
 

 

 

  

Abstract— Most of the Central Pattern Generator (CPG) 

models are based on defining explicit dynamical systems and 

finding the appropriate parameters. In this paper, we propose 

a novel CPG model that is based on altering a nonlinear 

oscillator to obtain desired limit cycle behavior. This CPG 

model benefits from an explicit basin of attraction and also fast 

convergence behavior.  The presented CPG model is used in an 

imitation model that tries to learn the proper periodical 

behavior by looking at a mentor. First, a mentor performs the 

desired periodical behavior. Then, a hand-eye coordination 

process, inspired from infant babbling, is initiated to extract 

proper motor actions from what is observed. The extracted 

motor actions are finally embedded into the CPG model for 

smooth reproduction. This imitation model is implemented on 

a robotic marionette behavior learning task. The outcome of 

the final performance of the robotic marionette is behaviorally 

understandable smooth actions. 

I. INTRODUCTION 

ENTRAL PATTERN GENERATORS were first found as 

neural circuits located in the spine of vertebrates. Their 

task is to coordinate the muscles during periodic 

movements [1], [2]. Inspired from biology, several models 

of CPGs were implemented to encode periodical 

trajectories [3]-[6]. All of these models are based on 

defining explicit dynamical equations and finding 

appropriate parameters of such equations. In [3] an 

applicable model of programmable CPG is presented where 

a Fourier series representation of coupled adaptive 

oscillators is used to learn arbitrary signals. Also, in [4] a 

nonlinear oscillator model that modulates a canonical 

simple limit cycle system with statistical learning methods 

is presented and the ability to learn arbitrary trajectories is 

proved.  

In this paper, we present a novel model of CPG that can 

learn arbitrary periodical trajectories. The main idea of our 

CPG model is to construct a nonlinear window that is able 
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to change the behavior of another oscillator. One advantage 

of our CPG model is that different types of oscillators can 

be used to be altered. Also our model includes an explicit 

and definable basin of attraction which helps fast 

convergence to the desired limit cycle.  

Proposed CPG model is used in an imitation procedure. 

The imitation procedure tries to reproduce mentors 

periodical actions. A similar work is done in [4] where a 

motion capture device is used to transfer desired trajectory 

from a mentor to the robot that imitates the behavior. But 

imitation (or emulation as discussed in [7]) is to see the 

desired behavior and find the appropriate action while this 

appropriate action is unknown. Our imitation model 

introduces a hand-eye coordination process inspired from 

infant babbling that extracts proper action from what is seen 

from mentor. The extracted action signal is then fed to the 

CPG model so the desired behavior can be smoothly 

reproduced.  

To summarize, a mentor performs the desired behavior 

first. Then hand-eye coordination process extracts the 

proper action from what is observed. Finally, extracted 

action signal is embedded into the CPG model for smooth 

reproduction. Proposed model is used for a robotic 

marionette to learn the desired behavior.  

The rest of this paper is organized as follows: section II 

gives an outline of the imitation model. Had-eye 

coordination process is introduced in section III. Section IV 

belongs to description of the new CPG model. Experimental 

results are discussed in section V. 

II. OUTLINE OF THE IMITATION MODEL 

Our proposed model learns the desired behavior by 

looking at mentor’s action. The whole learning scenario 

could be described as shown in Fig. 1. First a mentor 

performs the desired behavior (as in the marionette playing, 

human puppeteer freely manipulates the marionette through 

strings). Since the mentor’s body, or the manipulation 

mechanism, is different from the imitator, the performed 

motor action by the mentor is not the trajectory that is 

meant to be imitated by the imitator. The outcome of the 

mentor’s action is seen through a camera and the motion 

path is extracted. Then a hand-eye coordination process 

begins and tries to find the relation between the motion of 

the end-effector of the imitator and the underlying motor 

system actions. This hand-eye coordination process is later 
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described in section III.  After completion of the hand-eye 

coordination process, desired visual outcome is mapped to 

the causing motor action. Since these motions are assumed 

to be periodic, a CPG model would be a good choice to 

embed action signals onto. The structure of the CPG model 

used for this goal is described in section IV. As a result, 

trained CPG is able to reproduce desired motions in a 

smooth and robust manner. 

III. HAND-EYE COORDINATION  

There is evidence that shows a self-learning process in 

infants. This process is called babbling. The concept of 

babbling is generally in the scope of language acquisition 

studies where an infant tries to experiment with uttering 

sounds of language but not yet reproducing any meaningful 

words [8]. But babbling could be seen as both motor and 

language skills [9]. In motor babbling, it seems that an 

infant tries to shake his/her limbs to learn about his/her 

body, in early stages of development. For instance, in the 

first year, infants produce rhythmic repeated movements of 

limbs and body [10]. Recent works imply that these early 

movements may continually emerge to skilled behaviors 

like reaching for a toy [11].  

Our hand-eye coordination model takes advantage from 

infant babbling. The proposed algorithm is based on 

shaking the imitator’s joints and updating the state of the 

imitator whenever the result is interesting. A pseudocode 

for the proposed algorithm is presented in Table 1. First, 

imitator’s joints are randomly set to an arbitrary position. 

While this initial position in visual space is not on the 

desired path, the algorithm tries to make the end-effector of 

the imitator closer to the path and after reaching the path, 

the path is followed. Since the relation between the 

imitator’s end-effector position and what is seen is 

unknown, following the desired path is not straightforward. 

The solution is to make temporary goals, like when we 

move the toy for an infant and let him/her follow it. When 

the temporary goal is set, imitator first tries random 

bounded joint movements in order to find an approximately 

close point to the temporary goal. This process is repeated 

until the distance between imitator’s end-effector and the 

temporary goal is small enough. After that the temporary 

goal is updated. This whole process is repeated until the 

desired path is swept completely (Fig. 2). 

Reaching data consisting end-effector positions and 

correspondent joint angles, is collected while the above 

process is executed. Then a Multi Layer Perceptron (MLP) 

is trained to estimate the relation between the end-effector 

position (from the point of view, i.e. camera), and the 

angles of the imitator joints using the collected data. The 

estimated relation could be somehow similar, but in an 

opposite way, to the work done in [12] where a forward 

relation between what is done and what is seen is estimated 

using BBN (Bayesian Belief Network).  

It may be of question why the relation between end-

effector position and joint angles are only calculated on a 

desired trajectory and not on the whole working space of 

the imitator. There are three reasons to this. First, learning 

in all of the working space is a time consuming process; 

compare data gathering in a strip of space compared to the 

whole space. Second, specific actions are usually the target 

of imitation systems; it is not required to learn all possible 

actions. Finally, there are different sets of joint 

 
Fig. 1. The whole learning scenario. A human puppeteer moves the 

marionette freely. Outcome is seen and a hand-eye coordination process 

tries to find the relation between what is seen and what is done. Finally, 

the proper action is embedded into a CPG model for later smooth 

preproduction. 

 

TABLE I 

HAND-EYE COORDINATION ALGORITHM 

1. start from a random configuration; 

2. set a temporary goal near to the current location of the end-

effector of the imitator; 

3. generate small random movements in the robot joints; 

4. if the new end-effector position is closer to the temporary goal 

goto 5, else goto 3; 

5. if the new end-effector position is close enough to the 

temporary goal, update the temporary goal toward reaching 

and sweeping the desired track; 

6. terminate when last the temporary goal is met. 
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Fig. 2. Hand-eye coordination process. Starting from an initial point, the 

joints are randomly shaken to reach temporary goals. Temporary goals 

are set to reach and sweep the desired path.  
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configurations that lead to the same end-effector position in 

visual space. This causes the relation between end-effector 

position and joint positions not to be a function (single 

output for any input). In this case, a disambiguation pre-

process, or a training trick is needed.  

IV. CENTRAL PATTERN GENERATOR MODEL 

A. The Model 

The main idea of the proposed CPG model is to alter a 

nonlinear oscillator and gain the desired limit cycle 

behavior. To put it simple, the limit cycle of a nonlinear 

oscillator is seen through a nonlinear window that changes 

the shape of this limit cycle. So, a nonlinear map is defined 

as follows: 

 

SBf a:                                                                         (1) 

 

where B  is the base nonlinear oscillator space, S  is the 

original signal space (i.e. generally the space of the joint 

angles of the robot), and f  is the nonlinear map that maps 

B  to S . If the f  is designed properly, the effect of 

movement in B  could be seen in S . So, to generate the 

desired limit cycle in S , the limit cycle of the base 

nonlinear oscillator is tracked in B and the effect is seen 

through f . But this is only an open loop tracking schema 

and no error feedback is used.  To be able to feedback the 

error, f is needed to be invertible.  

Designing an invertible nonlinear mapping is a 

challenging task. Almost none of the general function 

approximation tools are able to design general invertible 

nonlinear maps. To overcome this difficulty, f  is 

redefined as two forward and backward maps respectively: 

 

SBf

BSf

a

a

:

:

2

1                                                                        (2) 

 

Forward and backward maps are used to build a CPG 

model. The CPG model takes the following steps to create 

the desired limit cycle in S  (Fig. 3): 

a. start from an initial point q  in S ;  

Sq ∈                                                                                 (4) 

 

b. map q  to a point p  in B  using 1f ; 

Bpqfp ∈= ),(1
                                                            (5) 

 

c. move with a small time step Bt∆ in B with respect to 

the base nonlinear oscillator differential equations 

( BD ); 

BB tpD
dt

d
pp ∆+= ).(                                                    (6) 

 

d. map p  to a point q  in S  using 2f  and update q ; 

)(2 pfq =                                                                         (7) 

 

e. goto b. 

 

The above process produces the desired limit cycle in S , 

but it completely depends on the forward and backward 

maps. Following subsection describes the design process of 

1f  and 2f . 

B. The Design Process 

The proposed CPG model alters a base nonlinear 

oscillator in order to obtain a desired limit cycle behavior 

in S . The characteristics of the base nonlinear oscillator 

used can affect the overall limit cycle behavior in S . So a 

good choice for the base nonlinear oscillator is the group of 

oscillators that have only one stable limit cycle, such as 

Hopf and Van-der-pol oscillators.  

Bt∆

 
Fig. 3. Generating desired limit cycle. a. an initial point q is selected in S ; b. q is mapped to p using forward map; c.  p is moved in B using a 

small time step 
Bt∆ ; d. updated p is mapped to the updated q using backward map. The red bold arrow is for the corrected ‘d’ step discussed in 

section IV.B. 
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After defining the base nonlinear oscillator, forward and 

backward maps are to be designed. Forward map is a 

function that is intended to map the desired limit cycle in 

S  to the limit cycle of the base nonlinear oscillator in B . 

The forward map could be implemented by a nonlinear 

function approximation tool with a supervised training 

procedure. The input data to the training procedure is the 

desired limit cycle sampled data in S , and the target data in 

training procedure is the sampled limit cycle of the base 

nonlinear oscillator. Backward map is designed to be the 

inverse of the forward map. So it is implemented like the 

forward map, but the input and the target data are swapped.  

Backward mapping is modeled as a point-to-point 

mapping. It means that input and target data of training are 

positions in B  and S . Our experiments show that this will 

lead to noisy tracking of the desired limit cycle. So instead 

of point-to-point modeling of the backward mapping, target 

data is replaced by derivative vectors that take the initial 

points in S to the updated points after a step (Fig. 3). So 

step ‘d’ in the CPG signal generation steps in the previous 

subsection becomes: 

 

St
dt

qd
qq

pf
dt

qd

∆+=

=

.

)(2
                                                               (8) 

 

where St∆  is a small time step. 

Implemented model has some drawbacks. Even if the 

base oscillator is selected to have a stable limit cycle, the 

numerical error in the training phase could corrupt the limit 

cycle behavior. For example, consider that in the training of 

the backward model, derivate vectors are estimated with a 

cumulative clockwise or counter clockwise error (in the 

plane). This will lead to converging or diverging spirals 

instead of a limit cycle. To solve this problem, we deployed 

the Poincaré-Bendixson theorem [13] in the learning 

process.  

C. Deploying Poincaré-Bendixson Theorem 

The aforementioned CPG model lacks the ability to 

ensure that the desired limit cycle exists. In other terms, no 

special mechanism to ensure that a limit cycle exists in a 

desired margin in S  is used. Poincaré-Bendixson theorem 

gives the idea to solve this problem. 

 

THEOREM (Poincaré-Bendixson). Given a differential 

equation d/dt x = F(x) in the plane. Assume x(t) is an 

solution curve which stays in a bounded region. Then either 

x(t) converges for t → ∞ to an equilibrium point where       

F (x) = 0, or it converges to a single periodic cycle. 

 

To clarify, if a region in the phase plane is bounded so no 

derivate vectors takes a path started inside of the region to 

the outside of it, then an attractor in that bounded region 

certainly exists. This idea is deployed in the training 

procedure. 

Two inside and outside margins are defined for the 

desired limit cycle in S , and respective margins are defined 

for the limit cycle of the base nonlinear oscillator in B . In 

the forward mapping, the inside and outside margins’ data 

in S are added to the input training data, and respective 

margins in B are added to the target training data. In the 

backward mapping, margins in B are added to the input 

training data. Targets for inside and outside margins of 

B are derivative vectors in S  that make the region 

between inside and outside margins in S  bounded. For this 

reason, it is good to define the corresponding derivative 

vectors so the margins in S are transverse curves to the 

vector field. To put it simple, derivate vectors on the 

margins of S are defined orthogonal to the tangent of the 

margins, pointing inward (Fig. 4).  

S q1

q2

B x

y
q1

p = f1(q)

dq/ dt = f2(p)

p1

 
Fig. 4. Complete CPG model with Poincaré-Bendixson theorem deployed. In the forward mapping, the margins of the desired limit cycle in S are 

mapped to the margins of the limit cycle of the base nonlinear oscillator in B . In backward mapping, the margins in B are mapped to the derivative 

vectors that are orthogonal to the tangent of margins in S . 
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D. Implementation of the CPG Model 

The CPG model is implemented using Hopf oscillator as 

the base oscillator. Hopf oscillator is defined as follows 

(with x and y as state variables): 

)(1(

)(1(

22

22

yxyxy

yxxyx

+−+=

+−+−=

&

&
           (9) 

Forward and backward maps are designed using 

Multilayer Perceptrons (MLP) with two hidden layers. 

Arbitrary periodic signals are used to test the proposed CPG 

model (Fig. 5). As it could be seen, stable limit cycles with 

free shapes are successfully embedded into the CPG model. 

The basin of attraction for the generated limit cycles is 

explicitly defined and strongly contented. Any perturbations 

that keep the tracked signal inside this basin of attraction 

will fast and smoothly damp and vanish. Moreover, as it 

could be seen in Fig. 5, the behavior of the CPG model 

outside of the margins is also satisfactory. However, for 

some initial points far outside of the margins in S , the 

behavior of the CPG model may not converge to the desired 

limit cycle.  

It may be of question that why the behavior inside the 

margins in S  converges to a limit cycle and not to a point 

attractor. This is due to the structure of the function 

approximation tool used (MLP). MLP approximates a 

function smoothly, if the number of hidden neurons is 

selected appropriately. To have a point attractor in a region, 

superposition of the derivative vectors in that region should 

be equal to zero. So opposing derivative vectors have to be 

present in a small region. But the training data fed to the 

MLP is a directed data that determines the desired behavior. 

Since this behavior is not defined to shape a point attractor, 

as long as the MLP is not over-parameterized, the proper 

limit cycle behavior will occur. 

E. Advantages 

The proposed CPG model has a number of outstanding 

advantages: 

1) Fast convergence: perturbations are fast and smoothly 

damped. Usually perturbations that keep the tracked 

signal inside the basin of attraction will damp in fewer 

than 10% of the period time of the learnt signal. 

2) Guided convergence: for any initial point inside the 

basin of attraction the path of convergence to the limit 

cycle is in a straight manner. In other words, a very 

short and smooth path from the initial point to the limit 

cycle is usually followed. 

3) Explicit margins: The basin of attraction is defined 

explicitly. This will ensure the designer to achieve an 

appropriate behavior inside a good margin.  

 

The mentioned advantages are very useful in applications 

like biped locomotion where the stability issues are 

involved. In such applications, fast and guided convergence 

will lead to a stable gait that remains in a bounded manner.  

V. IMPLEMENTATION ON ROBOTIC MARIONETTE 

A. Previous Works 

Robotic marionettes are under-actuated string robots that 

are meant to perform actions via strings connected to a 

puppeteer platform. Systematic control of marionette robots 

is still a hard problem to solve and many research groups 

are trying to introduce a solution to this problem [14]. Some 

try to model the dynamics of marionette robots in order to 

make robot motion planning possible [14], [15]. Although 

these approaches provide mathematical formulation of 

robot dynamics, deriving these formulas is quite difficult. In 

addition, these resulting formulas have to be revised for 

  
 

Fig. 5. Two sample CPG models. The presented shapes are in a 2D joint space. The tracks that are started inside the basins of attraction are converged 

to the limit cycles. Also the behavior of the models outside of the basins of attraction is satisfactory. 
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different marionettes. Another approach to solve marionette 

robot control problem is to use motion capture data from a 

mentor’s body. In [16] a method to transfer and adapt 

motion capture data from human mentor to marionette robot 

is introduced.  

One of the main difficulties of marionette robot control is 

the swing of the body links. Because strings are used to 

move the body links, perturbations are inevitable. Control 

approaches that try to formulate the dynamics of motion 

suffer from this fact and the formulas become overly 

complex. This complexity is not necessary since the aim of 

marionette playing is to produce an understandable 

behavior and not necessarily a precise action. 

It is not necessary to identify the dynamical system of a 

marionette in order to generate desired behavior. It could be 

beneficial to learn desired actions in an interactive process 

and embed the control strategy into the marionette robot. 

Use of an appropriate learning model will eliminate the 

need for deriving complex formulae in order to describe the 

dynamic system of the marionette. 

Most of a marionette’s actions are behaviors that result 

from periodic body movements, e.g. walking, hopping, 

handshaking etc. So, a model that is capable of learning 

periodic signals will be advantageous. For this reason, it is 

suitable to use a CPG as the basic component for marionette 

control. So, we used our imitation model that takes 

advantage of CPG model to learn proper motions in a 

robotic marionette. 

B. Implementation 

The learning model was implemented on the robotic 

marionette constructed in Robolab at Univesity of Tehran. 

The marionette is named Hootan (Fig. 6). Hootan is a      

10-DoF marionette robot that is controlled via 8 servo 

motors; two for each arm and two for each leg. For now, 

back of Hootan is fixed to the puppeteer platform and will 

be replaced with a string in near future.  

Left arm of Hootan is used to imitate the action of a 

human puppeteer. Since our goal is not a complex object 

tracking problem, we put a marker on Hootan’s palm for 

simplicity. For detection of this marker a dataset of 50 

sample values of the marker in different lighting conditions 

is captured and the median of the sample’s values is used as 

marker prototype. In runtime, for each image frame, image 

pixels’ color content are compared to the marker prototype 

and the median of positions of top 100 candidate pixels is 

indicated as palm position. 

Hootan learns to imitate a puppeteer’s action by looking 

at it. A human puppeteer moves the strings controlling 

Hootan’s left arm freely. Hootan’s palm movement’s 

outcome is seen through a VGA camera (640×480) at 

20FPS. Since the human puppeteer’s hand movements are 

not seen, the only information transferred to the learning 

model is the trajectory of Hootan’s palm movements in the 

viewpoint of the camera. Even if we had the means to 

capture human puppeteer’s motions, there would be no 

straightforward use of that data regarding fundamental 

differences between puppeteer’s body and Hootan’s.   

After observing what is done by the human puppeteer, 

hand-eye coordination process begins. Initially Hootan’s 

servos are set to random positions. Then Hootan’s motors 

are continually set to new positions with respect to 

aforementioned hand-eye coordination algorithm. The 

position of Hootan’s palm is extracted in each step and 

acquired data, set of motors and palm positions, is logged. 

This is done until the entire desired trajectory in visual 

space is swept. After that, interesting parts of the logged 

data, sets that were approximately close to temporary goals, 

is used to train a MLP with two hidden layers. A compact 

picture of hand-eye coordination process is shown in Fig. 7. 

It is important to mention that since the learning path is 

continues and the trial steps are small and close to each 

other, swing behavior is negligible and do not affect the 

learning process. 

After learning the relation between palm position and 

motor positions, the appropriate motor trajectory is 

calculated from desired visual trajectory. Resulted motor 

trajectory is embedded into the CPG model. Prepared CPG 

model could be used to reproduce smooth trajectory that 

  
Fig. 6. Robotic marionette Hootan. Hootan is a 10-DoF marionette robot 

that is controlled via 8 servo motors; two for each arm and two for each 

leg. The coordinates for the motors that manipulate Hootan’s left arm are 

presented. 

 

 
Fig. 7. Hand-eye coordination process. Learning trail starts from a 

random point outside of the desired trajectory and after a number of tries 

it reaches the desired trajectory and sweeps it. 
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leads to the desired visual outcome. It is possible to initiate 

the movement from anywhere within the defined basin of 

attraction and the model will converge to the desired limit 

cycle behavior. A sample of the outcome of actions 

performed by Hootan and human puppeteer is compared in 

Fig. 8. Although the outcomes are not exactly the same, 

they could be behaviorally recognized as similar actions, 

and that is what they are meant to be. 

  

VI. CONCLUSION & FUTURE WORKS 

In this paper we presented a novel model of CPG that is 

able to learn arbitrary periodic signals. The proposed CPG 

model has the ability to define an explicit basin of attraction 

with fast and guided convergence behavior. This is a 

beneficial point in complex periodic tasks like humanoid 

walking or robotic marionette motion control. The CPG 

model is used in an imitation model that takes benefit from 

infant babbling concepts. A hand-eye coordination process 

inspired from infant babbling is presented. This hand-eye 

coordination process extracts the proper motor action from 

the observation of mentor. The extracted motor action is 

then embedded into the CPG model for smooth 

reproduction.  

The imitation model is implemented on a robotic 

marionette. A human puppeteer freely manipulates the 

marionette’s limbs through strings. The outcome of this 

action is seen and fed to the imitation model. After that, a 

hand-eye coordination process extracts the proper action for 

motors that pull the marionette strings. Extracted motor 

action is then embedded into the CPG model. The 

reproduced actions are behaviorally recognizable and this is 

the goal of a marionette playing platform.  

Our future research will be directed toward implementing 

this imitation model on the locomotion problem. We will 

try to make a walking robot learn to walk by looking at a 

mentor. However, since the proposed CPG model is only 

tested for 2D motor trajectories, the model has to be 

extended for more dimensions. The proposed CPG model 

could be used as the building block of such 

multidimensional model. 
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Fig. 8.  up left) Human puppeteer’s action. up right) Hootan’s action. 

Sample shots are taken any 0.4 seconds. Performances are not exactly the 

same, but they are behaviorally recognized as same actions. down) the 

motor action that is embedded into the CPG model to generate the heart-

shaped outcome.  
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