

Abstract— We consider a problem of rigid body motion

planning in a static 3D environment. In the past, methods based

on random sampling like Probabilistic Roadmap and its

variants proved to be able to efficiently solve many important

instances of that problem. Performance of these methods

degrades drastically in the presence of narrow passages. We

propose a different approach to motion planning which

combines elements of both cell decomposition methods and

sampling based methods. We estimate signed distance to the

boundary of free space at sampling points and use that

information to guide farther exploration. Cell decomposition is

used to generate deterministic sampling positions with non-

uniform and dynamically adjusted densities. We report the

results of experiments with implementation of our method.

I. INTRODUCTION

We start by describing the problem and giving basic
definitions and notation used throughout the text.

We are trying to solve a task of finding a collision-free
motion of a rigid body between two specified positions
among static and known obstacles. We assume that a rigid
body can move freely in a bounded subspace of 3D
Euclidean space called a workspace. We will write � to
denote a rigid body and � to denote obstacle region in
workspace.

A topological space of all rigid transformations is a space
����� which is a Cartesian product of the space of
translations �� and the space of rotations �����. Any
rotation in 3D workspace can be described by a unit real 4-
vector called a unit rotation quaternion. A quaternion

	
� � �� �
� �
� � �� �

� �
� � �� �
� � �� �

��, where
�� �
�� �

�� � �, corresponds to a rotation by an angle � around an
axis �
��
� �
��. Opposite quaternions represent the same
rotation. Space ����� is homeomorphic to a sphere �� in ��
with antipodal points identified. In our discussion we limit
the set of allowed translations and restrict ourselves to a
subspace !���"� # ����� of �����, which will be called a
configuration space or shortly C-space denoted by $.

The position in workspace of a point % & � at
configuration ' & $ will be denoted by %�'�. We also write
(�'� instead of)%�'�|% & (+. A C-obstacle region denoted
by $,-. is the set)' & $|��'� / � 0 1+. A free space $2344
is the set $56,-.. The task considered in this article can be

M. N. Author is with Faculty of Mathematics and Information Science,

Warsaw University of Technology, pl. Politechniki 1, 00-661 Warsaw,
Poland (e-mail: m.nowakiewicz@mini.pw.edu.pl).

expressed as finding a path in $2344 that joins two specified
configurations '.7837 and '9,8:, if one exists.

We use the robot displacement metric described in [19] to
measure distances in C-space:
;�<=� <�� � >?@)A%�<=� ! %�<��A|% & �+. We call the
value BCDE�<� F >��G;�<� <H�I<H & J$2344K the penetration

depth if < & $,-. or the clearance if < & $2344. It is
convenient to introduce C-space signed distance at
configuration < denoted by DBCDE�<�, which is equal to
L BCDE�<� if < & $,-. and BCDE�<� otherwise.

An open cell is a set homeomorphic with an open disc. A
cell decomposition of a B-dimensional topological space M is
its partition into a finite set of open cells of dimensions
N�O � B� such that the boundary of every cell is covered by
elements of this partition of lower dimension. In the latter
part of the article, if it is not specified otherwise, by a cell
we mean a closed B-dimensional cell. Two cells are adjacent
if they share a �B ! ��-dimensional cell.

The undirected graph whose vertices are cells of a given
cell decomposition and whose edges connect every pair of
adjacent cells will be called a cell decomposition graph. To
avoid ambiguity, from now on, by a path we mean a
sequence of vertices of a graph, such that there is an edge
between each pair of consecutive vertices, and by a C-space
path we mean a curve in C-space.

A roadmap is a graph, whose vertices are points in $2344
and edges correspond to known collision-free C-space paths
connecting them.

II. PREVIOUS WORK

There are three main classes of motion planning methods:
complete, probabilistic complete and resolution complete. A
complete planner correctly reports in a finite amount of time
whether or not there is a solution. A resolution complete
planner reports a solution whenever it exists provided that
the resolution is small enough. The probability that a
solution will be found by a probabilistic complete planner
converges to one as the computation time goes to infinity.

There are three basic approaches to motion planning: cell
decomposition, roadmap construction, and potential field
design.

Complete solutions are either based on exact cell
decomposition of free space (e.g. [1], [3]) or construction of
a roadmap on the boundary of free space (e.g. [2], [3]).

MST-Based Method for 6DOF Rigid Body Motion Planning in

Narrow Passages

Michal Nowakiewicz, Warsaw University of Technology

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5380

They have little practical value for 6D C-spaces because of
high computational complexity and challenging
implementation.

In potential field methods (e.g. [4]) a potential function is
designed which represents forces attracting a body to its goal
position and repulsing it from obstacles. The body is moved
in the direction of the potential gradient until it either
reaches the destination or gets stuck in a local minimum.

For more than a decade Probabilistic Roadmap planners
(PRM), presented in [5], [6] and [7], have been a standard in
motion planning because of their simplicity and ability to
efficiently solve many technical problems. Their idea is to
generate random samples in free space and try to connect
each of them to its nearest neighbors with a line in free
space. The main problem with these methods is a drastic
performance drop in the presence of narrow passages ([12]).
In order to improve them many researchers proposed to
modify the distribution of nodes in a roadmap by rejecting
some of the random samples. Examples include: Gaussian
sampling ([8]), bridge test ([9]) and visibility based
roadmaps ([10]). Others used retraction of samples. In
Medial Axis PRM ([11]) all samples are moved onto the
medial axis of free space. In Small Step Retraction PRM
([12]) roadmaps are build in extended free space and the
nodes of obtained in that way C-space path between initial
and goal configurations are then moved into original free
space. Even though the nodes of resulting path are in free
space, the lines joining them may still cross the obstacles.

In approximate cell decomposition methods (e.g. [13]) C-
space is recursively decomposed into simple, usually
rectangular, cells and special tests are performed to divide
the cells into three groups: full, partial and empty. Full cells
are contained in C-obstacle region and empty cells in free
space. A collision-free C-space path exists if initial and goal
configurations belong to one connected component of a
union of all empty cells. These methods are not suitable for
6DOF rigid body motion planning due to the large expected
number of cells. In [14] the authors presented a hybrid
planner, in which approximate cell decomposition is used to
guide generation of samples for PRM.

I. MST-BASED MOTION PLANNER

A. General Idea

We build upon a general framework of approximate cell
decomposition methods. It can be summarized as follows.
Prepare initial cell decomposition of C-space. Classify cells
as empty, full or partial. Search for a path in the set of empty
and partial cells. If it cannot be found then return false. If it
contains only empty cells return true. Otherwise subdivide
some or all of the cells on the path and perhaps some or all
of the cells adjacent to them. Classify new cells and repeat
all the steps starting from a search for the next path.

We diverge from this approach by not testing and marking
cells as empty, full or partial. We believe that in high-
dimensional spaces it has little practical value. Instead we

assign to them real weights that estimate how far the center
of the cell lies from the boundary of free space in robot
displacement metric. After introducing weights to the graph
we are able to use its minimum spanning tree (MST) to find
a path around which the cells get subdivided. We stop as
soon as connecting centers of subsequent cells on such a
path with straight lines results in a collision-free motion.
Properties of MST, discussed below, suggest that this
heuristic is likely to generate a sequence of paths converging
quickly to the solution, even in the presence of relatively
narrow passages.

Every cell gets assigned a weight. If < is the center of a
cell P then the weight Q�P� is an estimate of L DBCDE�<�. We
assume that cells with smaller weights are more interesting.
Notice that if we take two cells R and P with Q�R� S Q�P�
then one of the three possible situations takes place: R has
the center in $2344 and P does not, both centers are in $2344
but the center of R has greater clearance, both centers are in
$,-. but the center of R has smaller penetration depth.

The weight Q�T� of an edge T � �R� P� is a pair: Q�T� �
�>?@)Q�R�� Q�P�+�>��)U�V�� U�W�+�. We use component-
wise addition and lexicographical order to make them
elements of an abelian group with a total order among them.
Later on we refer to a cell decomposition graph with vertices
and edges weighted as above as a C-graph. We recall that
the minimum spanning tree (MST) of a graph is a tree with
minimum total weight of edges spanning all the vertices.

Proposition 1. Let X and (be two chosen vertices in C-

graph Y � �Z� �� and % be a path between them in MST.

For every path %H between X and (we have:

>?@)Q�P[�|P[& Z� PH & %H+ \ >?@)Q�P�|P & Z� P & %+.

Proof. Assume that there exists a path %[for which the
hypothesis is false. Let PH be a vertex with the maximal
weight on %H and P a vertex with the maximal weight on %.
There must be some edge �R[� PH� on %H and �R� P� on %. We
assumed that Q�PH� S U�P� and thus we have Q��R[� PH�� S
Q��R� P��. If we remove an edge �R� P� from MST we
obtain two trees:]̂ containing X and]_ containing (. Since
%H connects X and (, there must be an edge �R[[� P[[� on %H
such that R[[&]̂ and P[[&]_ . The weight of PH is maximal
on %H and therefore Q��R[[� P[[�� ` U��R[� P[��. By
replacing �R� P� with �R[[� P[[� in MST we get a tree with
smaller total weight of edges but that contradicts the fact that
the total weight in MST is minimal. □

We conclude that paths in MST of C-graph maximize the

minimum of signed distance of the centers of the cells on
them. Fig. 1. shows an example of C-space with overlayed
MST of C-graph of a regular grid of cells and the medial
axes of $2344 and $,-.. It can be observed that both MST
and the medial axis of $2344 can be useful in expressing the
idea of motion that maximizes clearance.

5381

B. Computation of Cells Weights

Our path planning solution requires evaluating at given
points in C-space an estimate of DBCDE�<� denoted as
TDBCDE�<�� < & $.

It is convenient to introduce another signed distance
function DBCDEa on workspace with Euclidean metric:

DBCDEa�%� F b >��)A% ! cA|c & J�+
!>��)A% ! cA|c & J�+

� % d �
� % & �e.

Proposition 2. Let ; be a robot displacement metric in a C-

space $ and � be a rigid body. For all < & $:

DBCDE�<� ` >��)DBCDEa�%�<��|% & �+ (1)
The inequality turns into equality if < & $2344.

Proof. Let <f be the closest to < in J$2344. Consider
< d $2344 first. We will show that for all % & � we have

A%�<� ! %�<f�A \ !DBCDEa�%�<�� . (2)
If %�<� d � then !DBCDEa�%�<�� ` N and (2) is obviously
true. Otherwise
!DBCDEa�%�<�� � >��g)A%�<� ! cA|c & J�+. The
inequality (2) is then true because %�<f� either belongs to
J� or lies outside of �, in which case there must be a point
in J� that is closer to %�<� than %�<f� is. Taking
maximums over all % & � of both sides of (2) and
multiplying them by !� we get the thesis (1).
Now let < & $2344. Let %[� ?hi>��j&kGDBCDEa�%�<��K,
c[� ?hi>��,&lm)A%�<� ! cA+ and <H be the configuration
achieved by translating the rigid body � in configuration <
by a vector c[! %H�<�. Then ;�<� <H� � A%H�<� ! cHA �
>��GDBCDEa�%�<��I% & �K and <H & J$2344. Since <f is the
closest to < in J$2344, we know that ;�<� <f� ` ;�<� <H�.
From the fact that ��<f� is tangent to obstacles � it follows
that there exists a point %[[& � such that %[[�<f� & J�.
Thus ;�<� <f� \ A%[[�<� ! %[[�<f�A \ DBCDEa�%[[�<���gbut

A%H�<� ! cHA � >��GDBCDEa�%�<��I% & �K, which gives us
;�<� <f� \ A%H�<� ! cHA � ;�<� <[�. Together with previous
inequality ;�<� <f� ` ;�<� <H� we get ;�<� <f� � ;�<� <H� �
>��)DBCDEa�%�<��|% & �+, which ends the proof. □

We approximate a rigid body � with a set of balls and
compute a signed distance table (SDT) in workspace. SDT is
a 3D array which stores the exact values of DBCDEa computed
at vertices of a regular grid. The approximate value of
DBCDEa for an arbitrary point in workspace is found by a
linear interpolation between the values at the corners of a
grid cube. Let n-8::. be the number of balls approximating �
R , co be the center of C-th ball and po its radius. Then
TDBCDE�<� for < & $ is calculated as:

TDBCDE�<� � >��=qoqrstuuvDBCDEa�co�<�� ! po .
The evaluation of TDBCDE is fast and its performance can

be further improved by the use of bounding ball hierarchies.
The error introduced in the process is acceptable. Ball
covering of a rigid body does not take part in collision
detection routines for which high reliability is required. The
purpose of computing TDBCDE is to give cells the weights. As
long as the error is smaller than the size of the cell it does
not affect the overall effectiveness of our motion planning
method. Moreover, it can be expected that TDBCDE will be
evaluated mostly for configurations in $2344 and close to its
boundary, where the error is usually smaller.

For an overview of SDT computation techniques, refer to
a recent survey [15]. There has also been some work on its
efficient parallel implementations on GPUs (e.g. [16]).
Methods for approximating polyhedral objects with balls
have been introduced in [17] and [18].

C. Data Structure

In this chapter we describe a generalization of an octree
data structure, called C-octree, which defines a cell
decomposition of C-space.

Fig. 1. A 2D C-space with marked: the medial axes (dotted lines),
gradient directions of L DBCDE�<� (arrows), MST of a regular grid of
cells (horizontal and vertical lines connecting centers of cells),
example of a path in MST (thick black lines).

Fig. 2. Approximation of a rigid body with balls and examples of
signed distances of balls.

5382

We recall that the topological space of rigid rotations is
the space ����� and there exists a homeomorphism between
this space and the sphere �� w �� with antipodal points
identified. Let us project centrally the sphere �� on 8
boundary faces of a 4D cube !���"�. By inverting these
transformations we obtain a continuous map from a set of
eight 3D cubes to a set of rigid rotations. Only four of the
cubes are of interest because pairs of opposite ones map onto
the same set of rotations. For each face of these four cubes
there is exactly one other face of one other cube that
represents the same set of rotations. By identification of
these faces we obtain a cellular complex that is topologically
equivalent to �����.

A C-octree is a tree structure whose nodes are cells in C-
space. The smallest C-octree has a root and four leaves. The
root represents all of C-space and its children correspond to
Cartesian products of four cube cells that decompose �����
with a set of all translations !���"�. Every other C-octree is
the result of applying a sequence of recursive subdivision
operations. Each such operation takes a leaf as an argument
and turns it into an inner node with eight children. Let X # (
be a cell of such a leaf, X being a cube of translations and (
a cube of rotations. There are two types of subdivisions.
Either X or (is decomposed into eight smaller cubes and
their Cartesian products with respectively (or X become
cells of new leaves.

A set of all leaves in C-octree is a set of cells that
decompose C-space. We assume that each leaf maintains a
list of its neighbors in a C-graph and that these lists get
updated after subdivisions. A level of a cell in C-octree is
the number of tree edges on a path to the root. A level can be
seen as a rough estimate of the size of a cell. The choice
whether a set of translations or rotations stays the same for a
parent and its children is fixed for each level.

Our method uses a single C-octree]. Let Yx denote a C-
graph defined by leaves of]. Let Yxy be a C-graph induced
by a subset z of leaves of], i.e., a sub-graph of Yx
obtained by removal of all cells not in z and edges incident
to them. Below we list basic operations on] from which we
build our motion planner. In argument lists { is an integer
specifying a level, z is a set of cells, and | is a path in C-
graph.

Basic C-octree operations:
1) BUILD({) – Return a new C-octree which has all leaves

at level {.
2) MSTPATH(z� {) – Return a path in MST of Yxy

connecting cells containing the initial configuration
'.7837 and the goal configuration '9,8: . During
construction of MST give priority to cells at levels equal
or less than { by always treating their weights as lesser
than weights of the other cells.

3) ALLCELLS() – Return the set of all leaf cells.
4) NEIGHBORHOOD(z) – Return the set of all cells in a

set z and cells adjacent to them.
5) SUBDIVIDE(z) – Subdivide cells in z. This operation

is valid only if all of them are leaves.
6) MINLEVEL(z) – Return the minimal level of a cell in a

set z.
7) MAXLEVEL(z) – Return the maximal level of a cell

in a set z.
8) SELECTLEVEL(z� {) – Return a subset of a set z

consisting of all cells at level {.
9) SOLUTIONFOUND(|) – This predicate returns true if

and only if a C-space path created by connecting with a
straight line segments: '.7837 to the center of the first
cell in P, the centers of every two consecutive cells in P,
the center of the last cell in P to '9,8: , is collision-free.

D. Algorithm

There are three major problems that may appear in
approximate cell decomposition methods in general and our
MST-based method in particular. In this chapter we discuss
them and explain how they can be addressed. Then we give
the precise motion planning algorithm that realizes these
solutions.

Firstly, it has to be decided how many and which cells in
the neighborhood of the path to subdivide. The complexity
of MST construction in a sparse graph is ��} � ~�i}�,
where } stands for the number of vertices. Also, there is a
constant amount of processing for each new cell. The more
cells get subdivided at each step of the algorithm the faster
the growth of } is. On the other hand, choosing a small set
of cells will in result give little new information about C-
space. In consequence more steps may be necessary. We
assume that the uncertainty about the quality of the path
strongly depends on the size of the largest cell on it and in its
neighborhood. Therefore it is best to subdivide only the
largest cells in order to verify that the cell decomposition is
refined in the right region. Initially a set of candidates
consists of cells on the path and their direct neighbors. Then
only cells at C-octree level equal to the minimal level in this
set are chosen.

Secondly, there is a huge cost of searching the whole
graph at each step. The function used to assign weights to
cells is continuous. It is then reasonable to expect that
subsequent paths in MST will lie close to each other. To take
advantage of that fact we define a local sub-graph induced
by a path. It is obtained by removal of all cells except those
that belong to the path and their neighbors. After a single
step of a method that searches the whole graph, there is a
sequence of steps that restrict the computation to a local sub-
graph induced by a path from the previous step. The process
starts again with the search of the whole graph, if a path | is
found for which MINLEVEL(NEIGHBORHOOD(|)) is
equal to MAXLEVEL(NEIGHBORHOOD(|)). We call this
sequence of steps a super-step.

The last problem is the tendency to explore the regions of
C-space for which the cell decomposition is already very
refined. The smaller the cells the denser the sampling of C-
space is. Better alternatives to the path in MST of the whole
graph might exist in regions of sparse sampling. In order to

5383

be able to find them we perform super-steps in sequences of
length {�8� ! {�or, with {�8� being the maximal and {�or
the minimal level of any cell at the beginning of the
sequence. In C-th super-step we give priority to cells at levels
less than {�or � C by always treating their weights as
smaller than the weight of any cell at level greater than or
equal {�or � C.

The complete algorithm for MST-Based planner is listed
below. It uses a subroutine SuperStep which takes two
arguments: a set of cells z and a level value {. In the
description {�or is the constant representing the level of all
leaves in the initial C-octree.

Algorithm 1 SuperStep(W,L)
 1: found = false;
 2: while not found do

 3: P = MSTPATH(W, L);
 4: W = NEIGHBORHOOD(P);
 5: if MINLEVEL(W) = MAXLEVEL(W) then

 6: found = true;
 7: else
 8: S = SELECTLEVEL(W, MINLEVEL(W));
 9: SUBDIVIDE(S);

Algorithm 2 MST-Based Planner
 1: BUILD(Lmin);
 2: loop

 3: Lmax = MAXLEVEL(ALLCELLS());
 4: for L = Lmin to Lmax do
 5: P = MSTPATH(ALLCELLS(), L);
 6: if (SOLUTIONFOUND(P)) then
 7: return P;
 8: else
 9: W = NEIGHBORHOOD(P);
10: S = SELECTLEVEL(W, MINLEVEL(W));
11: SUBDIVIDE(S);
12: SuperStep(W, L);

II. RESULTS

We implemented and tested our method on three tasks
shown in Fig. 3 that required finding a C-space path through
one or more narrow passages. In two of the tasks the
workspace was a cube that had been divided into eight areas
by thin walls, some of them containing holes. In task A the
rigid body was a “snake” composed of a chain of three
mutually orthogonal cylinders and the holes in the walls had
circular shape. In task B the rigid body was a cube with a
part of it removed in such a way, that two of the orthogonal
projections on a plane along coordinate axes gave a square
and the third was a “U” shape. The holes had a shape of a
square and thin rods connected sides of the holes, forcing the
rigid body to rotate around them while passing to the other
side. The third task was a popular benchmark called α-
puzzle with a goal of separating two pipes bent into α letters.
We repeated each experiment several times with different
size of holes or thickness of pipes and observed their
influence on performance.

We compared our method to Probabilistic Roadmap
(PRM). Tab. I lists total computation times in seconds,
which include times needed to prepare signed distance table
and approximating balls, number of all samples taken by
PRM including collision configurations, and number of cells
used in MST-based method. Initial C-octree had all leaves at
level 5. All processing was done in a single CPU thread

Fig. 3. A set of benchmarks: (a) Task A, (b) Task B, (c) task C (α-puzzle).

TABLE I
PERFORMANCE

Benchmark
Total
time
MST

Total
time
PRM

#Cells
MST

#Samples
PRM

Task A 1 2.57 41.22 149,796 347,111
Task A 2 5.73 455.43 278,612 5,208,326
Task A 3 22.47 4285.79* 793,156 35,000,000*

Task B 1 11.31 6059.65* 447,556 35,000,000*
Task B 2 11.22 5949.86* 430,804 35,000,000*
Task B 3 30.41 5943.30* 850,180 35,000,000*
Task C 1 7.78 49.95 246,708 220,115
Task C 2 4.15 2971.13 182,492 13,971,794
Task C 3 113.56 6407.84* 880,852 35,000,000*

5384

accept for signed distance table computation which was
executed on GPU. Timings given for PRM method are
average results of four runs. We stopped PRM method each
time it exceeded 35 million samples. Such a situation is
indicated by a star in the table. The test machine was an Intel
Core 2 Quad Q9300 2.50 GHz CPU system with 4 GB of
RAM and a NVIDIA GeForce GTX 260 GPU with 1 GB of
RAM.

III. CONCLUSION

We proposed a motion planning method based on
sampling of configuration space in which iteratively refined
cell decomposition determines positions of the samples. The
concept of a hybrid motion planner that combines
approximate cell decomposition with sampling of
configuration space is not new, see e.g. [15]. Our main
contribution is the concept of estimating signed distance
value at each sample and then using minimum spanning tree
of a weighted graph of samples to select cell subdivision
regions. We proposed to approximate the rigid body with
balls for fast and simple computation of weights in this
graph. We also made an analysis of possible problems and
based on that designed an efficient and practical algorithm.
We demonstrated its effectiveness on tasks involving 6DOF
rigid body and narrow passages. In difficult tasks we
observed a drastic improvement over PRM.

Let us consider obstacles bounded by a surface of small
curvature and two runs of our method: first with original
obstacles and second with their thickened version obtained
by offsetting the surface. It can be proved that for offsets
small enough the second run will start by doing all the work
of the first one and continue from that point with the final
cell decomposition of the first. This observation suggests
that MST-based planner might be less sensitive to tight
corridors than PRM.

We see three possible enhancements: classifying cells as
full, empty or partial to achieve resolution completeness;
using cell decomposition to design a probability distribution
for PRM similarly to [15]; adding retraction of nodes of C-
space paths into free space as in [16].

REFERENCES
[1] J. T. Schwartz, M. Sharir, “On the piano movers’ problem. II. General

techniques for computing topological properties of real algebraic
manifolds,” Advances in Applied Mathematics, vol. 4, pp. 298-351,
Sept. 1983.

[2] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: The MIT Press, 1988.

[3] F. Avnaim, J. D. Boissonnat, B. Faverjon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles,”
in 1988 Proc. IEEE International Conference on Robotics and

Automation, pp. 1656-1661.
[4] J. Barraquand, B. Langlois, J.-C. Latombe, “Numerical potential field

techniques for robot path planning,” in 1991 Proc.5th International

Conference on Advanced Robotics, vol. 2, pp. 1012-1017.
[5] L. E. Kavraki, P. Švestka, J.-C. Latombe, M. H. Overmars,

“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and

Automation, vol. 12, issue 4, pp. 566-580, Aug. 1996.

[6] M. H. Overmars, P. Švestka, “A probabilistic learning approach to
motion planning,” in 1995 Proc. Workshop on Algorithmic

Foundations of Robotics, pp. 19-37.
[7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” Computer Science Dept., Iowa State University, Rep. TR
98-11, 1998.

[8] V. Boor, M. H. Overmars, A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in 1999 Proc.

International Conference on Robotics and Automation, vol. 2, pp.
1018-1023.

[9] D. Zheng Sun Hsu, H. Tingting Jiang Kurniawati, J. H. Reif, “Narrow
passage sampling for probabilistic roadmap planners,” IEEE

Transactions on Robotics, vol. 21, issue 6, pp. 1105-1115, Dec. 2005.
[10] C. Nissoux, T. Simeon, J.-P. Laumond, “Visibility based probabilistic

roadmaps,” in 1999 Proc. International Conference on Intelligent

Robots and Systems, vol. 3, pp. 1316-1321.
[11] S. A. Wilmarth, N. M. Amato, P. F. Stiller, “MAPRM: a probabilistic

roadmap planner with sampling on the medial axis of the free space,”
in 1999 Proc. International Conference on Robotics and Automation,
vol. 2, pp. 1024-1031.

[12] M. Saha, J.-C. Latombe, “Finding narrow passages with probabilistic
roadmaps: the small step retraction method,” in 2005 Proc.

International Conference on Intelligent Robots and Systems, pp. 622-
627.

[13] L. Zhang,, Y. J. Kim, D. Manocha, “A simple path non-existence
algorithm using C-obstacle query,” Algorithmic Foundations of

Robotics VII, pp. 269-284, 2008.
[14] Liangjun Zhang, Y. J. Kim, D. Manocha “A hybrid approach for

complete motion planning,” in 2007 Proc. International Conference

on Intelligent Robots and Systems, pp. 7-14.
[15] M. W. Jones, J. A. Baerentzen, M. Sramek, “3D distance fields: a

survey of techniques and applications,” IEEE Transactions on

Visualization and Computer Graphics, vol. 12, issue 4, pp. 581-599,
Jul.-Aug. 2006.

[16] A. Sud, N. Govindaraju, R. Gayle, D. Manocha “Interactive 3D
distance field computation using linear factorization,” in 2006 Proc.

Symposium on Interactive 3D Graphics and Games, pp. 117-124.
[17] G. Bradshaw, C. O’Sullivan, “Sphere-tree construction using dynamic

medial axis approximation,” in Proc. ACM SIGGRAPH/Eurographics

symposium on Computer animation, San Antonio, 2002, pp. 33-40.
[18] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Kornberger, M.

Peternell, and H. Pottmann, “Approximating boundary-triangulated
objects with balls,” in Proc. 23rd European Workshop on

Computational Geometry, Graz, 2007, pp. 130-133.
[19] S. M. LaValle, Planning Algorithms. New York, NY: Cambridge

University Press, 2006, pp. 105–150.

5385

