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Abstract — The representation of probabilistic graphical 

model often encodes a network whose size is unboundedly 

large. Such networks pose particular challenges to inference 

algorithms, specifically making the task of robot path queries 

highly inefficient due to poor locality of memory references. 

Whereas a more predictable, resolution complete method yields 

a highly compact graph structure that captures much of the 

signal in distributing the configuration free space. In this paper 

we demonstrate an efficient data parallel algorithm for 

mapping the computationally intensive, Reachability Roadmap 

method on the GPU. For our implementation on the recently 

introduced NVIDIA’s Fermi architecture, we show roadmap 

construction time under twenty seconds for a closure resolution 

of 55x55x55 cells.  Moving forward, our system is well 

positioned to address smooth navigation of robots in a 

dynamically changing 3D virtual environment. 

 

I. INTRODUCTION 

In the broader sense, motion planning concerns itself with 

enabling multi mobile robots to safely achieve their goals as 

they maneuver in temporal changing environments. The 

active research of the past two decades contributed 

algorithms to effectively address collision-free navigation in 

3D configuration free spaces,      . Besides robotics, the 

successes of these methods attracted applications to solve 

challenging problems in a variety of fields, including CAD 

systems, synthetic environments, video games, traffic 

control and protein folding.  

The roadmap approach to path planning captures       

and creates a graph structure of collision-free configurations 

[1], [2].  Path planning is then reduced to connecting the 

robot’s start and goal configurations to the roadmap  , and 

searching   for a minimal, transition cost path. Roadmap 

methods have usually been designed for one of a single or 

multiple query planning systems. Many of them use 

randomization with the accepted tradeoff that they are 

incomplete but nonetheless converge to a solution with any 

probability given sufficient running time. Yet, to subscribe 

efficiently to a parallel GPU motion planner, construction 

running time and compact memory area of   are essential 

properties of the algorithm.  

The Rapidly-exploring Random Tree (RRT) [3] was 

introduced as an efficient data structure to quickly search 

high dimensional spaces with the key idea to bias the 

exploration towards unexplored portions of the configuration 

space. RRT construction is simple and fast but is however 
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computed in line with every query. We found RRT 

architecturally limited for deployment in our system that 

runs multiple queries concurrently. In contrast, construction 

and query are disjoint tasks for a Probabilistic Roadmap 

(PRM) [4], [5], [6]. PRM constructs a graph by sampling 

collision-free configurations uniformly at random and uses a 

local planner to connect each node with its   nearest 

neighbors.  One PRM shortfall is its inherent oversampling 

of      , especially when narrow passages are present, that 

often contributes to large footprint graph structures and 

consequently leads to suboptimal query performance. 

Moreover, trading off PRM construction running time with 

incomplete validation, may result in a higher rate of 

unsuccessful robot path queries. Nonetheless, PRM is highly 

parallelizable and scalable [7], exploiting decomposition of 

configuration space [8] and a parallel search formulation [9] 

to a distributed representation [10]. On the GPU, the reader 

is referred to the nice overview of previous, motion planning 

assisted algorithms [11]. 

Being probabilistically complete, both RRT and PRM 

lack a quantifiable criterion for when the construction 

algorithm terminates. This severely impedes our parallel 

GPU implementation as there is no upper bound guaranteed, 

and by mainly relying on running time it becomes 

impractical to consistently predict performance [12]. On the 

other hand, the Reachability Roadmap (RRM) method [13] 

ensures a systematic corollary between a discretized       

and the roadmap in defining coverage and maximal 

connectivity.  RRM is thereby space resolution complete in 

arriving at its solution, but suited at most to two and three 

dimensional environments. If there exists a valid path in 

     , then coverage warrants that the query endpoint 

configurations can be directly connected to the roadmap, and 

captured connectivity ensures a matching path to be found in 

the roadmap. Furthermore, RRM produces considerably 

tighter memory space for graph data structures compared to 

PRM, and is hence vital in our design for efficient access of 

global memory resources, shared amongst thousands of 

dispatched GPU threads [14]. 

Our main contribution of this work is a parallel, GPU 

friendly design of the computationally intractable RRM 

construction algorithm. We describe a family of extensions 

that introduce various forms into the workflow to optimize 

the running time for building a roadmap from non trivial 3D 

virtual environments.  We demonstrate considerable 

performance gains in running on NVIDIA’s recently 

introduced Fermi GPU with construction time well under 
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twenty seconds for closure resolution of 55x55x55 cells. Our 

navigation software is layered on top of NVIDIA’s CUDA 

architecture [15] that has gained universal acceptance in a 

wide range of research communities. Next, we highlight the 

mathematical model of RRM, emphasizing methods that 

mostly affected the refitting of the algorithm in our GPU 

implementation. 

II. WORKFLOW AND METHODS 

To satisfy coverage and maximal connectivity, the core 

RRM algorithm computes a small number of guards that 

view the complete free configuration space and then 

connects those by placing connectors in overlapping 

reachability regions, for each pair of guards [16]. Medial 

axis samples of       are considered first choice guard 

candidates because the medial axis is a complete 

representation for motion planning purposes. In particular, it 

has the appealing property of large clearance from obstacles 

[17] that leads to enhanced coverage. Moreover, this 

sampling framework encompasses exact retraction of a given 

configuration on to the medial axis for 3D free spaces [18]; 

and hence facilitates a graceful extension of the reachability 

region in the event       is only partially covered after all 

original medial axis samples have been assigned to guards. 

Fig. 1 illustrates the process workflow for constructing the 

RRM graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  RRM graph construction workflow: first the configuration space is 

discretized in to a 3D grid, followed by computing the medial axis 

transform (MAT) and the distance transform (DT) of      . Then, guards 

are applied to a visibility based flood fill algorithm and finally, connectors 

are placed and further optimized by running a minimal spanning tree (MST) 

algorithm. 

First, the 3D configuration space is discretized and a 3D 

binary grid is generated, marking a cell as false once its 

configuration overlaps an obstacle. The serial algorithm for 

grid creation is of      complexity with   the number of 

triangular faces of the 3D mesh representation. Then, we 

compute the medial axis transform (MAT) of      , 

leveraging the interchangeability of MAT and the 

chessboard distance transform (CDT) [19]. The governing 

equation  of the 3D MAT operator follows: 

                                           

where                   , and   being the 

closure dimension for each axis. A single threaded MAT 

algorithm for a grid resolution of   is of       running time, 

concerning each of its steps and includes CDT computation 

of the lower-right-front sub volume of each cell, evaluating 

the qualifier grid           and the final resolution of valid 

medial axis samples. 

To further classify guard selection by their clearance to 

obstacles we compute the distance transform (DT) of      . 

We use the highly efficient framework for generalizing DT 

to arbitrary sampled functions [20], which reduces 3D DT to 

the composition of one dimensional transforms for each of 

the grid axes, applied to an oriented scan line of the grid 

slices, columns and rows.  The transform overarching 

equation under the squared Euclidian distance is given by: 

                          

where   is a cell of the grid. Inherently, separated and order 

independent, multiple 1D transforms simplify the DT 

implementation considerably. Note the sequential version of 

DT runs at       time with   the grid dimension. Obstacle 

clearance is then determined by correlating cells of the MAT 

and DT resulting grids, with medial axis samples 

additionally sorted in a decreasing distance order. By 

granting priority to guards of a larger obstacle distance, the 

following coverage algorithm is markedly optimized.  

 

 

 

 

 

 

 

 

 

Fig. 2.  Pseudo code of the non recursive, single cell, 3D Flood Fill 

algorithm flow, using a private stack. 
 

The coverage of        is resolved iteratively as each 

guard is added to the list of graph nodes. The underlying 

method used is an obstacle aware, 3D Flood Fill algorithm 

[21] with its pseudo code for evaluating a single cell and 

using a private stack, shown in Fig. 2. We start by pushing 

the guard cell   on to the stack  . While the stack is not 

empty, the stack is popped and if the line between the 

DT MAT 
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Graph 

 1   = stack of cells 
 2   = guard cell 

 3   = current cell 
 4   = 3D coverage data structure 
 5     

 6 while   not empty do 
 7         pop    
 8     if   not visible from   continue 

 9                 
10     // extend to six adjacent cells 

11     foreach adjacent neighbor    of   do 
12         if                not covered do 

13               
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current cell and the guard is unobstructed, we further 

examine the six adjacent neighbors    of the current cell. 

Neighbors are pushed on to the stack only if they meet both 

conditions namely, being in       and uncovered by the 

guard. As the algorithm progresses we fill a 3D coverage 

data structure, a grid that stores in each of its cells a set of 

guard indices. The implicit RRM optimization for adding a 

guard to the node list, unless it is visible by any of the 

previously added guards, renders the coverage algorithm as 

inherently serial and poses a challenge to a GPU parallel 

implementation we discuss later. 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3.  Connector insertion pseudo code. Line 8 grants priority to the 

connector that is either on the medial axis or to the one that has the largest 

distance from an obstacle. 

 

The next computational step of RRM is connector 

insertion (Fig. 3) in grid cells covered by multiple guards. A 

connector is a data structure composed of an edge linking a 

pair of guards        , and a 3D grid cell coordinate,  . If a 

connector edge already exists in the connector list then 

priority is given to the one on the medial axis or to the one 

with the greatest distance from an obstacle. The non parallel 

algorithm runs at       with   the number of guard nodes. 

Finally, for each connector in the list we add a node     

and a pair of edges         and         to the graph data 

structure. The graph is then pruned by using Kruskal’s 

minimum spanning tree (MST) algorithm [22]; removing 

edges of weights with little effect on maximal connectivity.   

III. IMPLEMENTATION 

In this section we describe our RRM implementation that 

uses NVIDIA’s CUDA programming environment and 

targets the recently announced NVIDIA’s Fermi architecture 

[23].  Fermi’s true cache hierarchy is essential to efficient 

memory access of the fairly large intermediate, 3D data 

structures generated throughout the RRM work flow. 

Moreover, with 512 CUDA cores the computation power 

increases almost fourfold over prior GPU generation and 

makes Fermi well suited to match the compute intensive 

RRM challenge. However, not all RRM stages translate 

naturally to the highly parallel environment of the GPU and 

some require substantial algorithm refitting, primarily to 

avoid costly, global synchronization. We launch one kernel 

for every RRM step, each of a different level of parallelism, 

to achieve high occupancy.  On the other hand, RRM 

imposes dependent global memory allocations and incurs a 

barrier wait overhead, per stage. Upon completion, kernel 

output data structures are persistently retained in global 

memory throughout the construction process, providing 

implicit low overhead, inter kernel communication paths. 

We now look more closely at GPU design tradeoffs to 

specifically address RRM concurrency challenges and to 

achieve linear performance scalability as a function of 

increased configuration space, closure resolution. 

A. MAT and DT 

To the best of our knowledge we are the first to introduce 

a parallel solution to 3D MAT and DT algorithms, 

leveraging GPU computing.  Much like the parallel block 

based approach that performs on a relatively expensive 

system [24], our goal for the 3D MAT algorithm [19] is 

     time with a small constant factor; barring, of course, 

not to exceed in flight, Fermi’s 24576 thread limit that 

amounts to running a closure of up to 29x29x29 cells, in a 

single launch. We achieve this goal by dispatching    GPU 

threads for a 3D grid of dimension  , each computing the 

maximum sized cube adjacent to a  cell. These threads 

operate independently by reading in the 3D binary grid and 

writing into neighboring locations of the medial axis data 

structure in global memory. Computing the qualifier 3D grid 

 , commences after all CDT threads terminate, followed 

synchronously by the final transform resolution step.  

For 3D DT [20] that is less compute resourceful compared 

to MAT, we only launch    GPU threads and reach an      

time. Every thread runs the algorithm in three passes, first 

computing DT of a slice directed scan line in the binary grid, 

followed by column and row casts of the DT grid.  Passes 

are though dependent and require thread synchronization for 

each, before moving on to the next pass. 

B. Flood Fill 

The intuitive parallelism for finding coverage is at the 

level of sorted medial axis guards,  . However, we have to 

give up guard pruning optimization of the original RRM 

method that serializes the algorithm and requires 

considerable synchronization cost. Instead, we check at 

runtime whether a guard      is visible from any other 

guards every time we enter the top of the flood fill loop (line 

6 of Fig. 2).  If it does, the guard terminates instantly, sets its  

        
Fig. 4.  Guard node selection as processing of sorted medial axis samples 
commences, shown for three experimental configuration spaces. Guards 

closer to obstacles appear to contribute more to final guard nodes. 

0

20

40

60

80

100

120

140

160

180

0 16000 32000 48000 64000

G
u

a
rd

 N
o
d

es

Medial Axis Samples

 1   = list of guard indices 
 2   = 3D coverage data structure 
 3   = list of connectors 
 4 foreach pair                  do 

 5     foreach cell     do  
 6        if         or          continue 

 7        if           do 
 8            resolve connector 

 9        else do 

10            insert connector       

 

5009



  

skipped status to  true  and  is  removed  from  further  graph 

node assignment. This implies that on the GPU we assign 

every non pruned guard    to a hardware thread    , and all  

guards execute the 3D flood fill kernel simultaneously   and     

independently. When all threads complete, a single thread 

process traverses the sets of the resulting 3D coverage data 

and correlates cells with the 3D binary grid to determine 

coverage percentage of      .  

Our experiments explore tens of thousands of medial axis 

samples that by the end of flood fill yield a compact few tens 

to a little over a hundred valid guard nodes (Fig. 4). The 

GPU approach for resolving configuration space coverage 

achieves a high occupancy rate and runs at      time, 

assuming initial guards are within the hardware thread 

concurrency range. However, this comes at the cost of an 

increased global memory footprint. The most expensive 

resource in the coverage process is the private, thread local 

stack. To this end we have evaluated both a single cell and a 

scan line (along the   axis) based flood fill with the latter 

requiring much less stack space. But the scan line method 

speedup is unfortunately not commensurate and we therefore 

use the single cell algorithm with number of stack entries 

topping several thousands. To avoid overrunning memory 

space we allow for a maximum of 4096 stack entries and 

gracefully break down the flood fill process into a 

succession of smaller guard count, 1024, CUDA launches. 

Note that in spite the thread aligned layout of the stack we 

maintain, reads and writes are fairly uncoalesced.  

C. Connectors 

Like flood fill, connector insertion uses a parallel model 

that factorizes well. The governing connectivity threads are 

the surviving guard nodes   from the previous coverage 

process. More precisely, we iterate every possible pair of 

guard nodes         with     and having the kernel 

traverse for each the entire 3D coverage data structure to 

resolve a single private connector, per thread. The test for 

finding a guard index in a set of size   of a coverage cell is 

       . In total, we run           threads for 

commencing connectivity, with   the number of guard 

nodes. While launching    threads and let the left triangle of 

the thread grid return immediately is most intuitive, it turned 

out to be wasteful. Rather, we launch the exact subscribed 

threads and have the GPU encode a linear thread id into a 

pair of guard indices       in         time. As shown in 

Fig. 2, all previously generated RRM 3D data structures, 

including the binary, MAT, DT and coverage grids, are read-

only by the connector insertion kernel and exhibit good cell 

locality. For the output, every thread contributes a single, 

fully resolved connector. Connector data structure reads are 

perfectly coalesced, but conditional writes do not. 

As a final step, all connectors are read back to the CPU 

and initial, non optimized graph nodes and edges are 

produced. We then perform MST in a single thread process 

after which we emit our final graph data structure that is 

passed onto a GPU search engine [25], [26].  

IV. RESULTS 

For RRM construction, our goal is to validate anticipated 

Fermi’s architecture performance gains compared to 

previous generation GPUs. Ideally, once available, we could 

benefit from an OOPSMP [27] RRM module, and compare 

our results to an optimized, reference CPU implementation. 

As it stands, we ended up developing our own multi 

threaded CPU version, written in C++.  Similarly, while 

some proposed standard motion planning benchmarks [28] 

are more realistic, they seem limited to only a couple 

thousands of obstacle triangles. Consequently, to properly 

validate performance of high occupancy RRM on the GPU, 

we chose three state-of-the-art video game configuration 

spaces that explore many tens of thousands of faces.  Times 

are reported using CUDA 3.0 under Windows 32 bit Vista 

for both NVIDIA’s Fermi’s [23] family member GTX480 

[29] and for the previous GPU series member GTX285 [30]. 

Timing figures include allocation, processing and copy from 

host-to-device and device-to-host.  

In order to evaluate our RRM construction in practice we 

have implemented a DirectX [31] geometrical application 

that converts a mesh OBJ format into our RRM library 

representation. Table I shows the properties of the three 

meshes used, their 3D closure resolution,        
, and 

runtime thread count for MAT      and DT     .  

 
TABLE I  

CONFIGURATION SPACE MESH PROPERTIES 

 

Configuration 

Space 

Closure 

Resolution 

GPU Threads 

Vertices Faces MAT DT 

82800 34750 33x33x33 35397 1089 

161463 64451 40x40x40 64000 1600 

347223 170173 55x55x55 166375 3025 

 

Table II depicts some of our statistics for each of the RRM 

stages. Including are the number of initial guards that 

amount to the medial axis samples, coverage percentage 

after commencing 3D flood fill, number of initial 

connectors, and the final node and edge count for the 

generated roadmap. The weight parameter in the right 

column is the maximum Euclidian edge length in the 

roadmap. Fig. 8 and 9 show a graphical representation of 

two of the original meshes, their MAT and DT grids, and the 

superimposed generated graph data.  

 
TABLE II 

RRM STAGE OUTPUT STATISTICS  

 

Our coverage percentage shown in Table II is fairly high 

but still shy from meeting the maximum reachability 

criterion the original RRM algorithm specifies. We believe 

Guards Coverage Connectors Nodes Edges Weight 

15956 99.79% 404 114 109 128.72 

27747 99.74% 1373 287 286 352.42 

71599 99.89% 3154 782 764 406.08 
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this is improvable once we incorporate exact medial axis 

retraction [18] functionality in our implementation. This is 

further discussed later. 

On the computation side, Fig. 5 shows a typical break 

down of the running time slices for RRM tasks.  As 

expected, the flood fill is most expensive and dominates the 

construction process, and second in line is connector 

insertion.   Fig. 6 compares NVIDIA’s GTX480 to GTX285 

depicting both running time and speedup plots.  

         
Fig. 5.   A typical break down of running time percentage for RRM tasks 
with flood fill dominating (78%) and connectors comes second (15%).  

 

 

 
 

Fig. 6.   GPU running time in seconds and speedup (vertical bars) for RRM 
construction; NVIDIA’s GTX480 vs. GTX285 with stream and memory 

clock speeds of 1446/1796 MHz and 1476/1242 MHz, respectively.  

 

Finally, a measure of interest for us is Fermi’s relative 

throughput as a function of increased thread count, shown 

for the MAT kernel in Fig. 7:  

 

Fig. 7.  GTX480 relative, normalized throughput for performing MAT as a 

function of thread count. 

V. DISCUSSION 

The quantitative GPU runtime data for RRM construction 

of variable mesh complexity sets the context for the 

discussion. 

A. Performance 

Our first goal for creating highly compact roadmap data 

structures is reaffirmed by the RRM data of Table II.  On 

average, for our experiments, the ratio between the initially 

seeded, medial axis samples to the final graph nodes is at 

about 100:1. Consequently, graph data structure tops 1000 

nodes, leading to an efficient, multi threaded search on the 

GPU [25], [26]. Secondly, for configuration space closures 

of dimensions up to 55x55x55, we demonstrate RRM 

construction time of less than 20 seconds, when running on 

Fermi. Fermi’s GTX480 shows a speedup of up to 2X 

compared to GTX285, with about 90% of performance gains 

attributed to its new architecture. Moreover, Fermi’s 

throughput remains almost linear (Fig. 7), while dispatching 

hundreds of thousands of threads, well beyond the in flight 

hardware parallel capacity.  

B. Parallel Programming and Debugging 

Porting our RRM, CPU implementation on to CUDA-C++ 

was a fairly smooth process, coding wise. More importantly, 

developing up front a modular task manager has proven 

highly useful, increasing our productivity markedly.  The 

task manager launches thread grids in a hierarchical form 

(DAG) and dissects a GPU compute scope into smaller 

workloads due to either limited memory resources or for 

introducing explicit synchronization. Recently introduced, 

NVIDIA’s Parallel Nsight [32] appreciably simplifies the 

debugging of parallel software developed to leverage GPU 

computing.  

C. Limitations 

While our work establishes a remarkable potential for 

parallel RRM construction on the GPU, we believe that there 

is more work to be done in this area.  

Stack space  Our implementation could benefit from a 

tighter stack space, allocated per thread in the flood fill 

stage, to minimize multi kernel launches. For the guard 

count listed in Table II we perform 16, 28, and 72 flood fill 

launches, respectively, each evaluating 1024 guards 

concurrently. But in spite the initial ramping up overhead for 

a launch, by being asynchronous with no explicit 

synchronization, we afterwards mitigate construction cost in 

leveraging Fermi’s out of order thread block activation, on a 

stream multiprocessor.  

Medial axis retraction  To reach the goal of complete 

coverage of      , as specified by RRM, we need to expand 

on our current GPU implementation and retract uncovered 

cells from the DT grid on to the medial axis.  This have to 

include the sorting of     DT cells in a decreasing nearest 

contact clearance. While suboptimal, our proposed method 

for concurrent retraction on the GPU would bucket DT cells 

for a launch followed by synchronization and check for 
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maximum coverage before the next bucket is dispatched.  

This seems a reasonable tradeoff, since empirically there are 

fewer contributing DT cells to coverage than MAT cells.   

VI. SUMMARY AND FUTURE WORK 

We have demonstrated a parallel, GPU friendly 

construction of compact roadmaps for 3D path planning 

problems. Our design builds on modern ideas [33] for 

navigating safely mobile robots. While running time rates, 

for fairly complex configuration space scenarios, are not yet 

interactive, we believe NVIDIA’s Fermi architecture has the 

capacity to lead us into smooth motion in highly dynamic 

3D virtual environments [34]. One of the more interesting 

outcomes of our work is the design tradeoffs between RRM 

construction time, access patterns and storage requirements. 

Our implementation tries to balance these three metrics, but 

applications that, for example, are less limited by storage 

space, may choose to make different design decisions. Some 

of the areas we consider for future work include: 

 Exact, concurrent medial axis retraction so we can 

reach maximum coverage. 

 Adding useful cycles to avoid long detours around 

obstacles and provisions for shorter path extractions. 

 Retraction of graph edges on to the medial axis 

representation of       to ensure high clearance paths 

and less query computation cost. 
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(a)            (b)             (c)            (d)  

Fig. 8. Configuration space mesh (a) of 161463 vertices and 64451 faces, MAT (b) and DT (c) depicted with spheres centered in grid cells, each of a radius 

inverse to the adjacent front-lower-right cube height or the  obstacle distance, respectively; and superimposed graph nodes and edges (d).   

 
 

  
       (a)            (b)             (c)            (d)                      

Fig. 9. Configuration space mesh (a) of 347223 vertices and 170173 faces, MAT (b) and DT (c) depicted with spheres centered in grid cells, each of a radius 
inverse to the adjacent front-lower-right cube height or the  obstacle distance, respectively; and superimposed graph nodes and edges (d).   
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