the derivative of the Lyapunov-function candidate (4). Our
approach can be applied for both state and output feedback
control design.
Algorithm 1: Suppose that the controller index i ∈ M is
acting in the loop at time t. Then, we follow the following
pre-routed switching-logic to identify a controller that satis-
fies the pre-specified Lyapunov inequality
[A.] Assuming that the initial time to = 0, controller index
i ∈ M = {1, 2, 3, ....., N}and a dwell time constant td > to.
[B.] Then, we put the CAC algorithm, τ (e, Qd, θ̂) with θ̂ is
provided by classical adaptation law in the loop and dwell
it for a short period of time t ∈ [to, to + td]. [C.] For
t ≥ to + td, we check the pre-specified resetting inequality
using with the derivative of the Lyapunov-function candidate
V̇ (t) ≤ 0. If the inequality satisfies then we keep the classical
control in the loop. If not then we put the first candidate
controller, τ i(e, Qd, θi), with i = 1. [D.] We again dwell this
controller for small time td and monitor the inequality for
the derivative of the Lyapunov function to see whether or
not the function decreasing sufficiently fast to switch to the
next candidate controller. If the controller does not satisfy
the inequality then we switch again to the next candidate
controller, τ i(e, Qd, θi), with i = 2. We repeat the search
until we find a controller that satisfies the derivative of the
Lyapunov inequality.
Using our above analysis, let us state the main results in

the following Theorem 2 by assuming that the position and
velocity signals are available for candidate controllers (9)
design.
Theorem 2 : Consider the closed loop system formulated

by (1) and (9) under the switching-logic defined by Algorithm
1. Then, there exists a time such that the controller according
to the logic stated in Algorithm 1 is tuned to the plant that
ensures V̇ (t) ≤ 0.
Remark 2: As the plant parameters θ belongs to one of

the compact subsets, Ωi, then there exists a finite number
of search such that at least one of the candidate controller
satisfies the Lyapunov inequality. Therefore, the number of
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Fig. 1. The implementation results with Theorem 2 and Theorem 4 under
θ̃ = 8. First column is for Theorem 2 and the second column is for Theorem
4, where a: output tracking errors (radians) for joint 1, b: output tracking
errors (radians) for joint 2, c: control input for joint 1, d: control input for
joint 2.

search as well as the switching period is finite.
Let us consider the velocity signals e are unavailable in (9).

To reproduce unknown velocity signals, we then replace e by
the output of the linear estimator (5). Then, we can modify
the algorithm (9) to formulate multi-model based adaptive
output feedback (AOFB) as

τ i(ê, Qd, θi) = Y (ê, q̇d, q̈d)θi − KP ê1 − KD ê2 (10)

We also need to estimate the Lyapunov inequality (4) that
modifies the resetting criterion for the multi-models based
AOFB design. To do that, our first task is to ensure the
robust reconstruction of unknown velocity state vectors.
Notice from the Lyapunov inequality (8) that one cannot
make state estimation error to zero as ε �= 0. Note that
the existence of ε can be shown along the line of the
idea introduced in [4]. This means that we have to find
the bound on the non-vanishing estimation error term in
the resetting inequality provided by the derivative of the
Lyapunov-function candidate (8). For a given observer design
constant ε there exists a short transient period such that
the state estimates ê decay exponential fast to a small
compact set Ωε. The short transient peaking time T1(ε) can
be determined as, T1(ε) = ε

γ
ln

(
ko

βε4

)
where ε is known

constant, ko = k2λmax.(P ) = k2

2γ , γ = 1
2λmax.(P ) and

e(0)−ê(0) ≤ k with k ≥ 0. After this transient peaking time,
the estimation error converge to a small value, namely O(ε),.
To ensure that, the value of td requires to choose such that
T1(ε) < td. Then, we propose to use V̇ +λmin(Π)‖e‖2 ≤ kf

as the modified resetting inequality for the derivative of the
Lyapunov function for the multi-model AOFB design. Based
on the above analysis, let us state our main results for the
multi-model based AOFB design in the following Theorem
3.
Theorem 3 : Consider the closed loop control system

designed by using (1), (10) and (5) under the switching-logic
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defined in Algorithm 1 with the resetting inequality for the
derivative of the Lyapunov-function V̇ (t) ≤ kf . Then, for the
given (e(0), ê(0)) ∈ Ωco, θ ∈ Ωi and θi ∈ Ωi with i ∈ M,
there exists ε > 0 and td > T1(ε) such that the candidate
controller, corresponding to an appropriate model, according
to the Algorithm 1, is tuned to the plant which ensures that
all the state variables of the closed-loop system are bounded.
Proof: The proof of Theorem 2 and Theorem 3 can be

shown along the logic defined in Algorithm 1. Due to space
limitation, we remove the details proof and can be obtained
from authors.
The problem of the pre-routed switching Algorithm 1 is

that if the number of candidate controllers become large
then the long switching search (number of search) may
produce unacceptable transient tracking errors and high-
frequency control oscillation. This is mainly because, in
the presence of large number of candidate controllers, the
switching has to scan through a large number of candidate
controllers before converging to the one that satisfies the
Lyapunov inequality. On the other hand, if the parameter
changes after switching events (if any due to fault) then
the logic stated in Algorithm 1 will be insensitive to the
parameter change which may cause large transient tracking
performance. To avoid unacceptable transient tracking and
control oscillation from pre-routed switching-logic, we allow
the parameter estimates to be reset instantaneously using
with the following switching Algorithm 2. To design that
switching logic, we first consider that a family of Lyapunov-
function candidates corresponding to a family of candidate
controllers (9) as, αi

2‖e‖2 ≤ Vi(e, θ̃i) ≤ αi
3‖e‖2 ∀e ∈ Ωi

c =
{(e, θ̃i) | Vi(e, θ̃i) ≤ c} and ∀(θ, θi) ∈ Ωi, where c > 0,
θ̃i = (θi − θ) and αi

2 and αi
3 are bounded positive constant.

Then we follow the following logic to identify a candidate
controller corresponding to a model which best approximates
the plant at each instant of time such that all the trajectories
asymptotically converge to zero as the time goes to infinity.
Algorithm 2: Suppose that the candidate controllers i ∈

M = {1, 2, 3, .....,N} as well as candidate Lyapunov-
functions, Vi(e, θ̃i), are available at any time t. Then, we
apply the following logic-based switching to identify a candi-
date model/controller which closely approximates the plant.
[A.] Define the initial time to = 0, the switching index
i ∈ M = {1, 2, 3, .....,N} and a small positive dwell time
constant td > 0. [B.] Put the classical control, τ (e, Qd, θ̂),
with standard adaptation mechanism for a short period of
time t ∈ [to, to + td]. [C.] For t ≥ to + td, we continuously
monitor the inequality for the multiple Lyapunov-function
candidates to see which candidate generates guaranteed
decrease in the value of �Wi(t) = Vi(ts)−V0(t) ≤ 0 where
ts ≥ to + td is the resetting time and V0(t) is the Lyapunov
function (3). [D.] For t ≥ to + td, we continuously monitor
the inequality for the multiple Lyapunov-function candidates
to see which candidate generates guaranteed decrease in the
value of �Wi(t) = Vi(ts) − V0(t) ≤ 0. We keep the CAC
law in the loop until the moment of time ti ≥ to + td when
the resetting inequality violated. If the classical controller
does not satisfy the Lyapunov inequality then, at t = ti,

0 1 2 3 4
−0.4

−0.2

0

0.2

b

0 1 2 3 4
−0.2

0

0.2

a

0 1 2 3 4
−100

0

100

200

c

0 1 2 3 4
−50

0

50

100

Time in sec.

d

0 1 2 3 4
−200

0

200

400

c

0 1 2 3 4
−100

0

100

200

Time in sec.

d

0 1 2 3 4
−5

0

5

10
x 10−3

a

0 1 2 3 4
−5

0

5

10
x 10−3

b

Fig. 2. The implementation results with Theorem 3 and Theorem 5 under
θ̃ = 8. First column is for Theorem 3 and the second column is for Theorem
5, where a: output tracking errors (radians) for joint 1, b: output tracking
errors (radians) for joint 2, c: control input for joint 1, d: control input for
joint 2.

we reset to the candidate control law that generates largest
guaranteed decrease in the value of �Wi(t) ≤ 0. [E.] If the
resetting inequality, �Wi(t) ≤ 0, never violated then there
will not be any switching. This implies that the plant output
tracks the desired trajectory, e.i., q(t) → qd(t) as the time
goes to infinity. If at some time, say ti with ti ≥ to + td
and ti = to, the controller that acting in the loop does not
satisfy �Wi(t) ≤ 0 then another candidate will be put in
the system as there always exists a controller that provides
guaranteed minimum value of �Wi(t) ≤ 0 at that instant of
time.
We now summarize the results for the multi-model based

adaptive control as a state feedback design in the following
Theorem 4.
Theorem 4 : Consider the closed-loop system composed of

(1) and (9) under the switching-logic defined in Algorithm 2.
Then, there exists a time such that, according to Algorithm 2,
the control law corresponding to the guaranteed decrease in
the value of �Wi(t) ≤ 0 is tuned to the plant which ensures
that all the signals in the closed-loop model are bounded
and e(t) → 0 when t → ∞.
Theorem 4 can be applied when all the state vectors

are available for feedback to construct multi-model based
candidate controllers (9). We now replace the velocity signals
in the control law (9) by the output of the linear estimator
(5) to formulate multi-model based AOFB (10). Then, we
present the main results for the multi-model based AOFB
design in the following Theorem 5.
Theorem 5 : Consider the closed-loop system (1), (10)

and (5) under the switching-logic Algorithm 2. Then, for the
given (e(0), ê(0)) ∈ Ωco and θi ∈ Ωi with i ∈ M, there
exists a small value of ε > 0 and td > T1(ε) such that
the controller corresponding to a guaranteed decrease in
the value of �Wi(t) ≤ 0 is tuned to the plant. Then, the
AOFB control system ensures that all the state variables of
the closed-loop system are bounded by a bound that can be
made closed to zero.
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Fig. 3. The implementation results with Theorem 4 and SM-based CAC
design under θ̃ = 8. First column is for Theorem 4 and the second column is
for the single-model CAC, where a: output tracking errors (radians) for joint
1, b: output tracking errors (radians) for joint 2, c: control input (newton-
meters) for joint 1, d: control input (newton-meters) for joint 2.

Proof: The proof of Theorem 4 and Theorem 5 can be
shown along the line of the logic introduced in Algorithm
2. The main idea of this logic is to compare candidate
controllers, τ i(e, Qd, θi) with i ∈ M, at each instant of time
to see which candidate provides the highest decrease in the
value of the Lyapunov inequality, i.e., �Wi(t) = Vi(ts) −
V0(t), with V0(t) = 1

2eT (t)Qsme(t) + 1
2 θ̃T (t)Γ−1θ̃(t) and

Vi(ts) = 1
2eT (ts)Qsme(ts)+ 1

2 θ̃T
i (ts)Γ−1θ̃i(ts) with θ̃(t) =(

θ̂(t) − θ
)
, θ̃i(ts) = (θi(ts) − θ) and ts > to + td is the

time when the parameter estimate, θ̂(t), provided by classical
adaptation mechanism is reset into a model from a family of
candidate model sets, θi(ts), that best approximates the plant
θ. This implies that the reset will occur if �Wi(t) is a non-
increasing sequence with respect to i, that is, �Wi(t) ≤ 0.
Due to space limit, we omitted the remaining proof and can
be obtained from authors.

IV. DESIGN AND IMPLEMENTATION RESULTS
In this section, we show the design and implementation

process of the multi-model/control based adaptive control
strategy on robotic systems. To do that, we consider a
2-link robotic manipulator system [4], [9], [10]. The dy-
namic equations for this robot system can be defined as,[

m11 m12

m21 m22

] [
q̈1

q̈2

]
+

[
c11 c12

c21 c22

] [
q̇1

q̇2

]
=

[
τ1

τ2

]

with m11 = (θ1 +2θ2 +2θ2 cos q2), m12 = (θ2 + θ2 cos q2),
m21 = (θ2 + θ2 cos q2), m22 = θ2, c11 = −2q̇2θ2 sin q2,
c12 = −q̇2θ2 sin q2, c21 = q̇1θ2 sin q2, c22 = 0, θ1 = m1l

2,
θ2 = m2l

2, l = l1 = l2 is the link lengths and m1 and m2

are the masses of links 1 and link 2, respectively. The robot
operates in the horizontal plane so the gravitational force
vector is G = 0. We now generate the reference trajectory,
qd(t), for the given robot model to follow, a square wave
with a period of 8 seconds and an amplitude of ±1 radians
is pre filtered with a critically damped 2nd-order linear filter
using a bandwidth of ωn = 2.0 rad/sec. Specifically, our
main target is to use a desired trajectory that usually uses in
industrial robotic systems [11], [12], [13]. We first consider

that the plant parameter θ ∈ �2 is assumed to be unknown
but belong to a known compact set as Ω ∈ [−10, 10].
We define the initial conditions of interest as e(0) = 2,
ê(0) = 2 and θ̂(0) = 0. Then, we split the parameter set
Ω equally into a finite number of smaller compact subsets
as θi ∈ Ωi with Ω =

⋃41
i=1{Ωi}, that is, Ω =

⋃41
i=1{θi} =

{−10,−9.5, ., ., ., ., ., ., ., ., 9.5,10}×{−10, 10}. The control
design parameters λ0, KP and KD are common to all i = 41
candidate controllers. The learning gains Γ are chosen such
that (θ, θi) ∈ Ωi. For our evaluation, the control design
parameters are chosen as λ0 = 2, KP1 = 60, KP2 = 60,
KD1 = 60, KD2 = 60 and Γ = 10I2×2.

A. Comparison between Theorem 2 and Theorem 4
We first compare the tracking performance of Theorem

2 (pre-routed resetting logic) and Theorem 4 (continuous
resetting logic) on the given robotic system. For this purpose,
we apply the above design constants to construct a family of
candidate controllers as a state feedback as, τ i(e, Qd, θi) =
Sat [Y (e, q̇d, q̈d)θi − KP e1 − KDe2] with i = 41.We then
define small value of td = 0.03. The implemented results
are given in Figure 1 (state feedback case). Figure 1 depicts
the conducted results under θ̃ = 8, that is, i∗ = 37.
The first column of this Figure is for Theorem 2 and the
second column is for Theorem 4. By comparing left and
right column of this Figure, we can see that comparatively
large transient tracking errors under pre-routed switching-
logic of Algorithm 1 than Algorithm 2. We also notice
from our results that the tracking error under Theorem 2
increase with the increase of the number i∗ as the pre-routed
search has to travel larger number of candidate controllers
before converging to the one that satisfies the fixed resetting
criterion.

B. Comparison between Theorem 3 and Theorem 5
Let us now compare the performance obtained un-

der state feedback based design can be recovered
by using output feedback design. To illustrate that,
we construct multi-model AOFB as, τ i(ê, Qd, θi) =
Sat [Y (ê, q̇d, q̈d)θi − KP ê1 − KD ê2] where i = 41. Then,
we define slower observer speed as H1 = 20I2×2, H2 =
20I2×2, ε = 0.1. For fair comparison, we keep the same
controller design parameters that used for the evaluation of
the state feedback based design. The value of td is chosen
as td = 0.005 to guarantee td > T1(ε). Then, we choose the
value of kf1 = 0.05 and kf2 = 0.05. With these set up, we
follow the logic defined by Algorithm 1 (Theorem 3) and
Algorithm 2 (Theorem 5) on the given system. The tested
results are given in Figure 2 with the chosen parameter θ = 8.
The left column of this Figure shows the control performance
under Theorem 3. The right column of Figure 2 depicts the
tracking convergence with the Theorem 5. By comparing left
and right column of Figure 2, one can notice that results
under multi-model based output feedback approach recover
the performance achieved under state feedback design. How-
ever, like Theorem 2, undesirable transient tracking under
pre-routed switching-logic of Theorem 3 can be observed.
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C. Comparison between Theorem 4 and CAC design
In this part of the paper, we compare the tracking con-

vergence property of Theorem 4 with the SM-based CAC
design. For this purpose, we implement Theorem 4 and
the SM-based CAC algorithm (2) on the given robotic
system. The control design parameters are kept similar to
our previous evaluation of Theorem 4 except the learning
gains under classical control law (2) are used ten times
higher than the learning gains employed with multi-model
based approach. The conducted results are depicted in Figure
3. Figure 3 is depicted the tracking convergence with the
chosen parameter θ̃ = 8. The left colum of this Figure is for
Theorem 4 and the right column of the Figure 3 is for CAC
approach. In view of the left and right column of Figure 3, we
can notice that the output tracking under multi-model based
adaptive design converge to the desired one as tracking errors
almost converge to zero. But, quite a large tracking errors
under single model based classical design can be seen. Note
that the learning speed under CAC design is used ten times
faster than multi-model based adaptive control design.

D. Comparison between Theorem 5 and Theorem 1
Our aim is now to compare the tracking performance

of Theorem 5 with the CAOFB design of Theorem 1. For
comparison, we define slower observer design constants as,
H1 = 20I2×2, H2 = 20I2×2 and ε = 0.1. But, we keep the
same controller design sets that used for our last evaluation.
Note that the learning gains under classical AOFB design
are used ten times higher than the learning gains applied for
the multi-model based approach of Theorem 5. The tested
results are given in Figure 4 with i∗ = 37. The left column
of the Figure 4 is for Theorem 5 and the right column is for
Theorem 1. In view of the left and right column of Figure
4, we can observe the superiority of the multi-model based
AOFB design of Theorem 5 over CAC design of Theorem
1.

V. CONCLUSION AND FUTURE WORK
In this paper, we have shown that multi-model based

adaptive control strategy can be employed to improve over-
all tracking performance for trajectory control problem of
robotic systems. The specific interest in the proposed design
is to reduce the control gain of classical adaptive control
scheme by reducing the level of parametric uncertainty
through on-line estimation of the Lyapunov-function in-
equality. The method increases the convergence speed of
adaptation mechanism via resetting the parameter estimate of
CAC technique into a family of candidate models which best
approximates the plant at each instant of time. The evaluation
on a 2-DOF robotic system has been used to demonstrate
the theoretical development for the real-time applications.
The implementation of the proposed design on an industrial
robotic system will be focused on our future work.
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