



Abstract — The representation of probabilistic graphical

model often encodes a network whose size is unboundedly

large. Such networks pose particular challenges to inference

algorithms, specifically making the task of robot path queries

highly inefficient due to poor locality of memory references.

Whereas a more predictable, resolution complete method yields

a highly compact graph structure that captures much of the

signal in distributing the configuration free space. In this paper

we demonstrate an efficient data parallel algorithm for

mapping the computationally intensive, Reachability Roadmap

method on the GPU. For our implementation on the recently

introduced NVIDIA’s Fermi architecture, we show roadmap

construction time under twenty seconds for a closure resolution

of 55x55x55 cells. Moving forward, our system is well

positioned to address smooth navigation of robots in a

dynamically changing 3D virtual environment.

I. INTRODUCTION

In the broader sense, motion planning concerns itself with

enabling multi mobile robots to safely achieve their goals as

they maneuver in temporal changing environments. The

active research of the past two decades contributed

algorithms to effectively address collision-free navigation in

3D configuration free spaces, . Besides robotics, the

successes of these methods attracted applications to solve

challenging problems in a variety of fields, including CAD

systems, synthetic environments, video games, traffic

control and protein folding.

The roadmap approach to path planning captures

and creates a graph structure of collision-free configurations

[1], [2]. Path planning is then reduced to connecting the

robot’s start and goal configurations to the roadmap , and

searching for a minimal, transition cost path. Roadmap

methods have usually been designed for one of a single or

multiple query planning systems. Many of them use

randomization with the accepted tradeoff that they are

incomplete but nonetheless converge to a solution with any

probability given sufficient running time. Yet, to subscribe

efficiently to a parallel GPU motion planner, construction

running time and compact memory area of are essential

properties of the algorithm.

The Rapidly-exploring Random Tree (RRT) [3] was

introduced as an efficient data structure to quickly search

high dimensional spaces with the key idea to bias the

exploration towards unexplored portions of the configuration

space. RRT construction is simple and fast but is however

Avi Bleiweiss is a member of the architecture group at NVIDIA

Corporation, Santa Clara, CA 95050 USA. Email: ableiweiss@nvidia.com

computed in line with every query. We found RRT

architecturally limited for deployment in our system that

runs multiple queries concurrently. In contrast, construction

and query are disjoint tasks for a Probabilistic Roadmap

(PRM) [4], [5], [6]. PRM constructs a graph by sampling

collision-free configurations uniformly at random and uses a

local planner to connect each node with its nearest

neighbors. One PRM shortfall is its inherent oversampling

of , especially when narrow passages are present, that

often contributes to large footprint graph structures and

consequently leads to suboptimal query performance.

Moreover, trading off PRM construction running time with

incomplete validation, may result in a higher rate of

unsuccessful robot path queries. Nonetheless, PRM is highly

parallelizable and scalable [7], exploiting decomposition of

configuration space [8] and a parallel search formulation [9]

to a distributed representation [10]. On the GPU, the reader

is referred to the nice overview of previous, motion planning

assisted algorithms [11].

Being probabilistically complete, both RRT and PRM

lack a quantifiable criterion for when the construction

algorithm terminates. This severely impedes our parallel

GPU implementation as there is no upper bound guaranteed,

and by mainly relying on running time it becomes

impractical to consistently predict performance [12]. On the

other hand, the Reachability Roadmap (RRM) method [13]

ensures a systematic corollary between a discretized

and the roadmap in defining coverage and maximal

connectivity. RRM is thereby space resolution complete in

arriving at its solution, but suited at most to two and three

dimensional environments. If there exists a valid path in

 , then coverage warrants that the query endpoint

configurations can be directly connected to the roadmap, and

captured connectivity ensures a matching path to be found in

the roadmap. Furthermore, RRM produces considerably

tighter memory space for graph data structures compared to

PRM, and is hence vital in our design for efficient access of

global memory resources, shared amongst thousands of

dispatched GPU threads [14].

Our main contribution of this work is a parallel, GPU

friendly design of the computationally intractable RRM

construction algorithm. We describe a family of extensions

that introduce various forms into the workflow to optimize

the running time for building a roadmap from non trivial 3D

virtual environments. We demonstrate considerable

performance gains in running on NVIDIA’s recently

introduced Fermi GPU with construction time well under

Parallel Compact Roadmap Construction of 3D Virtual

Environments on the GPU

Avi Bleiweiss

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5007

twenty seconds for closure resolution of 55x55x55 cells. Our

navigation software is layered on top of NVIDIA’s CUDA

architecture [15] that has gained universal acceptance in a

wide range of research communities. Next, we highlight the

mathematical model of RRM, emphasizing methods that

mostly affected the refitting of the algorithm in our GPU

implementation.

II. WORKFLOW AND METHODS

To satisfy coverage and maximal connectivity, the core

RRM algorithm computes a small number of guards that

view the complete free configuration space and then

connects those by placing connectors in overlapping

reachability regions, for each pair of guards [16]. Medial

axis samples of are considered first choice guard

candidates because the medial axis is a complete

representation for motion planning purposes. In particular, it

has the appealing property of large clearance from obstacles

[17] that leads to enhanced coverage. Moreover, this

sampling framework encompasses exact retraction of a given

configuration on to the medial axis for 3D free spaces [18];

and hence facilitates a graceful extension of the reachability

region in the event is only partially covered after all

original medial axis samples have been assigned to guards.

Fig. 1 illustrates the process workflow for constructing the

RRM graph.

Fig. 1. RRM graph construction workflow: first the configuration space is

discretized in to a 3D grid, followed by computing the medial axis

transform (MAT) and the distance transform (DT) of . Then, guards

are applied to a visibility based flood fill algorithm and finally, connectors

are placed and further optimized by running a minimal spanning tree (MST)

algorithm.

First, the 3D configuration space is discretized and a 3D

binary grid is generated, marking a cell as false once its

configuration overlaps an obstacle. The serial algorithm for

grid creation is of complexity with the number of

triangular faces of the 3D mesh representation. Then, we

compute the medial axis transform (MAT) of ,

leveraging the interchangeability of MAT and the

chessboard distance transform (CDT) [19]. The governing

equation of the 3D MAT operator follows:

where , and being the

closure dimension for each axis. A single threaded MAT

algorithm for a grid resolution of is of running time,

concerning each of its steps and includes CDT computation

of the lower-right-front sub volume of each cell, evaluating

the qualifier grid and the final resolution of valid

medial axis samples.

To further classify guard selection by their clearance to

obstacles we compute the distance transform (DT) of .

We use the highly efficient framework for generalizing DT

to arbitrary sampled functions [20], which reduces 3D DT to

the composition of one dimensional transforms for each of

the grid axes, applied to an oriented scan line of the grid

slices, columns and rows. The transform overarching

equation under the squared Euclidian distance is given by:

where is a cell of the grid. Inherently, separated and order

independent, multiple 1D transforms simplify the DT

implementation considerably. Note the sequential version of

DT runs at time with the grid dimension. Obstacle

clearance is then determined by correlating cells of the MAT

and DT resulting grids, with medial axis samples

additionally sorted in a decreasing distance order. By

granting priority to guards of a larger obstacle distance, the

following coverage algorithm is markedly optimized.

Fig. 2. Pseudo code of the non recursive, single cell, 3D Flood Fill

algorithm flow, using a private stack.

The coverage of is resolved iteratively as each

guard is added to the list of graph nodes. The underlying

method used is an obstacle aware, 3D Flood Fill algorithm

[21] with its pseudo code for evaluating a single cell and

using a private stack, shown in Fig. 2. We start by pushing

the guard cell on to the stack . While the stack is not

empty, the stack is popped and if the line between the

DT MAT

Grid

Flood Fill

Connectors

MST

Guards

Configuration Space Mesh

Graph

 1 = stack of cells
 2 = guard cell

 3 = current cell
 4 = 3D coverage data structure
 5

 6 while not empty do
 7 pop
 8 if not visible from continue

 9
10 // extend to six adjacent cells

11 foreach adjacent neighbor of do
12 if not covered do

13

5008

current cell and the guard is unobstructed, we further

examine the six adjacent neighbors of the current cell.

Neighbors are pushed on to the stack only if they meet both

conditions namely, being in and uncovered by the

guard. As the algorithm progresses we fill a 3D coverage

data structure, a grid that stores in each of its cells a set of

guard indices. The implicit RRM optimization for adding a

guard to the node list, unless it is visible by any of the

previously added guards, renders the coverage algorithm as

inherently serial and poses a challenge to a GPU parallel

implementation we discuss later.

Fig. 3. Connector insertion pseudo code. Line 8 grants priority to the

connector that is either on the medial axis or to the one that has the largest

distance from an obstacle.

The next computational step of RRM is connector

insertion (Fig. 3) in grid cells covered by multiple guards. A

connector is a data structure composed of an edge linking a

pair of guards , and a 3D grid cell coordinate, . If a

connector edge already exists in the connector list then

priority is given to the one on the medial axis or to the one

with the greatest distance from an obstacle. The non parallel

algorithm runs at with the number of guard nodes.

Finally, for each connector in the list we add a node

and a pair of edges and to the graph data

structure. The graph is then pruned by using Kruskal’s

minimum spanning tree (MST) algorithm [22]; removing

edges of weights with little effect on maximal connectivity.

III. IMPLEMENTATION

In this section we describe our RRM implementation that

uses NVIDIA’s CUDA programming environment and

targets the recently announced NVIDIA’s Fermi architecture

[23]. Fermi’s true cache hierarchy is essential to efficient

memory access of the fairly large intermediate, 3D data

structures generated throughout the RRM work flow.

Moreover, with 512 CUDA cores the computation power

increases almost fourfold over prior GPU generation and

makes Fermi well suited to match the compute intensive

RRM challenge. However, not all RRM stages translate

naturally to the highly parallel environment of the GPU and

some require substantial algorithm refitting, primarily to

avoid costly, global synchronization. We launch one kernel

for every RRM step, each of a different level of parallelism,

to achieve high occupancy. On the other hand, RRM

imposes dependent global memory allocations and incurs a

barrier wait overhead, per stage. Upon completion, kernel

output data structures are persistently retained in global

memory throughout the construction process, providing

implicit low overhead, inter kernel communication paths.

We now look more closely at GPU design tradeoffs to

specifically address RRM concurrency challenges and to

achieve linear performance scalability as a function of

increased configuration space, closure resolution.

A. MAT and DT

To the best of our knowledge we are the first to introduce

a parallel solution to 3D MAT and DT algorithms,

leveraging GPU computing. Much like the parallel block

based approach that performs on a relatively expensive

system [24], our goal for the 3D MAT algorithm [19] is

 time with a small constant factor; barring, of course,

not to exceed in flight, Fermi’s 24576 thread limit that

amounts to running a closure of up to 29x29x29 cells, in a

single launch. We achieve this goal by dispatching GPU

threads for a 3D grid of dimension , each computing the

maximum sized cube adjacent to a cell. These threads

operate independently by reading in the 3D binary grid and

writing into neighboring locations of the medial axis data

structure in global memory. Computing the qualifier 3D grid

 , commences after all CDT threads terminate, followed

synchronously by the final transform resolution step.

For 3D DT [20] that is less compute resourceful compared

to MAT, we only launch GPU threads and reach an

time. Every thread runs the algorithm in three passes, first

computing DT of a slice directed scan line in the binary grid,

followed by column and row casts of the DT grid. Passes

are though dependent and require thread synchronization for

each, before moving on to the next pass.

B. Flood Fill

The intuitive parallelism for finding coverage is at the

level of sorted medial axis guards, . However, we have to

give up guard pruning optimization of the original RRM

method that serializes the algorithm and requires

considerable synchronization cost. Instead, we check at

runtime whether a guard is visible from any other

guards every time we enter the top of the flood fill loop (line

6 of Fig. 2). If it does, the guard terminates instantly, sets its

Fig. 4. Guard node selection as processing of sorted medial axis samples
commences, shown for three experimental configuration spaces. Guards

closer to obstacles appear to contribute more to final guard nodes.

0

20

40

60

80

100

120

140

160

180

0 16000 32000 48000 64000

G
u

a
rd

 N
o
d

es

Medial Axis Samples

 1 = list of guard indices
 2 = 3D coverage data structure
 3 = list of connectors
 4 foreach pair do

 5 foreach cell do
 6 if or continue

 7 if do
 8 resolve connector

 9 else do

10 insert connector

5009

skipped status to true and is removed from further graph

node assignment. This implies that on the GPU we assign

every non pruned guard to a hardware thread , and all

guards execute the 3D flood fill kernel simultaneously and

independently. When all threads complete, a single thread

process traverses the sets of the resulting 3D coverage data

and correlates cells with the 3D binary grid to determine

coverage percentage of .

Our experiments explore tens of thousands of medial axis

samples that by the end of flood fill yield a compact few tens

to a little over a hundred valid guard nodes (Fig. 4). The

GPU approach for resolving configuration space coverage

achieves a high occupancy rate and runs at time,

assuming initial guards are within the hardware thread

concurrency range. However, this comes at the cost of an

increased global memory footprint. The most expensive

resource in the coverage process is the private, thread local

stack. To this end we have evaluated both a single cell and a

scan line (along the axis) based flood fill with the latter

requiring much less stack space. But the scan line method

speedup is unfortunately not commensurate and we therefore

use the single cell algorithm with number of stack entries

topping several thousands. To avoid overrunning memory

space we allow for a maximum of 4096 stack entries and

gracefully break down the flood fill process into a

succession of smaller guard count, 1024, CUDA launches.

Note that in spite the thread aligned layout of the stack we

maintain, reads and writes are fairly uncoalesced.

C. Connectors

Like flood fill, connector insertion uses a parallel model

that factorizes well. The governing connectivity threads are

the surviving guard nodes from the previous coverage

process. More precisely, we iterate every possible pair of

guard nodes with and having the kernel

traverse for each the entire 3D coverage data structure to

resolve a single private connector, per thread. The test for

finding a guard index in a set of size of a coverage cell is

 . In total, we run threads for

commencing connectivity, with the number of guard

nodes. While launching threads and let the left triangle of

the thread grid return immediately is most intuitive, it turned

out to be wasteful. Rather, we launch the exact subscribed

threads and have the GPU encode a linear thread id into a

pair of guard indices in time. As shown in

Fig. 2, all previously generated RRM 3D data structures,

including the binary, MAT, DT and coverage grids, are read-

only by the connector insertion kernel and exhibit good cell

locality. For the output, every thread contributes a single,

fully resolved connector. Connector data structure reads are

perfectly coalesced, but conditional writes do not.

As a final step, all connectors are read back to the CPU

and initial, non optimized graph nodes and edges are

produced. We then perform MST in a single thread process

after which we emit our final graph data structure that is

passed onto a GPU search engine [25], [26].

IV. RESULTS

For RRM construction, our goal is to validate anticipated

Fermi’s architecture performance gains compared to

previous generation GPUs. Ideally, once available, we could

benefit from an OOPSMP [27] RRM module, and compare

our results to an optimized, reference CPU implementation.

As it stands, we ended up developing our own multi

threaded CPU version, written in C++. Similarly, while

some proposed standard motion planning benchmarks [28]

are more realistic, they seem limited to only a couple

thousands of obstacle triangles. Consequently, to properly

validate performance of high occupancy RRM on the GPU,

we chose three state-of-the-art video game configuration

spaces that explore many tens of thousands of faces. Times

are reported using CUDA 3.0 under Windows 32 bit Vista

for both NVIDIA’s Fermi’s [23] family member GTX480

[29] and for the previous GPU series member GTX285 [30].

Timing figures include allocation, processing and copy from

host-to-device and device-to-host.

In order to evaluate our RRM construction in practice we

have implemented a DirectX [31] geometrical application

that converts a mesh OBJ format into our RRM library

representation. Table I shows the properties of the three

meshes used, their 3D closure resolution,
, and

runtime thread count for MAT and DT .

TABLE I

CONFIGURATION SPACE MESH PROPERTIES

Configuration

Space

Closure

Resolution

GPU Threads

Vertices Faces MAT DT

82800 34750 33x33x33 35397 1089

161463 64451 40x40x40 64000 1600

347223 170173 55x55x55 166375 3025

Table II depicts some of our statistics for each of the RRM

stages. Including are the number of initial guards that

amount to the medial axis samples, coverage percentage

after commencing 3D flood fill, number of initial

connectors, and the final node and edge count for the

generated roadmap. The weight parameter in the right

column is the maximum Euclidian edge length in the

roadmap. Fig. 8 and 9 show a graphical representation of

two of the original meshes, their MAT and DT grids, and the

superimposed generated graph data.

TABLE II

RRM STAGE OUTPUT STATISTICS

Our coverage percentage shown in Table II is fairly high

but still shy from meeting the maximum reachability

criterion the original RRM algorithm specifies. We believe

Guards Coverage Connectors Nodes Edges Weight

15956 99.79% 404 114 109 128.72

27747 99.74% 1373 287 286 352.42

71599 99.89% 3154 782 764 406.08

5010

this is improvable once we incorporate exact medial axis

retraction [18] functionality in our implementation. This is

further discussed later.

On the computation side, Fig. 5 shows a typical break

down of the running time slices for RRM tasks. As

expected, the flood fill is most expensive and dominates the

construction process, and second in line is connector

insertion. Fig. 6 compares NVIDIA’s GTX480 to GTX285

depicting both running time and speedup plots.

Fig. 5. A typical break down of running time percentage for RRM tasks
with flood fill dominating (78%) and connectors comes second (15%).

Fig. 6. GPU running time in seconds and speedup (vertical bars) for RRM
construction; NVIDIA’s GTX480 vs. GTX285 with stream and memory

clock speeds of 1446/1796 MHz and 1476/1242 MHz, respectively.

Finally, a measure of interest for us is Fermi’s relative

throughput as a function of increased thread count, shown

for the MAT kernel in Fig. 7:

Fig. 7. GTX480 relative, normalized throughput for performing MAT as a

function of thread count.

V. DISCUSSION

The quantitative GPU runtime data for RRM construction

of variable mesh complexity sets the context for the

discussion.

A. Performance

Our first goal for creating highly compact roadmap data

structures is reaffirmed by the RRM data of Table II. On

average, for our experiments, the ratio between the initially

seeded, medial axis samples to the final graph nodes is at

about 100:1. Consequently, graph data structure tops 1000

nodes, leading to an efficient, multi threaded search on the

GPU [25], [26]. Secondly, for configuration space closures

of dimensions up to 55x55x55, we demonstrate RRM

construction time of less than 20 seconds, when running on

Fermi. Fermi’s GTX480 shows a speedup of up to 2X

compared to GTX285, with about 90% of performance gains

attributed to its new architecture. Moreover, Fermi’s

throughput remains almost linear (Fig. 7), while dispatching

hundreds of thousands of threads, well beyond the in flight

hardware parallel capacity.

B. Parallel Programming and Debugging

Porting our RRM, CPU implementation on to CUDA-C++

was a fairly smooth process, coding wise. More importantly,

developing up front a modular task manager has proven

highly useful, increasing our productivity markedly. The

task manager launches thread grids in a hierarchical form

(DAG) and dissects a GPU compute scope into smaller

workloads due to either limited memory resources or for

introducing explicit synchronization. Recently introduced,

NVIDIA’s Parallel Nsight [32] appreciably simplifies the

debugging of parallel software developed to leverage GPU

computing.

C. Limitations

While our work establishes a remarkable potential for

parallel RRM construction on the GPU, we believe that there

is more work to be done in this area.

Stack space Our implementation could benefit from a

tighter stack space, allocated per thread in the flood fill

stage, to minimize multi kernel launches. For the guard

count listed in Table II we perform 16, 28, and 72 flood fill

launches, respectively, each evaluating 1024 guards

concurrently. But in spite the initial ramping up overhead for

a launch, by being asynchronous with no explicit

synchronization, we afterwards mitigate construction cost in

leveraging Fermi’s out of order thread block activation, on a

stream multiprocessor.

Medial axis retraction To reach the goal of complete

coverage of , as specified by RRM, we need to expand

on our current GPU implementation and retract uncovered

cells from the DT grid on to the medial axis. This have to

include the sorting of DT cells in a decreasing nearest

contact clearance. While suboptimal, our proposed method

for concurrent retraction on the GPU would bucket DT cells

for a launch followed by synchronization and check for

0% 6%
1%

78%

15%
Binary Grid

MAT

DT

Flood Fill

Connectors

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

30

35

1 2 3

S
p

ee
d

u
p

R
u

n
n

in
g

 T
im

e
(s

ec
)

Configuration Space

GTX480 GTX285

0

0.5

1

1.5

2

2.5

3

0 50000 100000 150000 200000

T
h

ro
u

g
h

p
u

t

Thread Count

5011

maximum coverage before the next bucket is dispatched.

This seems a reasonable tradeoff, since empirically there are

fewer contributing DT cells to coverage than MAT cells.

VI. SUMMARY AND FUTURE WORK

We have demonstrated a parallel, GPU friendly

construction of compact roadmaps for 3D path planning

problems. Our design builds on modern ideas [33] for

navigating safely mobile robots. While running time rates,

for fairly complex configuration space scenarios, are not yet

interactive, we believe NVIDIA’s Fermi architecture has the

capacity to lead us into smooth motion in highly dynamic

3D virtual environments [34]. One of the more interesting

outcomes of our work is the design tradeoffs between RRM

construction time, access patterns and storage requirements.

Our implementation tries to balance these three metrics, but

applications that, for example, are less limited by storage

space, may choose to make different design decisions. Some

of the areas we consider for future work include:

 Exact, concurrent medial axis retraction so we can

reach maximum coverage.

 Adding useful cycles to avoid long detours around

obstacles and provisions for shorter path extractions.

 Retraction of graph edges on to the medial axis

representation of to ensure high clearance paths

and less query computation cost.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

constructive and helpful comments.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Kluwer, 1991.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,

http://msl.cs.uiuc.edu/planning/, 2005.
[3] J. Kuffner and S. Lavalle, “RRT-Connect: An Efficient Approach to

Single-Query Path Planning,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp. 995–1001, Apr. 2000.
[4] T. Simeon, J. P. Laumound, and C. Nissoux, “Visibility Based

Probabilistic Roadmaps for Motion Planning,” in International

Journal of Advanced Robotics, vol. 14, no. 6, pp. 477–493, Apr. 2000.
[5] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,

“Probabilistic Roadmaps for Path Planning in High Dimensional

Configuration Spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[6] G. Song, S. L. Thomas, and N. M. Amato, “A General Framework for

PRM Motion Planning,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp. 4445–4450, Sep. 2003.

[7] N. M. Amato and L. K. Dale, “Probabilistic Roadmap Methods are
Embarrassingly Parallel,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp. 688–694, May 1999.

[8] T. Lozano-Perez and P. O’Donnell, “Parallel Robot Motion Planning,”
in Proceedings of IEEE International Conference on Robotics and

Automation, pp. 1000–1007, Apr. 1991.

[9] D. Challou, M. Gini, and V. Kumar, “Parallel Search Algorithms for
Robot Motion Planning,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp. 46–51, May 1993.

[10] J. Barraquand and J. C. Latomb, “Robot Motion Planning: A
Distributed Representation Approach,” International Journal of

Robotics Research, vol. 10, no. 6, pp. 628–649, Dec. 1991.

[11] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-Time

Motion Planning and Global Navigation using GPUs,” AAAI
Conference on Artificial Intelligence, Jul. 2010.

[12] D. Challou, M. Gini, V. Kumar, and G. Karypis, “Predicting the

Performance of Randomized Parallel Search: an Application to
Motion Planning,” Journal of Intelligent and Robotics Systems, vol.

38, no. 1, pp. 31–53, Sep. 2003.

[13] R. Geraerts and M. H. Overmars, “Creating Small Roadmaps for
Solving Motion Planning Problems,” in Proceedings of IEEE

International Conference on Methods and Models in Automation and

Robotics, pp. 531–536, Aug. 2005.
[14] A. Bleiweiss, “Scalable Multi Agent Simulation on the GPU,” in

Proceedings of the IASTED 14th Conference on Robotics and

Applications, pp. 143–151, Nov. 2009.
[15] Nvidia, 2007. CUDA Programming Guide.

http://www.nvidia.com/object/cuda_home.html

[16] R. Geraerts and M. H. Overmars, ”Reachability Analysis of Sampling
Based Planners,” in Proceedings of IEEE International Conference on

Robotics and Automation, pp. 406–412, Apr. 2005.

[17] H. Choset and J. Burdick, ”Sensor-Based Exploration: The
Hierarchical Generalized Voronoi Graph,” International Journal of

Robotics Research, vol. 19, no. 2, pp. 96–125, 2000.

[18] J. Lien, S. L. Thomas, and N. M. Amato, “A General Framework for
Sampling on the Medial Axis of the Free Space,” in Proceedings of

IEEE International Conference on Robotics and Automation, pp.

4439–4444, Sep. 2003.
[19] Y. Lee and S. Horng, “The Chessboard Distance Transform and

Medial Axis Transform are Interchangeable,” in Proceedings of the
10th International Parallel Processing Symposium, pp. 424–428, Apr.

1996.

[20] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance Transforms of
Sampled Functions,” Cornell Computing and Information Science

TR2004-1963, 2004.

[21] M. Kalisiak and M. Van-de-Panne, “RRT-Blossom: RRT with a Local
Flood-Fill Behavior,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp 1237–1242, May 2006.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. The MIT Press/ McGraw-Hill Book

Company, Second Edition, 2001.

[23] Nvidia, 2009. Fermi Architecture
http://www.nvidia.com/object/fermi_architecture.html

[24] Y-R. Wang, “A Novel O(1) Time Algorithm for 3D Block-Based

Medial Axis Transform by Peeling Corner Shells,” Parallel
Computing, vol. 35, no. 2, pp. 72–82, 2009.

[25] A. Bleiweiss, “GPU Accelerated Pathfinding,” in Proceedings of

ACM Siggraph/Eurographics Conference on Graphics Hardware, pp.
139–147, Jun. 2008.

[26] J. J. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High

Dimensional Planning on the GPU,” in Proceedings of IEEE
International Conference on Robotics and Automation, to appear, May

2010.

[27] E. Plaku, K. E. Bekris, and L. E. Kavraky, “OOPS for Motion
Planning: An Online, Open Source Programming System,” in

Proceedings of IEEE International Conference on Robotics and

Automation, pp. 3711–3716, Apr. 2007.
[28] Motion Planning Benchmarks, Algorithms & Applications Group,

Texas A&M University, http://parasol-

www.cs.tamu.edu/dsmft/benchmarks/mp/

[29] Nvidia 2010. Geforce 400 series:

http://www.nvidia.com/object/product_geforce_gtx_480_us.html

[30] Nvidia, 2008. Geforce 200 series:
http://www.nvidia.com/object/geforce_gtx_280.html

[31] Microsoft 2007. DirectX Developer Center.

http://msdn.microsoft.com/en-us/directx/default.aspx
[32] Nvidia 2010. Parallel Nsight:

http://developer.nvidia.com/object/nsight.html

[33] R. Geraerts and M. H. Overmars, “Creating High-quality Roadmaps
for Motion Planning in Virtual Environments,”

in Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4355–4361, Oct. 2006.
[34] C. Clark, S. M. Rock, and J. Latombe, “Motion Planning for Multiple

Mobile Robot Systems using Dynamic Networks,” in Proceedings of

IEEE International Conference on Robotics and Automation, pp.
4222–4227, Sep. 2003.

5012

(a) (b) (c) (d)

Fig. 8. Configuration space mesh (a) of 161463 vertices and 64451 faces, MAT (b) and DT (c) depicted with spheres centered in grid cells, each of a radius

inverse to the adjacent front-lower-right cube height or the obstacle distance, respectively; and superimposed graph nodes and edges (d).

 (a) (b) (c) (d)

Fig. 9. Configuration space mesh (a) of 347223 vertices and 170173 faces, MAT (b) and DT (c) depicted with spheres centered in grid cells, each of a radius
inverse to the adjacent front-lower-right cube height or the obstacle distance, respectively; and superimposed graph nodes and edges (d).

5013

