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Abstract— This paper develops full-state parametric con-
trollers for standing balance of humanoid robots in response
to impulsive and constant pushes. We also explore a hypothesis
that postural feedback gains in standing balance should change
with perturbation size. From an engineering point of view this
is known as gain scheduling. We use an optimization approach
to see if feedback gains should scale with the perturbation for a
simulated robot. We simulate models in the sagittal and lateral
plane and in 3-dimensions, use a horizontal push of a given
size, direction and location as a perturbation, and optimize
parametric controllers for different push sizes, directions and
locations. During a simulated perturbation experiment, the
appropriate controller is continuously selected based on the
current push. For an impulse, the simulated robot recovers
back to the initial state; for a constant push, the robot moves
to an equilibrium position which leans into the push and has
zero joint torques. We show the performance of optimized
parametric controllers in response to different external pushes.

I. INTRODUCTION

Balance research adapts humanoid robots to complex

human environments and is also valuable to explore how

humans react to disturbances. In [1], a passivity-based full-

body balancing strategy is proposed to accommodate an ar-

bitrary number of external force interaction points. In [2], an

integral balance controller is proposed to allow a humanoid

robot to recover from large disturbances. In [3], multiple

strategies are used for standing balance arising from the

same optimization criterion. By using Differential Dynamic

Programming (DDP), a trajectory library representing an

optimized control policy is generated for standing balance

on an adaptive grid [4].

A trajectory library stores optimized policies for different

cases and chooses an appropriate controller for each push.

Compared with it, parametric feedback has many advantages:

it can produce feedback responses with a small number

of parameters, while a trajectory library needs much more

storage for each posture and push; a feedback controller has

a smaller computational cost, and with optimized parameters

can handle complex models and cases. However, one set of

parameters might not handle all possible perturbations. This

paper explores optimizing postural feedback controllers for

external perturbations with a variety of sizes, locations and

directions.

Many papers have been presented on human standing

balance in terms of feedback controllers responding to dis-

turbances. In [5], optimal control and state estimation are
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Fig. 1. Two-link inverted pendulum model in the sagittal plane.

employed to explain selection of control strategies used

by humans, in response to small perturbations to stable

upright balance. A linearized model and Linear Quadratic

Regulators (LQR) are used for optimization. Park et al.

[6] tests human postural responses in terms of a feedback

control system with feedback gains that are gradually scaled

with perturbation size and can accommodate biomechanical

constraints. In [7], using a 3-link sagittal model, equilibrium

maintenance during standing is investigated in humans by

using eigenvectors of the motion equation. Data analysis

in human standing experiments shows independent feedback

control of movements can adequately describe human pos-

tural responses to stance perturbations and is sufficient to

provide stability [5]-[7].

Most research focuses on instantaneous perturbations in

the sagittal plane and designs various controllers to respond

to impulses and move back to the upright state. In reality,

disturbances may push in many directions and act for a

finite time during which the push size, direction and location

may also change. Often policies for impulses can not han-

dle constant pushes, so controllers for both impulsive and

constant disturbances are required for standing balance. We

design linear feedback controllers for impulsive and constant

pushes, respectively, explore standing balance in the sagittal

and lateral plane and in 3-dimensions and use an optimization

approach to test if the optimized feedback gains should scale

with the perturbation size for a simulated robot. The validity

and performance of the proposed controllers are explored

using simulation.

II. BALANCE CONTROLLER IN THE SAGITTAL PLANE

This study uses a two-link inverted pendulum model in

the sagittal plane, with actuators located at the ankle and hip

joints, as shown in Fig. 1. The model is facing to the right,
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and the parameters are listed in Table I, where li, mi, licm

and MoIi represent the length, mass, center of mass (CoM)

relative to the lower joint and moment of inertia about the

CoM of the corresponding link. The robot joint limits are

−0.52 < θa < 0.79 radians and −2.18 < θh < 0.52 radians,

where θa is the ankle angle, θh is the hip angle, and θi = 0 is

the upright state. The ankle torque is limited within ±50Nm

to prevent the foot from tilting, and the maximum of hip

torque is ±157Nm. Robot parameters in this paper are taken

from a preliminary design of a planned humanoid.

A. Balance Controller

We define the state as ankle and hip angles and angular

velocities. The robot sagittal dynamics are:

x(k + 1) = f(x(k),τ(k),F(k),r(k)), (1)

where x = (θa,θh, θ̇a, θ̇h)
T is the state vector, τ = (τa,τh)

T

represents the joint torques, and F and r are the push size

and location.

We consider a feedback controller which acts on the error

in each state variable:

τa = −k1∆θa − k2∆θh − k3∆θ̇a − k4∆θ̇h,

τh = −k5∆θa − k6∆θh − k7∆θ̇a − k8∆θ̇h,
(2)

where
∆θa = θa −θa d , ∆θh = θh −θh d ,

∆θ̇a = θ̇a − θ̇a d , ∆θ̇h = θ̇h − θ̇h d ,

represent the error between ankle and hip actual state and the

desired state for the current push. The torque outputs from

the controller are limited as described earlier.

B. Optimization Criterion

We define the one step optimization cost function as a

weighted sum of the squared deviations of state error and

the joint torque magnitude:

L(x,u) = T∆xTQ∆x+ Tτ
TRτ, (3)

where T is the time step of the simulation (0.01s), Q = I4×4

and R = 0.02 · I2×2 are the weight matrices, where I is the

identity matrix and 0.02 weights the torque penalty relative

to the state error in order to decrease the response time of

the optimized controller. The total cost is the sum of the one

step cost function over time. We use this cost function as

an optimization criterion to find the minimum of total cost

for each push, optimizing the parameters of the feedback

controller.

TABLE I

THE PARAMETERS OF ROBOT LATERAL MODEL.

Link Length(m) CoM(m) Mass(kg) MoI(kg·m2)

Calf 0.3305 0.2645 4.8685 0.1741
Thigh 0.3305 0.2645 4.8685 0.1741
Pelvis 0.1778 0.0889 7.373 0.2584
Torso 0.653 0.1407 22.119 0.7752

C. Optimization Approach

The controller parameters are optimized for both impulsive

and constant pushes, respectively, using a number of sizes

and locations. We assume all pushes are horizontal, as

vertical pushes have little effect. An impulsive push exists

for a short period of time (0.1 second in this paper), and we

choose the upright state as the desired state. For a constant

push, based on each push size and location, we first calculate

an equilibrium state, which is the posture where the robot

leans into the push and the torques at the ankle and hip

are zero. We use this equilibrium state as the desired state,

rather than standing straight up. Instead of optimizing from

one initial state such as standing vertically, we choose a set

of initial states which evenly separate the range between the

state of standing vertically and the equilibrium state.

SNOPT is a general-purpose system for constrained op-

timization, using sequential quadratic programming (SQP)

[8]. We employ it to optimize controller parameters for each

push, using the LQR gain for standing upright as initial

values for our controller and optimizing the next push size

with the optimized gains of the previous case. For a constant

push, with the given size and location, we randomly choose

five initial states for each joint including the posture where

the robot stands straight. The cost of the trajectory from

each initial state is combined, with a penalty added for the

cases violating state constraints. Optimized parameters can

be generated for a wide range of pushes. The robot looks

the desired state and feedback gains based on the push force

and location.

D. Results

We use constant pushes to explore postural feedback gains,

supposing the push is acting at the head. Fig. 2 shows the

optimized gains for constant pushes at the head. The gains

are symmetric when the robot is pushed forward and back-

ward, except for the extreme values due to the asymmetric

state constraints. With a small push, i.e. less than 30N, K1

(∆θa → τa) is the largest gain with a value above 620Nm/rad.

The other three position gains are relatively small, with

values no more than 100Nm/rad. K3 (∆θ̇a → τa) is the largest

velocity gain, 170Nm·s/rad, and the other three velocity gains

have less effect, with less than 30Nm·s/rad magnitude. It is

also found that, for small push sizes, the gains gradually scale

with push magnitude, with K5 (∆θa → τh) and K6 (∆θh → τh)

increasing fastest and ankle torque gains related to velocities

almost unchanged.

With larger pushes (beyond 30N), each gain changes much

more with push magnitude, with the ankle gains increasing

and the hip gains becoming more negative. The hip gains

comparatively exhibit more change than the ankle gains.

The most significant changes are for the gains of hip torque

relative to ankle angle and velocity. For ankle gains, τa/θ̇a

and τa/θ̇h change the most. Note that K5, K7, and K8

become negative as the push size increases, with the extreme

values on the order of -370Nm/rad, -230Nm·s/rad and -

23Nm·s/rad respectively. The negative hip gains and the

positive ankle gains take advantage of large hip flexing to
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Fig. 2. The gains of the proposed controller for constant pushes at the head.
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Fig. 3. Simulated angle and torque trajectories for a range of impulsive perturbation sizes (2.5, 5, 8, 10, 11 Newton-seconds).
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Fig. 4. Simulated angle and torque trajectories for a range of constant perturbation sizes at the head (10, 20, 30, 35, 40 Newtons).

initially move the ankle and the hip in the push direction,

which helps maintain balance when the robot responds to

large perturbations.

Fig. 3 shows the angle trajectories and the corresponding

torques of the proposed controller for a range of impulsive

push sizes located at the head. Angles and torques roughly

scale with push magnitude, except ankle torques saturate

for larger perturbations. The hip angle is entirely negative

whereas the ankle joint initially grows in the positive direc-

tion and changes to negative shortly after the hip reaches

its maximum displacement. The robot recovers back to the

upright state. In all cases, the torques are similar: the ankle

torques initially saturate at 50Nm if that torque is reached,

and then smoothly decrease to zero; the hip torques initially

grow and then decline to zero.

Fig. 4 shows the angle trajectories and the corresponding

4065



0 2 4 6 8 10
−40

−20

0

20

40

time(seconds)

p
u
s
h
 s

iz
e
(N

)

0 2 4 6 8 10
0

0.5

1

1.5

time(seconds)

p
u
s
h
 l
o
c
a
ti
o
n
(m

)

(a) Sequence of random push size and location.
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Fig. 5. Simulated performance of the parameterized controller for pushes
with variable sizes and locations.

torques for a set of constant push sizes at the head. With

the small push sizes, ankle and hip angles gradually scale

with push magnitude, reaching the corresponding equilibrium

states; ankle and hip torques smoothly decrease to zero, with

ankle saturation. With the large push sizes, the robot initially

responds to the posture with a large positive ankle angle

and a negative hip angle, due to ankle torque saturation,

and then smoothly approaches the corresponding equilibrium

state; the ankle torque saturation persists longer and the hip

torques increase from a small or even negative value to a

large positive displacement and then decrease to zero.

The robustness of the proposed controllers are tested

with a set of random pushes, using both instantaneous and

constant perturbations. Fig. 5(a) shows the variable push

sizes and locations, and the corresponding joint trajectories

are presented in Fig. 5(b). After the end of the push at 8.5s,

the robot recovers.

III. BALANCE CONTROLLER IN THE LATERAL PLANE

In the lateral plane (side to side motion), we use a six-link

model, with torque actuators located at the ankles, hips, and

waist and force actuators at the knees, as shown in Fig. 6.

We employ a pair of telescoping knees and a waist to match

human lateral balance behaviors. The telescoping knees have

springs and dampers and are used to shorten or elongate the

legs a little bit. The system parameters in the lateral plane

are shown in Table I, where the CoM is the location of the
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Fig. 6. Lateral model with 5 revolute joints and 2 prismatic knees.

center of mass relative to the lower joint and the MoI is

the link moment of inertia about the CoM. The ankle, hip,

and waist joint angles are bounded by −0.45 < θ1 < 0.45

radians, −0.95 < θ2 < 0.95 radians and −0.95 < θ3 < 0.95

radians. The ankle, hip and waist torques are limited within

±167Nm, ±107Nm and ±245Nm, respectively, and the knee

spring and damping constants are Ks = 104 and δ = 5×103.

The properties of right leg joints are symmetric to the left

ones.

A. Balance Controller

We define the state as prismatic knee lengths and velocities

and revolute joint angles and angular velocities. The robot

lateral dynamics are:

x(k + 1) = f(x(k),τ(k), f (k),F (k),r(k)), (4)

where x = (θ1,d1, . . . , ḋ2, θ̇5)
T is the state vector, τ =

(τ1,τ2,τ3,τ4,τ5)
T are the joint torques, f = ( f1, f2)

T are the

knee forces, and F and r are the push size and location.

The feedback controller acts on state errors:

τ1 = −k1∆θ1 − k2∆d1 −·· · ,

f1 = −k15∆θ1 − k16∆d1 −·· ·+ f1 d ,

...

τ5 = −k85∆θ1 − k86∆d1 −·· · ,

(5)

where fi d = f0 −Ksdi d and di d are the desired knee forces

and knee lengthes for a determined equilibrium posture, f0

is the knee force when the robot stands straight up,

∆θi = θi −θi d , ∆di = di −di d ,

∆θ̇i = θ̇i − θ̇i d , ∆ḋi = ḋi − ḋi d ,

represent the error between actual state and the desired state

of each joints: ∆θ for revolute joints and ∆d for prismatic

joints.

The lateral dynamics consists of multiple model transitions

between single and double support. We use an impact model

with impulse effects, which assumes the contact is between

two rigid bodies [10].
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Fig. 7. Simulated joint trajectories of the lateral model for a range of impulsive perturbation sizes at the head (15, 30, 45, 60, 75 Newton-seconds).
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Fig. 8. Simulated joint trajectories of lateral model for a range of constant perturbation sizes at the head (15, 30, 45, 60, 75, 90 Newtons).

B. Optimization and Results

The one step optimization cost function in the lateral plane

is:

L(x,u) = T
(

∆xTQ∆x+ τ
TR1τ + ∆fTR2∆f

)

, (6)

where T is the time step of the simulation (1ms), ∆f = f−

fd is the error vector of the knee force, Q = I14×14, R1 =
0.02 ·I5×5, and R2 = 0.02 ·I2×2 are the corresponding weight

matrices, where 0.02 weights the torque and force penalty

relative to the state error.

We apply the previous optimization approach for both im-

pulsive and constant pushes. In response to constant forces,

the robot starts from vertical and moves to an equilibrium

state, at which the torques of each joint are zero. For opti-

mization, with the given push size and location, we choose as

initial states five postures which are the equilibrium states for

the pushes between zero and the given push. The controller

has 98 parameters in the lateral plane.

Fig. 7 shows the left leg joint and the torso state trajec-

tories generated by the optimized parametric controller in

response to impulsive pushes at the head with a variety of

sizes. Each trajectory roughly scales with the perturbation

size and are all positive. The maximum displacements of

each joint and the corresponding time are proportional to

the perturbation magnitudes. Fig. 8 shows the behaviors of

the left leg joints and the torso to a number of constant push

sizes at the head. All trajectories are scaling with perturbation

magnitudes, with the ankle and the hip moving directly to

their equilibrium states. For the small pushes, the torso angles

are entirely negative; for the large pushes, the ankle joint

initially moves in the positive direction and then approaches

its negative equilibrium state. In all cases, the left knee

moves in the positive direction and then moves to its negative

equilibrium state.

IV. BALANCE CONTROLLER IN 3-DIMENSIONS

For 3 dimensional balance, we use a six-link model with

revolute joints, with 6 DOFs for each leg and one DOF

at the waist. The joints are shown in Fig. 9. We apply

the same model parameters, joint limits, and torque bounds

as in the sagittal and lateral plane, adding two ankle yaw

joints bounded by −0.7 < θ3 < 0.7 radians and replacing

the telescoping knees with a pair of revolute knee joints

(0 < θ4 < 2 radians, the knees can not bend forward). The

torque ranges of the ankle yaw joints and knees are ±74Nm

and ±293Nm, respectively. The properties of the two legs

are symmetric. A 3-D impact model is employed between

rigid bodies for model transitions [10].

A. Balance Controller

We consider the state as angles and angular velocities of

each joint. The robot 3-D dynamics are:

x(k + 1) = f(x(k),τ(k),F(k),r(k),α(k)), (7)

where x = (θ1,θ2, . . . , θ̇13)
T is the state vector, τ =

(τ1,τ2, . . . ,τ13)
T represent the joint torques, and F , r and

α indicate the push size, location and direction, with α =
0 representing a forward push in the sagittal plane and

clockwise being positive.

The 3-D balance controller is linear in the error state:

τ1 = −k1∆θ1 − k2∆θ2 −·· · ,

τ2 = −k27∆θ1 − k28∆θ2 −·· · ,

...

τ13 = −k313∆θ1 − k314∆θ2 −·· · .

(8)

4067



 

F 

����
����

����

����

�� ��

����

�� ���	

�


���

�



�

��

�	�	

�	��

����

������ ��	 

����

Fig. 9. The 3 dimensional model with 13 revolute joints.

where ∆θi = θi −θi d and ∆θ̇i = θ̇i − θ̇i d represent the error

between actual state and desired state of each joints. The

outputs of the controller are limited to the given torque

ranges.

We use a one step optimization cost function

L(x,u) = T∆xTQ∆x+ Tτ
TRτ, (9)

where T is the time step of the simulation (1ms), Q = I26×26

and R = 0.02 · I13×13 are the weight matrices, where 0.02

weights the torque penalty relative to the state error. The

sum of the one step cost function over each step constitutes

the optimization criterion.

B. Results

We use the same approach to optimize the feedback gains

for 3-D balance in response to a variety of push sizes,

locations and directions. The controller has 338 parameters

in 3-dimensions. For the proposed controller, Fig. 10 is the

fall boundary for constant pushes located at the head. The

circled points are the maximum constant push size for every

π/8 radian. With knees, the 3D model controller is capable

of handling larger forward and backward pushes than the

planar sagittal controller.

V. CONCLUSIONS AND FUTURE WORK

In this paper, feedback controllers in the sagittal, lateral

plane and for the 3-D case are designed for standing balance

in response to both impulsive and constant pushes. SNOPT

is used to optimize parametric controllers for different push

sizes, locations and directions. During a simulated perturba-

tion experiment, the appropriate controller is continuously

selected using a lookup table based on the current push or

the last detected push for impulsive disturbances.

We also explore gain change with perturbation size. Using

the optimized controller for constant pushes in the sagittal

plane as an example, it appears that feedback gains gradually

scale with push magnitude for small pushes and change

significantly for large pushes. With increasing push size, the

controller tends to increase the ankle gains while making

some hip gains more negative. From the optimized feedback

gains, we also find that the ankle joint plays an important

  50

  100

  150

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 10. The maximum balancing push area for a push at the head.

role for small perturbations while the hip joint grows more

active as the push size increases.

Future research will implement these controllers on an

actual robot. We will explore the sensitivity of the approach

to robot model parameters and optimization criterion parame-

ters, which are currently selected by hand. We will develop a

push size and location estimation to guide response selection.
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