
  

  
  

Abstract—In this paper, a mixed controller for solving the 
trajectory tracking and point stabilization problems of a mobile 
robot is presented, applying the integration of backstepping 
technique and neural dynamics. By introducing a virtual target 
point, the whole motion process is divided into two parts. The 
first one is employed to realize tracking control and the other 
one is adopted to implement point stabilization. Each part 
produces a feedback control law by using backstepping 
technique. Moreover, to solve the speed and torque jump 
problems and make the controller generate smooth and 
continuous signal when controllers switch, the neural dynamics 
model is integrated into the backstepping. The stability of the 
proposed control system is analyzed by using Lyapunov theory. 
Finally, simulation results are given to illustrate the 
effectiveness of the proposed control scheme. 

I. INTRODUCTION 
N recent decades, wheeled mobile robots have gained 
increasing attention both in the robotics and control areas, 

due to their broad and promising applications in the various 
industrial and service fields. Many researchers have worked 
in this field for a long period. Such studies have been divided 
into two main portions: tracking of a reference trajectory and 
stabilization to a fixed posture.  

Trajectory tracking of mobile robots aims at controlling 
robots to track a given time varying trajectory. This problem 
has been addressed by sliding mode control technique [1], 
fuzzy scheme [2], model predictive [3], state feedback control 
[4] and adaptive control [5].These controllers require that 
linear or angular speeds must not converge to zero, i.e., 
reference trajectories are persistently excited. 

The point stabilization can be regarded as the generation of 
control inputs to drive the robot from any initial point to a 
target point. Several methods have been applied to solve the 
stabilization problem. A model predictive control scheme 
was adopted in [6]. S. Li [7] proposed an adaptive control law 
to deal with the stabilization with unknown kinematic 
parameters. These control methods demand that the linear and 
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angular velocities are zero at the target point. 
In motion control of mobile robot, it is more realistic that 

the robot tracks along a reference trajectory and then parks at 
target point. It is difficult to solve this problem in a unified 
approach because of the different velocity requirement of 
tracking and stabilization. Therefore, the two problems are 
only studied separately by researchers. 

In this paper, considering the kinematic and dynamic 
model, the tracking and stabilization problems of mobile 
robots are addressed by using backstepping technique and 
neural dynamics. The simulation results show that the 
presented controller can produce smooth and continuous 
control signal to guide the robot to track a reference trajectory 
and park at the target point with a quite small error. 

This paper is organized as follows. Section II introduces 
the mobile robot model and neural dynamic model. In Section 
III, the problem of tracking and stabilization is stated. The 
tracking and stabilization control scheme is described in 
Section IV. Simulation results are provided in Section V. 
Finally, Section VI concludes the paper.  

II. BACKGROUND  
In this section, a mobile robot model and a neural dynamics 

model are briefly introduced.  

A. Mobile Robot Model 
The mobile robot with two independent driven wheels is 

shown in Fig.1. O–XY is the world coordinate system and 
C–X’Y’ is the coordinate system fixed to the robot. The mass 
center C of robot is located in the middle of the driving 
wheels. r is the radius of rear wheels and l is the distance of 
rear wheels. m is the mass of the body and I is the moment of 
inertia of the body about the vertical axis through C. 

The kinematic model for the mobile robot under the 
nonholonomic constraint of pure rolling and non-slipping is  
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where Tyxq ],,[ θ= is actual posture of robot, ),( yx  are 
the coordinates of C, θ is the orientation angle of robot. 

23)( ×∈ RqS and 2Rv ∈ represent the full rank velocity 
transformation matrix and velocity vector. v and w are linear 
and angular velocities of mobile robot, respectively. 

Trajectory Tracking and Point Stabilization of Noholonomic Mobile 
Robot 

Zhengcai Cao, Yingtao Zhao, and Shuguo Wang 

I

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1328



  

C

2r

2l

v
w

θ

Y

XO  
Fig. 1.  Model of mobile robot. 

 
Note that the mobile robot has the nonholonomic 

constraint, where the driving wheels roll purely and do not 
slip, i.e. 

 
0)( =qqA                                (2) 

where ]0cossin[)( θθ−=qA . 
The dynamic equation [5] of the simple model of the 

mobile robot, assuming all the uncertainties and disturbances 
are zero, can be described as 

τ=vqM )(                                (3) 

where T],[ 21 τττ = denote linear and angular torques, 

respectively. M and B  are selected as  
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B. Neural Dynamics Model 
The neural dynamics model can depict the real-time 

adaptive behavior of individuals to complex and dynamic 
environment contingencies and has been applied in robotics. 
A typical dynamics model is described as [8] 
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where iξ is the membrane potential of the ith neuron. A 
represents the passive decay rate. B and D are the upper and 
lower bounds of the membrane potential. +

iS  and −
iS  are 

excitatory and inhibitory inputs, respectively, which are 
defined as  
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The neural dynamics characterized by (7) is restricted to a 
bounded interval [-D, B] for any excitatory and inhibitory 
inputs. The model is a continuous differential equation and 
the outputs are continuous and smooth. Its advantages such as 
stability and efficient computation are very attractive for 
motion control of robots. 

III. PROBLEM STATEMENT 
In general, the trajectory tracking problem aims at tracking 

a reference mobile robot with a known posture 
T

rrrr yxq ][ θ，，=  which is generated by  
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where rv and rw  are the reference linear and angular 

velocities, respectively. rθ  is the reference angular.  
Assumption 1. For the tracking problem, it is assumed that 

the reference velocities rv and rw  do not go to zero 
simultaneously. That is, it is assumed that at any time 
either 0)(lim ≠∞→ tvrt and/or 0)(lim ≠∞→ twrt [9]. 

We define the errors between the actual and reference 
posture as 
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The posture error ep expressed in the frame of the real 
robot, as shown in Fig.2, reads: 
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where Te is transformation matrix. 
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Fig. 2.  Robot posture error coordinate. 

 
Therefore, the tracking problem, under the Assumption 1, 

is to find a feedback control law to force the robot to track the 
reference trajectory precisely such that tracking error 

T
yxp eeee ][ θ，，= tends to zero. 

In order to make the robot park at the final pose, a virtual 
target point qr(P) is introduced, which is located on the given 
trajectory and near the real target point qr(N). Herein, P and N 
denote the Pth and Nth time instant, respectively. When the 
robot reaches the virtual target, linear and angular velocities 
should reduce asymptotically and then converge to zero at the 
goal. The posture error can still be expressed by (8). 

1329



  

Assumption 2. For the point stabilization problem, it is 
assumed that the reference velocities rv and rw  go to zero 
simultaneously. That is, it is assumed that at any time 

0)(lim =∞→ tvrt and 0)(lim =∞→ twrt . 
So point stabilization problem, under the Assumption 2, is 

to design a controller T],[ 21 τττ =  for 0lim =∞→ qt e  

and 0lim =∞→ τt .  
From above analysis, the trajectory tracking and point 

stabilization problems to reference mobile robot can be stated 
as: find a control law so that the state ),,( θeee yx  can be 

held near the origin (0, 0, 0), and finally, the controller 
outputs can converge to zero. 

IV. CONTROLLER DESIGN 
In this section, considering the model of mobile robot, we 

design a tracking and stabilization controller by integrating 
neural dynamics model into backstepping. 

A. Trajectory Tracking of Mobile Robot 
1) The Kinematic Controller  

The design of the kinematic controller is based on the 
kinematic model of the robot described by (1). Equation (8) 
describes the difference of position and direction of the 
reference robot from the real robot. The derivative of the 
trajectory tracking error can be written as 
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After mentioning the posture tracking error, we have to 
illustrate the kinematic trajectory tracking control law for the 
mobile robot. The common velocity command using 
backstepping method [5] is recommended as follows  
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where k1, k2, and k3 are positive constants and vr>0. 
The objective of such a controller is to generate the desired 

velocities T
ccc wvv ],[=  for the dynamic controller. 

2) The Dynamic Controller 
The dynamic controller receives from the kinematic 

controller the desired linear and angular velocities 
T

ccc wvv ],[= which are obtained by (10), and generates 
another pair of linear and angular velocities to be delivered to 
robot servos. 

We define velocity error cvv −=δ  = Twv ]~,~[ and its 

derivative cvv −=δ  , then consider the following control 

law to prepare tracking of cv  and cw  

cd vMk +−= δτ                        (11) 

and  (11) can be rewritten as 
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where kd=diag (kd1, kd2) is a positive matrix. 

B. Point Stabilization of Mobile Robot 
When the robot reaches the virtual target point, the 

controller should be designed to regulate the robot to real 
target point. According to Assumption 2 and (10), the 
kinematic control law which generates desired velocities for 
dynamic controller can be written as follows 
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where k4，k5 are positive constants. 
Similar to dynamic tracking controller, (12) is still suitable 

to stabilization controller, rewritten as 
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where kc1, kc2 are positive constants. 

C. The Proposed Neural Dynamics Based Tracking and 
Stabilization Controllers 
Analyzing the controller in (10) and (11), we observe that 

errors xe , ye , θe , δ and cv are not equal to zero at initial 

status.  So the speed jump is caused by the initial tracking 
errors xe , ye and θe  while the torque jump is produced by 

velocity error δ and cv . To solve the two problems for 

tracking control, xe , ye , cv and cw  are replaced by 1s , 2s , 

sv  and sw , respectively, then a novel tracking controller is 
proposed as 
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and 
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In (15) and (16), according to (4), 1s , 2s , sv and sw are 
functions of neural dynamics model given by 
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where ),0max()( xxS =+ and ),0max()( xxS −=− . 
At initial status, we choose 
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Then, 0)0( =cv and 0)0( =cw . 
If we select following initial values 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

0)0(
0)0(
0)0(
0)0(

s

s

w
v
w
v

                                (19) 

According to (16), the control output =)0(τ  
T)]0(),0([ 21 ττ T]0,0[= .  The control law (15) (16) is 

smooth, and whether initial errors exist or not, initial 
velocities and torques are zero, so the new control law can 
solve the speed and torque jump problems, respectively. 

When the robot is required to stop, the switching between 
tracking controller and stabilization controller appears. 
Analyzing the controller in (13) and (14), we find that it is 
difficult to generate a control signal smoothly because xe , 

θe , cv  and cw are not continuous when controllers switch. 
Using neural dynamics model, the control law of point 
stabilization described by (13) and (14) becomes 
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In (20) and (21), considering (4), 1s , 3s , sv and sw  are 
functions of neural dynamics model given by 
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where ),0max()( xxS =+ and ),0max()( xxS −=− .  

To avoid the switching, we make law (20) (21) at P 
moment equal to rule (15) (16) at (P-1) moment respectively, 
i.e. 
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Then,  vc(P)=vc(P-1) and wc(P)=wc(P-1), τ1(P)=τ1(P-1) and 
τ2(P)= τ2(P-1). The whole control law is continuous and 
smooth. Hence, the influence of switching between two 

controllers can be eliminated by using neural dynamics 
model. 

D. Stability analysis 
In order to prove the stability of the control system, we 

consider the following Lyapunov function candidate 

sVVVV ++= 21                       (24) 
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herein, 1s , 2s , 3s , sv and sw  are defined in (17) and (22).  
Clearly, V ≥0. Substituting (9)(10) for the time derivative of  
V1 and (11) for the time derivative of  V2, we obtain 
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Additionally, Vs =0 if and only if 1s , 2s , 3s , sv and sw are 
zero; otherwise, Vs >0. For the derivative of Vs, we have 
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According to the definitions (9), if 0≥xe , xx eeS =+ )( , 

and 0)( =−
xeS , then 

0)()( >+=++ −+
xxx eAeSeSA          (26) 

If 0<xe , 0)( =+
xeS , and xx eeS −=− )( , then 

0)()( >−=++ −+
xxx eAeSeSA            (27) 

Similarly, we have that 
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0)()( >++ −+
cc vSvSA , 

0)()( >++ −+
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Then the derivative of Vs is always non-positive. 

Therefore, V
   ．

≤0, that is to say, the whole system is stable. 

V. SIMULATION RESULTES 
In this Section, two test cases in different situations are 

used to demonstrate the effectiveness of the proposed control 
scheme, considering the robot’s parameters m=30 kg and 
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I=15 kg·m2.The tracking and stabilization performance is 
shown in Fig. 3 and Fig. 4. 

A. Tracking a Straight Line 
A simple case to track a straight line is studied at first. The 

straight line trajectory is generated from the reference 
velocity vr=0.4 m/s and angular velocity wr=0 rad/s. The 
initial posture of the reference trajectory is set at 
qr(0)=[0,0,π/4]T while the actual initial posture of robot is 
q(0)=[0,1,0]T. The target pose calculated by (6) is 
qr(N)=[2.83,2.83,π/4]T. The tracking results are shown in Fig. 
3, including (a) reference and real trajectories, (b) posture 
errors, (c) actual and desired linear velocities, (d) actual and 
desired angular velocity, and (e) linear and angular torques. 

 

 
        (a). Reference and real trajectories. 

 

 
(b).  Posture errors. 

 

 
   (c).  Actual and desired linear velocities. 

 

 
   (d).  Actual and desired angular velocities. 

 

 
(e).  Linear and angular torques. 

Fig. 3.  Tracking results. 
 

From Fig. 3(a), we can see that the robot can track the 
straight line and stop at the final pose. Fig. 3(b) shows that the 
controller can correct deviations quickly (about 5.0s) and 
there are little tracking errors. At t≈9s, the robot is required to 
park at the goal, and the posture errors in point stabilization 
are as same as in tracking control except error ex, so a pulse 
appears when controllers switch. However, the controller can 
still regulate the robot to eliminate the error state ex quickly 
shown in Fig. 3(e). In addition, the smooth and continuous 
signals are generated as described in Fig. 3(c, d, e). 

B. Tracking a Curve 
The curve trajectory is generated from the reference 

velocity vr=0.4 m/s and angular velocity wr=0.15 rad/s. The 
initial posture of the reference trajectory is set at 
qr(0)=[0,0,0]T  while the actual initial posture is q(0)=[0,1,0]T. 
The target pose computed by (6) is qr(N)=[2.66,2.47,1.50]T. 
The tracking results are shown in Fig. 4. 

Fig. 4(a) shows that the robot can track the curve and park 
at the target point. From Fig. 4(b), we can observe that the 
controller can correct posture errors quickly (about 5.2s) and 
the steady-state errors can be totally eliminated. Because the 
initial posture errors in point stabilization exist at t≈10s, small 
pulses can be seen in Fig. 4(b). But the controller can force 
the robot to reduce the errors and make them converge to zero 
quickly. Besides, the real velocities, desired velocities and 
torques depicted in Fig. 4 (c, d, e) converge to zero, and 
produce smooth and continuous signals. 
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(a). Reference and real trajectories. 

 

 
(b).  Posture errors. 

 

 
             (c).  Actual and desired linear velocities. 

 

 
        (d).  Actual and desired angular velocities. 

 
        (e).  Linear and angular  torques. 

       Fig. 4.  Tracking results. 
 Therefore, all of the simulation results demonstrate that 

the proposed control strategy is effective to solve the tracking 
and point stabilization problems. 

VI. CONCLUSION 
In this paper, we have proposed a two-stage controller, 

combined the tracking controller and the point stabilization 
controller, which allows the mobile robot to track along the 
reference trajectory and park at the target point. By 
incorporating a neural dynamics model with the proposed 
approach, the controller is capable of solving the speed and 
torque jump problems and generating smooth and continuous 
control commands. The control scheme is demonstrated to be 
stable by using Lyapunov theory. All the simulation results 
indicate that the proposed strategy is indeed feasible and 
effective. 
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