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Abstract— We present the design and implementation of a
new jumping robot for mobile sensor network. Unlike other
jumping robots, the robot is based on a simple two-mass-
spring model. After we throw it on ground, it can stabilize itself
and then jump once. The detailed mechanism design including
the load holding and self-stabilization are presented. Jumping
heights and distances with different robot weights are measured
and compared with calculated values from the two-mass-spring
model.

I. INTRODUCTION

Mobile sensor network with self-deployment and self-

repair abilities has attracted much research attention com-

pared with its static counterpart in recent years. It con-

sists of nodes with capabilities of communication, sensing,

computation, and locomotion. In fact, these nodes can be

considered as robots with sensors. While the robots provide

the locomotion capability, the sensors perform the other

functions. The robots for this application are always assumed

as wheeled robots such as in [1]. If, however, the environ-

ment is rugged terrain with obstacles that wheeled robots

cannot overcome, jumping robots are preferred. Furthermore,

jumping robots are more economical than wheeled ones

due to their compact size [2]. The disadvantage is the less

movement accuracy because of its discrete jumping nature

[3]. Nevertheless, since position accuracy is not critical in

typical sensor network applications such as area coverage,

this disadvantage can be ignored.

In this paper, we aim to present the development of a

jumping robot for this application. The ultimate goal is

to build a robot that can repeatedly perform the following

motion sequences: first of all, the robot orients its body into

the desired jumping direction, then the robot jumps with a

certain takeoff angle, and finally, after landing on the ground,

it can self-stabilize for the next jump. As our first prototype,

we just want to achieve part of the goal: randomly throw

the robot on the ground, the robot can stabilize itself and

jump once after receiving a signal. Based on this goal and

the application, the design specifications can be determined

as follows: the robot’s weight should be less than 50g, jump

height should be greater than 15cm, and jump distance should
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be greater than 10cm. Under these specifications, we have

built the prototype as shown in Fig. 1(a) and the jumping

state is shown in Fig. 1(b), where three of four robots, labeled

by circles, are in the air.

Many jumping robots have been designed these years.

In most of the prototypes, spring is used to store energy

and then the energy is released to make the robot thrust.

The examples include the Minimalist hopper [2], 7g [4],

Grillo [5], Jollbot [6], Mini-Whegs [7], and Scout [8].

Although there exist other energy storage methods such as

compression air [9] and combustion [10], the spring based

approach is suitable for our application because of the size

and weight limits.
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(a) Jumping robot prototype
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(b) Jumping state

Fig. 1. The first prototype of jumping robot

The rest of paper is organized as follows. In section II,

mathematical model of the jumping robot is established,

serving as guidance for our design. Then the detailed design

is explained in section III. The experimental results are given

and compared with the theoretical calculations in section IV.

Finally, we conclude the paper and outline future works.

II. MATHEMATICAL MODELS

For most of the spring based jumping robots, the leg is

a four bar mechanism such as the 7g [4], Mini-Wheg [7],

and Grillo [5]. Nevertheless, a simpler method using the

compression spring can be adopted. In this case, the leg and

body of the robot are simply connected by a compression

spring. In this section, we model this method by a two-mass-

spring system, a lower mass and an upper mass connected

by a spring, to analyze the jumping process.
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For spring based jumping, it is expected that the energy

stored in the spring should be converted to the kinetic energy

of the jumping robot as much as possible. This can be

evaluated by conversion efficiency η as defined in [2]:

η =
kinetic energy at takeoff

energy stored in compressed medium

In this section, the conversion efficiency will also be analyzed

based on proposed model.

A. Vertical Model

Suppose two masses m1 and m2 are connected by a spring

with a constant K as shown in Fig. 2. In the initial state, the

system is subjected to an external force F . After the force is

removed, the system will begin to jump. Although the system

will typically jump up and down for several times, only the

first cycle is important since the largest height occurs in this

cycle. The process of the first cycle can be divided into four

steps listed as follows and shown in Fig. 2.

1 The upper mass moves upward with an increasing

velocity, while the lower mass stays still. Meanwhile,

the upward spring force f will decrease. This step ends

until f = m2g.

2 The upper mass moves upward with a decreasing ve-

locity, while the lower mass still stays on the ground.

Spring force will first decrease to zero, reverse its

direction, and then increase. This step ends when f =
m1g.

3 The lower mass begins to move upward. The two masses

will perform a harmonic motion. This step lasts until the

system reaches the largest height.

4 The system begins to fall down, and the step ends until

the lower mass reaches the ground.
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Fig. 2. Four steps for vertical two-mass-spring system

Suppose the length of the spring at rest is l. Establish the

coordinate frame as shown in Fig. 2. Assume the heights of

two masses are both zero, then the compression (positive) or

extension (negative) length is ∆x = l− (x2 −x1). Neglect the

air resistance and suppose the spring can both compress and

extend with the same constant, we have:

m1ẍ1 = −m1g−K∆x (1)

m2ẍ2 = −m2g+K∆x (2)

Plug ∆x into above equation, we have:

ẍ1 = − K

m1
x1 +

K

m1
x2 −g− Kl

m1
(3)

ẍ2 =
K

m2
x1 −

K

m2
x2 −g+

Kl

m2
(4)

These two equations can be converted to four first or-

der inhomogeneous differential equations with initial values

corresponding to the position and velocity of two masses

at the initial state of step 3. The position and velocity for

m1 are both zero, while for m2 they can be obtained by

energy conservation. The solution to above equations is the

governing equation of motion during the first cycle. At the

end of step 3 (the peak height), the velocity of the upper

mass should be zero. Using this condition, we can obtain the

jumping height from the governing equations. The equations,

however, are quite complicated, and a simplified model is

needed to derive the jumping height.

Intuitively, if we want the robot to jump as high as

possible, we should make the robot as light as possible

and use a spring with a large constant which can store

more energy for a given compression length. For example,

let jumping height be h = 15cm, the weight of the robot

be m = 50g, and the compression length of the spring be

∆x = 10mm (limited by the robot size), then we have:

1

2
K∆x2 > mgh

From this inequality, we get K > 1470N/m. If all the weight

of 50g are applied to the spring, it will only have a 0.34mm

compression length. Based on this observation, the four steps

in Fig. 2 can be reduced to three steps: first, the upper mass

moves upward until the spring extends to original length

because the weight of the upper mass is negligible with

respect to the spring; second, both masses move upward

together with a same speed because the spring can be

considered as rigid compared with the two masses; third,

the system falls down.

Therefore, at the end of new step 1, we have:

F = K∆x (5)

1

2
K∆x2 =

1

2
m2v2

2 (6)

where v2 is the speed of upper mass. Hence

v2 =
F√
Km2

=

√

K

m2
∆x

At the start of new step 2, by conservation of momentum,

we have:

m2v2 = (m1 +m2)v

where v is the same takeoff speed for both masses, and

v =

√
m2K

m1 +m2
∆x (7)

Then the two masses will move upward with this same speed

v. Thus, the kinetic energy at takeoff is:

E =
m2K∆x2

2(m1 +m2)
=

1

r +1
E0
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where r = m1/m2 is the mass ratio of the two masses and

E0 = K∆x2/2 is the energy stored in the spring in the initial

state. Thus we have the conversion efficiency as:

η =
1

r +1
(8)

From (8), if r = 0, then all the spring energy will be

converted to the potential energy, while if r 6= 0, some spring

energy will be lost. Therefore, we should make the mass

ratio as small as possible. The above takeoff energy will be

converted to the potential energy if no air resistance is con-

sidered, and we can get the jumping height by conservation

of energy:

h =
ηE0

(m1 +m2)g
(9)

In order to achieve a jumping height as large as possible,

from (8) and (9), we can formulate three design guidances

as follows:

1) Maximize the stored energy E0;

2) Minimize the total weight of the two masses m1 +m2;

3) Minimize the mass ratio r.

B. Tilted Model

Aside from jumping height, jumping distance is also a

critical index to evaluate the robot’s performance. To analyze

the jumping distance, the tilted model for the two-mass-

spring system is developed as shown in Fig. 3. In this case,

we also use the simplified three steps in the vertical model.

¢

)
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Fig. 3. Tilted model for jumping robot

Suppose the robot will not slide on the ground before

jumping. If we neglect the air resistance, the motion of the

system is a projectile motion. Then the jumping height (h),

distance (d), and their relation are:

h =
ηE0 sin2 α

(m1 +m2)g
(10)

d =
2ηE0 sin2α

(m1 +m2)g
(11)

d = 4hcotα (12)

where η and E0 are the conversion efficiency and energy

stored in the spring respectively as defined in the vertical

model. From (12), we can see that different height and

distance ratio can be obtained by changing α . Moreover,

although the tilted model is different from the vertical one,

the three design guidances still hold as can be seen from (10)

and (11).

III. DESIGN AND IMPLEMENTATION

Applying the two-mass-spring system to the robot, we

come up with a design shown in Fig. 4. Since the compres-

sion length cannot be very large due to the robot size, two

springs are used according to design guidance one. Aside

from the two springs, the other parts can be classified into

two sets corresponding to the lower and upper mass in the

two-mass-spring system. The deep gray set is the lower mass,

while the light gray set is the upper mass. The lower mass,

guided by two legs built from a single shaft, can move up

and down in the upper mass. The legs are connected to two

feet, and the tilted angle can be adjusted by changing the

angle between them.

The choice of appropriate spring constants are derived

from (10) and E0 = K∆x2/2:

K =
2(m1 +m2)gh

η sin2 α∆x2

where α = 80.5◦ can be obtained from (12) by plugging

design specifications h = 15cm and d = 10cm. As our initial

design, let ∆x = 12mm, η = 0.5(r = 1)(Bigger η can be used,

but we use 0.5 to leave some margins), then we can get the

spring constant K = 1049N/m. Thus we choose the spring

with a constant K = 1156N/m.
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Fig. 4. Solid model for major parts of the robot

As explained in section I, our first goal is to design a robot

that can jump once after we randomly throw it. As such,

we need two main components in the design. One is the

load holding mechanism to keep the compression state after

the springs are loaded and trigger mechanism to release the

energy stored in the springs. The other is the stabilization

mechanism to make the robot ready for jump after being

thrown. In this section, the design of these two components

will be elaborated.

A. Load holding and trigger mechanism

A bending lever with pivot on the upper mass is used as

the load holding mechanism, while a motor actuated cam

is adopted as the trigger mechanism. The load and release

states are shown in Fig. 5(a) and Fig. 5(b) respectively. The

bending lever goes across the upper mass from the front to

the back. A roller bearing is attached to the upper end of the

lever, which changes the sliding friction between the lever

and the holder to rolling friction after trigger.
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(a) Load state
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(b) Release state

Fig. 5. Illustration of load holding and trigger mechanism

The holder is a rectangle bar with a rectangle groove. A

detailed front view of the holder and lever with bearing is

shown in Fig. 6. Note that one side of the groove is near

the center of the holder. At load state, the lever’s upper end

contacts the center side of the groove, while the lower end

contacts the cam. Cam’s rotation will push the lever’s lower

end, resulting the release of energy. Note that the horizontal

part of the leg is bent to the concave shape shown in Fig. 6,

which can share part of the load force from the holder.

holder

bearing

leg
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Fig. 6. Detailed view of the holder and relevant parts

B. Stabilization mechanism

The robot feet should always contact the ground before

jumping; thus, self-stabilization is needed after we randomly

throw it. The ideal choice is to use a hollow sphere to

encircle the whole mechanism. By making the center of mass

(CoM) of the robot as close as possible to the feet, we can

achieve such a stabilization. This principle is similar to a

tumbler. A sphere, however, is difficult to be assembled to

the jumping mechanism. Hence we use a round pipe plus two

polyurethane hemisphere foams on both ends of the pipe

to encircle the mechanism. The whole structure is shown

in Fig. 7. Note that the feet should be tangent to outer

surface of the pipe which is necessary for self-stabilization.

Moreover, since the upper mass moves up and down during

jump, the stabilization part can only be attached to the lower

mass, resulting an increase of the mass ratio. The jumping

performance will thus degrade, and the degradation will be

analyzed in next section.

During the landing process, the robot can always make

the pipe contact the ground because of the round foam. As

a result, to achieve stabilizing the robot with the pipe on the

ground, the length of the foot is critical. Obviously, if the foot

is sufficient long, the robot cannot return to the stabilization

state no matter how close the CoM is to the foot. Thus there

exists a critical length that the foot cannot exceed. This idea

is shown in Fig. 8. Three rolling states: left critical (LC), foot

on ground (FoG), and right critical (RC) are shown in the

figure. The bold line represents the foot, the circle represents

the round pipe, and M is the location of the CoM.

A moving frame is attached to the foot with origin at

tangent point of the foot with the circle, X horizontal, and

Y vertical in the FoG state. Divide the foot into two parts

with length l1 and l2 as shown in the figure. The two critical

states correspond to when the gravity passes the two foot

ends. Take the LC state for example, if we want the robot

to turn clockwise, M should be on the right of the foot’s left

end. Thus when M pass through the left end, l1 is a critical

length. Similar arguments can be applied to the RC state.

Hemisphere Foam Hemisphere Foam

Round Pipe
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Fig. 7. Whole solid model with self-stabilization parts

Suppose M = (a,b) and the radius of the pipe is r. Since

the derivation of l1 and l2 is the same, we only consider l2.

Redraw the RC state as shown in Fig. 9, where C is the

center of the pipe and B is the tangent point for the pipe and

ground. Then l2 is the length of OA.

M L1

L2

O X A

O

M

Y

Y

X

Left Critical Foot on Ground Right Critical
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Fig. 8. Self-stabilization illustration with two critical states

Suppose A = (x0, 0), then the slope of MA is b/(a− x0).
Since CB is parallel to MA and BA is perpendicular to it, we

can get their equations as:

CB : y− r =
b

a− x0
x

BA : y = −a− x0

b
(x− x0)

Point B can be obtained either by intersection of above two

lines or by intersection of line CB with the circle. Equating

the x coordinate of B by these two methods:

b2X3 −2abX2 +(a2 +2br− r2)X −2ar = 0 (13)

where X = (a−x0)/b. If (13) is solved, we can get l2 = x0 =
a−Xb. If the robot can jump, the CoM should be within
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the range of foot. Thus a < x0, which means X < 0. The

same equation can be applied to solve for l1, except that

x0 < 0 and X > 0. Therefore, given (a,b) and r, we can

always determine the length of the foot to make robot self-

stabilize. Note that if different takeoff angles are adopted, the

coordinates of CoM will be different in the coordinate frame

of Fig. 8. Moreover, if the CoM is too high (b is too large),

there may not be both a negative and positive solutions to

(13), which means we cannot design a foot to make the robot

always return to FoG state.

M

O A

X

B

C

Y
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Fig. 9. Right critical state

IV. RESULTS

A. Prototype

Four prototypes have been built as shown in Fig. 1. The

robot has a dimension about 6.5cm× 6.5cm× 11cm and a

weight about 41.9g. In Table I, the detailed weight for each

part is listed. Note that the lower mass and upper mass in

the table only correspond to the deep and light gray sets

shown in Fig. 4, where many other parts are omitted for

clear classification. Nevertheless, to compute the jumping

performance, all the parts should be classified to the upper

mass or lower mass category respectively.

The polymethyl methacrylate (PMMA) is used to construct

the upper mass in Fig. 4 because of its low density and

high Young’s Modulus. Since an inclined hole connecting the

feet to the leg is needed, the polyetheretherketone (PEEK),

a material less brittle than PMMA, is used to build two feet.

Both the leg and lever are built using steel because they need

to endure certain loads. The hemisphere foams’ weight 3.6g

is for two of them. The mote in the table, a wireless sensor

from Crossbow, is used to control the robot. A motor with

rated voltage 3V , speed 100rpm, and stall torque 250g.cm is

employed to trigger the load mechanism. Finally, a 100mAh

Lipo battery is adopted to actuate the robot.

B. Jumping Performance

If we separate the round pipe and hemisphere foams from

the robot, the jumping performance can be evaluated for three

situations:

1) with neither the round pipe nor hemisphere foams;

2) with only the round pipe;

3) with both of them.

TABLE I

WEIGHT FOR EACH PART OF THE ROBOT

Part Name Material Weight [g]

Lower mass PMMA/PEEK/Steel 6.5

Upper mass PMMA 7.7

Cam PMMA 0.6

springs Steel 0.8

Lever Steel 1.8

Round Pipe Acrylic 9.2

Hemisphere Foams Polyurethane 3.6

Motor 3.8

Mote 4.4

Lipo Battery 3.5

Total Mass 41.9

TABLE II

PERFORMANCE FOR THREE SITUATIONS

One Two Three

Upper Mass [g] 21.8 21.8 21.8

Lower Mass [g] 6.5 15.7 19.3

Conversion Efficiency [%] 76.9 58.1 52.9

Calculated Height [cm] 43.6 24.6 20.4

Calculated Distance [cm] 46.2 26.3 21.9

Experimental Height [cm] 41 19 15

Experimental Distance [cm] 26 16 11

For these situations, the upper mass is the same, while the

lower mass is different because the round pipe, hemisphere

foams, or both may attach to it. The calculated performance

using the tilted model and experimental performance are

shown in Table II. For takeoff angle, although an 80.5◦

is calculated from specifications in section III, the jumping

distance is smaller than expected; therefore, an angle 75◦ is

used instead to meet the design specifications.

The experiment is conducted on a desk by recording a

video during the jump, and the performance is obtained by

analyzing individual frames. Five frames for each of the three

situations are shown in Figs. 10, 11, and 12 respectively.

These five frames consist of an initial frame before jump,

an upward frame when the robot is going up, a peak frame

when the robot is at the highest location, a downward frame

when when the robot is going down, and a contact frame

when the robot falls on the ground. The experimental values

in Table II are read from the peak and contact frame. The

jumping height is the vertical location of the foot in the peak

frame, while the jumping distance is the horizontal location

of center of robot in the contact frame.

As we can see from Table II, the experimental heights are

close to calculated ones, while the experimental distances

are much smaller. The reason is that sliding between the

feet and the desk occurs before the robot begins to jump.

Moreover, we cannot make the two feet contact the desk

perfectly because of machining error. From the experimental

height values for three situations, we can see the height is

reduced drastically if the round pipe is added (from 41cm

to 19cm). This is due to the large weight of the round pipe

which leads to a small conversion efficiency. If, however, we
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ZLWKRXW�SGI����ZLWKRXW�SGI���� ����������������������������������������Fig. 10. Jumping sequences with neither the round pipe nor hemisphere foams

ZLWKBSLSH�SGI����ZLWKBSLSH�SGI���� ����������������������������������������Fig. 11. Jumping sequences with only the round pipe

ZLWKBIRDP�SGI����ZLWKBIRDP�SGI���� ����������������������������������������Fig. 12. Jumping sequences with both the round pipe and hemisphere foams

reduce the weight of the pipe, it will be not strong enough

to support the robot. Thus a new material with high Young’s

Modulus and very low density is needed, which can enhance

the performance significantly.

V. CONCLUSIONS AND FUTURE WORKS

The development of a jumping robot is presented in this

paper. The robot is based on a simple two-mass-spring

system. Both the vertical and tilted model of the system are

derived, leading to three design principles and the jumping

performance formula. After mathematical modeling, detailed

design of the robot including the load holding and trigger

mechanism, self-stabilization mechanism are elaborated. Ex-

periments for three different situations are performed, and

experimental heights match the theoretical calculations well.

Designing an autonomously loading robot will be the

major task in the future. To this end, the load holding and

trigger mechanism needs to be revised, and the landing and

self-stabilization problems in this autonomously loading case

also need to be solved.
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