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Abstract— The translational oscillation with a rotational
actuator (TORA) system has been used as a benchmark for
motivating the study of nonlinear control techniques. In this
paper, modeling and control of a novel 2-dimensional TORA
(2DTORA) are presented. The 2DTORA is an underactuated
mechanical system which has one actuated rotor and two
unactuated translational carts. The dynamics of the 2DTORA
system is derived based on Lagrange equations. The total energy
of the system is employed to show the passivity property of
2DTORA, and then a simple state feedback control algorithm
is developed based on a proper Lyapunov function including
energy item. Finally, simulation results are demonstrated.

I. INTRODUCTION

The nonlinear benchmark mechanical system TORA or

RTAC (Rotational-Translational ACtuator) was originally

studied as a simplified model of a dual-spin spacecraft to

investigate the resonance capture phenomenon [1][2]. TORA

system has two configuration states, translational position

of the cart and rotating angle of the eccentric mass, to be

controlled; however, only the rotating angle is actuated. Thus

TORA system is an underactuated system. Consequently, the

dynamic model of the TORA can’t be globally feedback

linearized and the direct application of well-known nonlinear

control schemes such as feedback linearization can’t guaran-

tee its global stabilization.

The problem of controlling TORA was brought to atten-

tion by Bernstein [1] and has been studied extensively by

several researchers. Global stabilization of the TORA system

using state feedback and backstepping procedure has been

introduced by Wan et al. [2] and global output tracking for

the TORA system is addressed in [3]. Flexible backstepping

control design using adequate Lyapunov functions is dis-

cussed in [4]. Jankovic et al. [5] explore solutions to this con-

trol problem based on the cascade and passivity paradigms.

By solving the Hamilton-Jacobi-Isaacs equation, Panagiotis

et al. [6] present a state-feedback nonlinear controller; a

similar control design technique is also employed in [7].

A measurement-scheduled control for the TORA system is

obtained in [8] using linear fractional representations. Based

on linear parameter-varying gain-scheduling approach, three
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state-feedback controllers are developed for TORA system

in [9]. A decoupled self-tuning signed-distance fuzzy sliding

mode controller is applied to TORA system in [10]. In [11],

a high pass filter is proposed to approximately differentiate

the input position signal as an approximate velocity signal

for use in the input control; thus, the TORA system can

be controlled without the need for velocity measurements.

Moreover, approaches in [12][13][14][15] have been vali-

dated through experimental results.

Passivity-based (dissipative, energy-based) control design

methods have been widely and successfully applied to

mechanical systems [16][17]. Researches have developed

controllers for TORA based on its passivity [5][19]. And pas-

sivity property of 2DTORA is also presented and employed

to develop the its controller in this paper. The energy-based

controller design for the 2DTORA proposed here has been

inspired by the work in [20] [21].

The rest of the paper is divided into four sections. In

Section II, the dynamics of the 2DTORA is developed

based on Lagrange equations and some characteristics of this

underactuated system are analyzed. In Section III, passivity

property of the 2DTORA is presented and then a simple

state feedback controller without measuring unactuated sys-

tem states is proposed. Simulations are performed for the

proposed controller in Section IV. Finally, conclusions are

given in Section V.

II. DYNAMICAL MODELING

The system shown in Fig. 1 represents a 2 dimensional

translational oscillator with an eccentric rotational proof-

mass actuator. The oscillator consists of a outer cart of mass

My connected to a fixed wall by a linear spring of stiffness

ky and an inner cart of mass Mx connected onto a wall of

outer cart by a linear spring with stiffness kx. The outer cart

and inner cart are constrained to have one-dimensional linear

motion with y and x denoting the travel distance respectively.

And also the two translational motions of the carts are per-

pendicular to each other. The proof-mass actuator attached to

the inner cart has mass m and moment of inertia I about its

center of mass, which is located a distance r from the point

about which the proof-mass rotates. The motion occurs in

a horizontal plane; therefore, no gravitational forces need to

be considered. In Fig. 1, τ denotes the control torque applied

to the proof-mass. Fx and Fy are the translational disturbance

forces applied to the moving carts. Let x, ẋ and y, ẏ denote

the translational position and velocity of the inner cart and

outer cart respectively, and let θ and θ̇ denote the angular

position and velocity of the rotational proof-mass.
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Fig. 1. 2DTORA system configuration

The total energy of the system is a sum of the kinetic

energy K and the potential energy P. The total kinetic

energy K is a sum of kinetic energy Kx corresponding to

the equivalent mass of Mx, kinetic energy Ky corresponding

to the equivalent mass of My and kinetic energy of the ball

Km.

K = Kx +Ky +Km (1)

=
1

2
(Mx +m)ẋ2 +

1

2
(My +m)ẏ2

+mrθ̇(ẋcosθ + ẏsinθ)+
1

2
(mr2 + I)θ̇ 2

The potential energy is given by

P =
1

2
kxx2 +

1

2
kyy2 (2)

Remark 1: We consider the motion of the ball of 2DTORA

system in the horizontal plane without gravity effects, oth-

erwise there exists another potential item −mgr cosθ in (2)

if we consider the center point of inner cart as zero gravity

potential.

Therefore, the Lagrangian of the system is given by

L = K −P (3)

=
1

2
(Mx +m)ẋ2 +

1

2
(My +m)ẏ2 +mrθ̇(ẋcosθ + ẏsinθ)

+
1

2
(mr2 + I)θ̇ 2 −

1

2
kxx2 −

1

2
kyy2

The Euler-Lagrange equations of motion for the 2DTORA

system can be expressed as

d

dt
(

∂L

∂ ẋ
)−

∂L

∂x
= −Fx (4)

d

dt
(

∂L

∂ ẏ
)−

∂L

∂y
= −Fy (5)

d

dt
(

∂L

∂ θ̇
)−

∂L

∂θ
= τ (6)

and thus after some calculating the dynamics of 2DTORA

is given by

(Mx +m)ẍ+mr cosθθ̈ −mr sinθθ̇
2 + kxx = −Fx (7)

(My +m)ÿ+mr sinθθ̈ −mr cosθθ̇
2 + kyy = −Fy (8)

mr cosθ ẍ+mr sinθ ÿ+(mr2 + I)θ̈ = τ (9)

If we remove one of the translational motion from the

above dynamics, it is easy to get the dynamics of TORA.

As we remove the motion in y axis, the dynamics becomes

(Mx +m)ẍ+mr cosθθ̈ −mr sinθθ̇
2 + kxx = −Fx(10)

mr cosθ ẍ+(mr2 + I)θ̈ = τ (11)

which is the TORA dynamics used in [1].

In a compact form, the dynamics of 2DTORA system can

be written as

M(q)q̈+C(q, q̇)q̇+G(q)+F = U (12)

where

q =

[

q1

q2

]

=





x

y

θ





M(q) =





Mx +m 0 mr cosθ

0 My +m mr sinθ

mr cosθ mr sinθ mr2 + I





C(q, q̇) =





0 0 −mr sinθθ̇

0 0 mr cosθθ̇

0 0 0





G(q) =





kxx

kyy

0





F =





Fx

Fy

0





U =





0

0

τ





From (12), it is clear that q is the configuration variable

vector of the system with q2 = θ the actuated variable vector

and q1 = (x,y)T the unactuated variable vector of the system.

Since there are three configuration variables to be controlled

with only one actuated configuration variable, the 2DTORA

system is an underactuated system. M(q), C(q, q̇), G(q), F ,

and U are the inertia matrix, Coriolis and centrifugal force

matrix, potential energy matrix, disturbance force vector, and

control input vector respectively.

There are some general properties of these matrices.

Note that M(q) is symmetric, and

det(M(q)) = (Mx +m)[(My +m)(mr2 + I)− (mr sinθ)2]

−(mr cosθ)2(My +m)

= MxMymr2 +Mxm2r2 cos2
θ +Mym2r2 sin2

θ

+(Mxm+Mym+MxMy +m2)I > 0 (13)
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Therefore, M(q) is positive definite defined for all q.

Calculating Ṁ−2C with (12), it follows that

Ṁ(q)−2C(q, q̇)=





0 0 mr sinθθ̇

0 0 −mr cosθθ̇

−mr sinθθ̇ mr cosθθ̇ 0





It is a skew-symmetric matrix which has an important

property

zT (Ṁ(q)−2C(q, q̇))z = 0 ∀z (14)

This property will be used in establishing the passivity of

the 2DTORA system.

The potential energy of the system P is related to G(q) as

G(q) =
∂P

∂q
=





kxx

kyy

0



 (15)

Note that the actuated variable in an underactuated system

can be controlled directly by the input torque; however, the

unactuated degree of freedom must be controlled through

system coupling. In other words, the nonlinear coupling

between the rotational angle of the proof-mass and trans-

lational motion of the carts provides the basis for control of

2DTORA. As for a TORA system (10)(11), the destination

angle of the rotor can’t be set to angles aligned to the

translation direction, otherwise the translation position of

the cart is uncontrollable. Similarly, the angular position θ

of the rotor in 2DTORA can’t be set to the angles aligned

to the two translation directions. The reason is that if the

destination angle of the rotor is aligned to the translation

motion of the car, the nonlinear coupling will disappear, and

the control input has no effect on translational motion of

the cart any more. As we can see from (9), the coupling

coefficient between rotation angle θ and translation position

y is mr sinθ . If θ = kπ , where k is an integer, then sinθ =
0, which means the nonlinear coupling between rotational

proof-mass and translational motion of the cart in y direction

has disappeared. As a result, the cart position in y direction

can not be controlled by the input control torque τ after the

θ is brought to kπ by the control input.

III. ENERGY-BASED CONTROL DESIGN

Control design for underactuated systems is challenging

and attracts many researchers. The well known and ex-

tensively studied underactuated systems has one actuated

variable and one unactuated variable such as the following

benchmarks: Cart-Pole system (single stage inverted pen-

dulum system), TORA, Pendubot, Acrobot. The number

of actuated DOFs is no less than the number unactuated

DOFs in most underactuated systems we deal with. There,

however, exists system with more unactuated DOFs than

actuated DOFs. A typical example is the double stage

inverted pendulum [22]. Although 2DTORA also has one

actuated variable and two unactuated variables as in (12), it is

distinctly different from the double stage inverted pendulum

systems. The matrices M(q) and C(q, q̇) of 2DTORA are

based on the actuated variable while the matrices of the

double stage inverted pendulum are based on the unactuated

variables. In other words, the 2DTORA has actuated shape

variable, while double stage inverted pendulum systems has

unactuated shape variables [23].

A. Passivity of 2DTORA

Passivity concept can be defined by introducing the no-

tions of storage function S(x) and supply rate ω(u,y), where

x is the system state, u is the input, and y is the output. A

system is passive if it has a positive semi-definite storage

function S(x) and a bilinear supply rate ω(u,y) = uTy, sat-

isfying the inequality S(x(T ))−S(x(0))≤
∫ T

0 ω(u(t),y(t))dt

for all u and T ≥ 0. Passivity, therefore, is the property that

the increase in storage S is not larger than the integral amount

supplied [24]. Various properties of passive system make it

“easy to control”[16], which means passivity property of a

system can be employed to facilitate its control task.

To find out the passivity of the 2DTORA system, we

consider the total energy of the system

E = K +P (16)

=
1

2
q̇T M(q)q̇+

1

2
kxx2 +

1

2
kyy2

Neglecting the disturbance force matrix F in the dynamics

of the 2DTORA and differentiating E, based on (12) and

(14) we obtain

Ė = q̇T M(q)q̈+
1

2
q̇T Ṁ(q)q̇+ q̇T G(q)

= q̇T (−C(q, q̇)q̇−G(q)+U +
1

2
Ṁ(q)q̇)+ q̇T G(q)

= q̇TU = θ̇ τ (17)

Integrating both sides of the above equation we get

∫ t

0
θ̇(t)τdt = E(t)−E(0) ≥−E(0) (18)

Therefore, the system having τ as input and θ̇ as output is

passive.

Remark 2: The deduction process of the passivity of the

2DTORA shows that the system is always passive taking τ

as input and θ̇ as output regardless of the motion of the

ball affected by its gravity or not. When the motion of the

ball occurs in a vertical plane, additional item for gravity

potential should be added to the right of the inequality (18).

However, when the motion of the rotor occurs in a vertical

plane, the dynamics of the 2DTORA has two equilibriums

with θ = 0 and θ = π for all τ = 0 and θ ∈ (−π,π]. At the

equilibriums, the coupling item to control the position of the

outer cart y as shown in (9) disappears. As a result, when

the rotor motion occurs in a vertical plane, the equilibriums

of configuration variables of the 2DTORA system can’t be

achieved dynamically.

B. Controller design

The passivity property of the system suggests that the total

energy E should be considered in the controller design. Since
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we wish to bring to zero E and angle θ to desired angle θ f ,

we propose the Lyapunov function candidate as

V (q, q̇) = k1E +
k2

2
(θ −θ f )

2
θ f 6= kπ/2 (19)

where k1, k2 are positive constants and k is an integer. Note

that the Lyapunov function V (q, q̇) is positive for any θ .

Differentiating V we get

V̇ (q, q̇) = k1Ė + k2(θ −θ f )θ̇

= k1θ̇ τ + k2(θ −θ f )θ̇

= θ̇(k1τ + k2(θ −θ f )) (20)

Define

k1τ + k2(θ −θ f ) = −k3θ̇ (21)

where k3 > 0, we obtain

V̇ = −k3θ̇
2 (22)

which leads to the control law

τ = −
1

k1
(k2(θ −θ f )+ k3θ̇) (23)

The control input (23) can guarantee the deferential of

the candidate Lyapunov function is a negative semi-definite

function. Therefore, the closed-loop control system is stable

with the stability criteria of Lyapunov.

Remark 3: The control law (23) suggests that the stability

control of the system can be realized without measuring

unactuated configurable variables and their speed items, i.e.,

the positions x, y of the carts and their speed ẋ, ẏ.

Remark 4: The above controller design can also be applied

to the TORA system. And the controller derived here is

the same as the controller developed for TORA in [5][6].

Compared to [5][6], the Lyapunov function including of the

total energy E proposed in this paper is simpler and the

controller is easier to be achieved.

IV. SIMULATION RESULTS

In order to verify the analysis on the target angle control of

the system and to observe the performance of the proposed

control scheme, we performed the control system simulations

on MATLAB using SIMULINK.

Referencing the parameters of TORA in [1], simulation

parameters of 2DTORA system are chosen as in Table I;

and the gains of the controller (23) are chosen as k1=30,

k2=2, k3=0.12.

TABLE I

SIMULATION PARAMETERS

Parameter Value Units Description

Mx 1.3608 kg Cart mass of axis x

My 2.7216 kg Cart mass of axis y

m 0.096 kg Ball mass

kx 186.3 N/m Spring stiffness of axis x

ky 279.45 N/m Spring stiffness of axis y

r 0.0592 m Arm length

I 0.0592 kg ·m2 Ball Inertia

The first column in Fig. 2 shows the simulation results of

the control system with the initial condition (x, ẋ,y, ẏ,θ , θ̇) =
(0.01,0,0.01,0,0,0) and target rotor angle θ f = π/3. As we

can see, positions of the carts are stabilized to zero from their

initial positions after 65 seconds; the rotor angle is bring

to the set value π/3, i.e. 60◦, and the total energy of the

system decreases to zero. Therefore, the linear control law

can stabilize the system effectively. At the same time, the

carts position and the continuous control torque can meet

the constrains of x ≤ 0.025m and τ ≤ 0.100N·m [1].

To illustrate that the target rotor angle can’t be set to the

kπ/2 where k is an integer, the simulation results with θ f =
π/2 and θ f = 0 are shown as the last two columns in Fig. 2.

In the middle column of Fig. 2 we can see that if the target

angle was set to θ f = π/2 which is aligned to the x axis,

the position of the inner cart x can’t be stabilized anymore

while the position y and rotor angle θ can be stabilized a

little faster with the same initial condition. As a result of the

unstabilized cart position x, the total energy of the system

doesn’t decrease to zero. The analysis on the results with

θ f = 0 is similar. The simulation results are in accordance

with the previous analysis on the target rotational angle in

section II.

We have neglected the disturbance forces of transla-

tional motions during our controller design. Suppose the

disturbance forces be friction forces defined as Fx = k f xẋ,

Fy = k f yẏ where k f x and k f y are friction coefficients. It is

anticipated that the damping time of the control system will

be shortened with the same conditions once these disturbance

forces are applied to the system. The simulation results

under disturbance forces with the same initial condition

(0.01,0,0.01,0,0,0) and the same target rotor angle θ f =
π/3 are shown in Fig. 3, and the friction coefficients are

both set as 0.05. Comparing the results in Fig. 3 and the

column (a) in Fig. 2, the system responses are consistent,

while the stabilizing time for system with disturbance forces

reduces to 50 seconds.

V. CONCLUSION

TORA is an underactuated mechanical system consisting

of one passive translational cart and one actuated rotor, and

its dynamics is taken as a benchmark nonlinear system to

test control design techniques. Adding an unactuated DOF

cart motion to the TORA leads to our proposed 2DTORA

system. Based on the derived dynamics, the 2DTORA system

has an actuated variable (rotor angle) can be controlled by

the input torque directly and two unactuated variables (cart

positions) must be controlled through system coupling. In

order to keep the coupling items in the dynamics, the target

rotor angle can’t be set as kπ/2 where k is an integer.

The total energy of the system is employed to show the

passivity property of 2DTORA, and then a proper Lya-

punov function including energy item is designed. Based

on Lyapunov theory, a simple state feedback controller only

with rotor angle and its deviation item is achieved for the

underactuated 2DTORA system. Simulation results verified

the analysis and controller design of the system.
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Fig. 2. Simulation results: (a) initial condition (0.01, 0, 0.01, 0, 0, 0) and θ f = π/3; (b) initial condition (0.01, 0, 0.01, 0, 0, 0) and θ f = π/2; (c) initial
condition (0.01, 0, 0.01, 0, 0, 0) and θ f = 0.
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Fig. 3. Simulation results with initial condition (0.01, 0, 0.01, 0, 0, 0),
θ f = π/3, and Fx = 0.05ẋ, Fy = 0.05ẏ.
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