
  

  

Abstract— We consider a problem of rigid body motion 

planning in a static 3D environment. In the past, methods based 

on random sampling like Probabilistic Roadmap and its 

variants proved to be able to efficiently solve many important 

instances of that problem. Performance of these methods 

degrades drastically in the presence of narrow passages. We 

propose a different approach to motion planning which 

combines elements of both cell decomposition methods and 

sampling based methods. We estimate signed distance to the 

boundary of free space at sampling points and use that 

information to guide farther exploration. Cell decomposition is 

used to generate deterministic sampling positions with non-

uniform and dynamically adjusted densities. We report the 

results of experiments with implementation of our method. 

I. INTRODUCTION 

We start by describing the problem and giving basic 
definitions and notation used throughout the text. 

We are trying to solve a task of finding a collision-free 
motion of a rigid body between two specified positions 
among static and known obstacles. We assume that a rigid 
body can move freely in a bounded subspace of 3D 
Euclidean space called a workspace. We will write � to 
denote a rigid body and � to denote obstacle region in 
workspace.  

A topological space of all rigid transformations is a space 
����� which is a Cartesian product of the space of 
translations �� and the space of rotations �����. Any 
rotation in 3D workspace can be described by a unit real 4-
vector called a unit rotation quaternion. A quaternion  

	
� � �� �
� � 
� � �� �

� � 
� � �� �
� � �� �

��, where 
�� � 
�� �

�� � �, corresponds to a rotation by an angle � around an 
axis �
�� 
� � 
��. Opposite quaternions represent the same 
rotation. Space ����� is homeomorphic to a sphere �� in �� 
with antipodal points identified. In our discussion we limit 
the set of allowed translations and restrict ourselves to a 
subspace  !���"� # ����� of �����, which will be called a 
configuration space or shortly C-space denoted by $.  

The position in workspace of a point % & � at 
configuration ' & $ will be denoted by %�'�. We also write 
(�'� instead of )%�'�|% & (+. A C-obstacle region denoted 
by $,-. is the set )' & $|��'� / � 0 1+. A free space $2344 
is the set $56,-.. The task considered in this article can be 
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expressed as finding a path in $2344 that joins two specified 
configurations '.7837 and '9,8:, if one exists. 

We use the robot displacement metric described in [19] to 
measure distances in C-space:  
;�<=� <�� � >?@)A%�<=� ! %�<��A|% & �+. We call the 
value BCDE�<� F >��G;�<� <H�I<H & J$2344K the penetration 

depth if < & $,-. or the clearance if < & $2344. It is 
convenient to introduce C-space signed distance at 
configuration < denoted by DBCDE�<�, which is equal to 
L BCDE�<� if < & $,-. and BCDE�<� otherwise.  

An open cell is a set homeomorphic with an open disc. A 
cell decomposition of a B-dimensional topological space M is 
its partition into a finite set of open cells of dimensions 
N�O � B� such that the boundary of every cell is covered by 
elements of this partition of lower dimension. In the latter 
part of the article, if it is not specified otherwise, by a cell 
we mean a closed B-dimensional cell. Two cells are adjacent 
if they share a �B ! ��-dimensional cell. 

The undirected graph whose vertices are cells of a given 
cell decomposition and whose edges connect every pair of 
adjacent cells will be called a cell decomposition graph. To 
avoid ambiguity, from now on, by a path we mean a 
sequence of vertices of a graph, such that there is an edge 
between each pair of consecutive vertices, and by a C-space 
path we mean a curve in C-space. 

A roadmap is a graph, whose vertices are points in $2344 
and edges correspond to known collision-free C-space paths 
connecting them. 

II. PREVIOUS WORK 

There are three main classes of motion planning methods: 
complete, probabilistic complete and resolution complete. A 
complete planner correctly reports in a finite amount of time 
whether or not there is a solution. A resolution complete 
planner reports a solution whenever it exists provided that 
the resolution is small enough. The probability that a 
solution will be found by a probabilistic complete planner 
converges to one as the computation time goes to infinity. 

There are three basic approaches to motion planning: cell 
decomposition, roadmap construction, and potential field 
design. 

Complete solutions are either based on exact cell 
decomposition of free space (e.g. [1], [3]) or construction of 
a roadmap on the boundary of free space (e.g. [2], [3]). 
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They have little practical value for 6D C-spaces because of 
high computational complexity and challenging 
implementation. 

In potential field methods (e.g. [4]) a potential function is 
designed which represents forces attracting a body to its goal 
position and repulsing it from obstacles. The body is moved 
in the direction of the potential gradient until it either 
reaches the destination or gets stuck in a local minimum. 

For more than a decade Probabilistic Roadmap planners 
(PRM), presented in [5], [6] and [7], have been a standard in 
motion planning because of their simplicity and ability to 
efficiently solve many technical problems. Their idea is to 
generate random samples in free space and try to connect 
each of them to its nearest neighbors with a line in free 
space. The main problem with these methods is a drastic 
performance drop in the presence of narrow passages ([12]). 
In order to improve them many researchers proposed to 
modify the distribution of nodes in a roadmap by rejecting 
some of the random samples. Examples include: Gaussian 
sampling ([8]), bridge test ([9]) and visibility based 
roadmaps ([10]). Others used retraction of samples. In 
Medial Axis PRM ([11]) all samples are moved onto the 
medial axis of free space. In Small Step Retraction PRM 
([12]) roadmaps are build in extended free space and the 
nodes of obtained in that way C-space path between initial 
and goal configurations are then moved into original free 
space. Even though the nodes of resulting path are in free 
space, the lines joining them may still cross the obstacles. 

In approximate cell decomposition methods (e.g. [13]) C-
space is recursively decomposed into simple, usually 
rectangular, cells and special tests are performed to divide 
the cells into three groups: full, partial and empty. Full cells 
are contained in C-obstacle region and empty cells in free 
space. A collision-free C-space path exists if initial and goal 
configurations belong to one connected component of a 
union of all empty cells. These methods are not suitable for 
6DOF rigid body motion planning due to the large expected 
number of cells. In [14] the authors presented a hybrid 
planner, in which approximate cell decomposition is used to 
guide generation of samples for PRM. 

I. MST-BASED MOTION PLANNER 

A. General Idea 

We build upon a general framework of approximate cell 
decomposition methods. It can be summarized as follows. 
Prepare initial cell decomposition of C-space. Classify cells 
as empty, full or partial. Search for a path in the set of empty 
and partial cells. If it cannot be found then return false. If it 
contains only empty cells return true. Otherwise subdivide 
some or all of the cells on the path and perhaps some or all 
of the cells adjacent to them. Classify new cells and repeat 
all the steps starting from a search for the next path. 

We diverge from this approach by not testing and marking 
cells as empty, full or partial. We believe that in high-
dimensional spaces it has little practical value. Instead we 

assign to them real weights that estimate how far the center 
of the cell lies from the boundary of free space in robot 
displacement metric. After introducing weights to the graph 
we are able to use its minimum spanning tree (MST) to find 
a path around which the cells get subdivided. We stop as 
soon as connecting centers of subsequent cells on such a 
path with straight lines results in a collision-free motion. 
Properties of MST, discussed below, suggest that this 
heuristic is likely to generate a sequence of paths converging 
quickly to the solution, even in the presence of relatively 
narrow passages. 

Every cell gets assigned a weight. If < is the center of a 
cell P then the weight Q�P� is an estimate of L DBCDE�<�. We 
assume that cells with smaller weights are more interesting. 
Notice that if we take two cells R and P with Q�R� S Q�P� 
then one of the three possible situations takes place: R has 
the center in $2344 and P does not, both centers are in $2344 
but the center of R has greater clearance, both centers are in 
$,-. but the center of R has smaller penetration depth. 

The weight Q�T� of an edge T � �R� P� is a pair: Q�T� �
�>?@)Q�R�� Q�P�+�>��)U�V�� U�W�+�. We use component-
wise addition and lexicographical order to make them 
elements of an abelian group with a total order among them. 
Later on we refer to a cell decomposition graph with vertices 
and edges weighted as above as a C-graph. We recall that 
the minimum spanning tree (MST) of a graph is a tree with 
minimum total weight of edges spanning all the vertices. 
 
Proposition 1. Let X and ( be two chosen vertices in C-

graph Y � �Z� �� and % be a path between them in MST. 

For every path %H between X and ( we have: 

>?@)Q�P[�|P[ & Z� PH & %H+ \ >?@)Q�P�|P & Z� P & %+. 
 
Proof. Assume that there exists a path %[ for which the 
hypothesis is false. Let PH be a vertex with the maximal 
weight on %H and P a vertex with the maximal weight on %. 
There must be some edge �R[� PH� on %H and �R� P� on %. We 
assumed that Q�PH� S U�P� and thus we have Q��R[� PH�� S
Q��R� P��. If we remove an edge �R� P� from MST we 
obtain two trees: ]̂  containing X and ]_ containing (. Since 
%H connects X and (, there must be an edge �R[[� P[[� on %H 
such that R[[ & ]̂  and P[[ & ]_ . The weight of PH is maximal 
on %H and therefore Q��R[[� P[[�� ` U��R[� P[��. By 
replacing �R� P� with �R[[� P[[� in MST we get a tree with 
smaller total weight of edges but that contradicts the fact that 
the total weight in MST is minimal.  □ 

 
We conclude that paths in MST of C-graph maximize the 

minimum of signed distance of the centers of the cells on 
them. Fig. 1. shows an example of C-space with overlayed 
MST of C-graph of a regular grid of cells and the medial 
axes of $2344 and $,-.. It can be observed that both MST 
and the medial axis of $2344 can be useful in expressing the 
idea of motion that maximizes clearance. 
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B. Computation of Cells Weights 

Our path planning solution requires evaluating at given 
points in C-space an estimate of DBCDE�<� denoted as 
TDBCDE�<�� < & $.  

It is convenient to introduce another signed distance 
function DBCDEa  on workspace with Euclidean metric: 

DBCDEa�%� F b >��)A% ! cA|c & J�+
!>��)A% ! cA|c & J�+

� % d �
� % & �e. 

 

Proposition 2. Let ; be a robot displacement metric in a C-

space $ and � be a rigid body. For all < & $: 

DBCDE�<� ` >��)DBCDEa�%�<��|% & �+ (1) 
The inequality turns into equality if < & $2344. 

 
Proof. Let <f be the closest to < in J$2344. Consider 
< d $2344 first. We will show that for all % & � we have 

A%�<� ! %�<f�A \ !DBCDEa�%�<�� .  (2)  
If %�<� d � then !DBCDEa�%�<�� ` N and (2) is obviously 
true. Otherwise 
!DBCDEa�%�<�� � >��g)A%�<� ! cA|c & J�+. The 
inequality (2) is then true because %�<f� either belongs to 
J� or lies outside of �, in which case there must be a point 
in J� that is closer to %�<� than %�<f� is. Taking 
maximums over all % & � of both sides of (2) and 
multiplying them by !� we get the thesis (1).  
Now let < & $2344. Let %[ � ?hi>��j&kGDBCDEa�%�<��K, 
c[ � ?hi>��,&lm)A%�<� ! cA+ and <H be the configuration 
achieved by translating the rigid body � in configuration < 
by a vector c[ ! %H�<�. Then ;�<� <H� � A%H�<� ! cHA �
>��GDBCDEa�%�<��I% & �K and <H & J$2344. Since <f is the 
closest to < in J$2344, we know that ;�<� <f� ` ;�<� <H�. 
From the fact that ��<f� is tangent to obstacles � it follows 
that there exists a point %[[ & � such that %[[�<f� & J�. 
Thus ;�<� <f� \ A%[[�<� ! %[[�<f�A \ DBCDEa�%[[�<���gbut 

A%H�<� ! cHA � >��GDBCDEa�%�<��I% & �K, which gives us 
;�<� <f� \ A%H�<� ! cHA � ;�<� <[�. Together with previous 
inequality ;�<� <f� ` ;�<� <H� we get ;�<� <f� � ;�<� <H� �
>��)DBCDEa�%�<��|% & �+, which ends the proof.  □ 
 

We approximate a rigid body � with a set of balls and 
compute a signed distance table (SDT) in workspace. SDT is 
a 3D array which stores the exact values of DBCDEa computed 
at vertices of a regular grid. The approximate value of 
DBCDEa for an arbitrary point in workspace is found by a 
linear interpolation between the values at the corners of a 
grid cube. Let n-8::. be the number of balls approximating �
R , co  be the center of C-th ball and po its radius. Then 
TDBCDE�<� for < & $  is calculated as: 

TDBCDE�<� � >��=qoqrstuuvDBCDEa�co�<�� ! po . 
The evaluation of TDBCDE is fast and its performance can 

be further improved by the use of bounding ball hierarchies. 
The error introduced in the process is acceptable. Ball 
covering of a rigid body does not take part in collision 
detection routines for which high reliability is required. The 
purpose of computing TDBCDE is to give cells the weights. As 
long as the error is smaller than the size of the cell it does 
not affect the overall effectiveness of our motion planning 
method. Moreover, it can be expected that TDBCDE will be 
evaluated mostly for configurations in $2344 and close to its 
boundary, where the error is usually smaller. 

For an overview of SDT computation techniques, refer to 
a recent survey [15]. There has also been some work on its 
efficient parallel implementations on GPUs (e.g. [16]). 
Methods for approximating polyhedral objects with balls 
have been introduced in [17] and [18]. 

C. Data Structure 

In this chapter we describe a generalization of an octree 
data structure, called C-octree, which defines a cell 
decomposition of C-space. 

 
Fig. 1.  A 2D C-space with marked: the medial axes (dotted lines), 
gradient directions of L DBCDE�<� (arrows), MST of a regular grid of 
cells (horizontal and vertical lines connecting centers of cells), 
example of a path in MST (thick black lines). 
 

 
Fig. 2.  Approximation of a rigid body with balls and examples of 
signed distances of balls. 
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We recall that the topological space of rigid rotations is 
the space ����� and there exists a homeomorphism between 
this space and the sphere �� w �� with antipodal points 
identified. Let us project centrally the sphere �� on 8 
boundary faces of a 4D cube  !���"�. By inverting these 
transformations we obtain a continuous map from a set of 
eight 3D cubes to a set of rigid rotations. Only four of the 
cubes are of interest because pairs of opposite ones map onto 
the same set of rotations. For each face of these four cubes 
there is exactly one other face of one other cube that 
represents the same set of rotations. By identification of 
these faces we obtain a cellular complex that is topologically 
equivalent to �����. 

A C-octree is a tree structure whose nodes are cells in C-
space. The smallest C-octree has a root and four leaves. The 
root represents all of C-space and its children correspond to 
Cartesian products of four cube cells that decompose ����� 
with a set of all translations  !���"�. Every other C-octree is 
the result of applying a sequence of recursive subdivision 
operations. Each such operation takes a leaf as an argument 
and turns it into an inner node with eight children. Let X # ( 
be a cell of such a leaf, X being a cube of translations and ( 
a cube of rotations. There are two types of subdivisions. 
Either X or ( is decomposed into eight smaller cubes and 
their Cartesian products with respectively ( or X become 
cells of new leaves. 

A set of all leaves in C-octree is a set of cells that 
decompose C-space. We assume that each leaf maintains a 
list of its neighbors in a C-graph and that these lists get 
updated after subdivisions. A level of a cell in C-octree is 
the number of tree edges on a path to the root. A level can be 
seen as a rough estimate of the size of a cell. The choice 
whether a set of translations or rotations stays the same for a 
parent and its children is fixed for each level. 

Our method uses a single C-octree ]. Let Yx denote a C-
graph defined by leaves of ]. Let Yxy be a C-graph induced 
by a subset z of leaves of ], i.e., a sub-graph of Yx 
obtained by removal of all cells not in z and edges incident 
to them. Below we list basic operations on ] from which we 
build our motion planner. In argument lists { is an integer 
specifying a level, z is a set of cells, and | is a path in C-
graph. 
 
Basic C-octree operations: 
1) BUILD({) – Return a new C-octree which has all leaves 

at level {. 
2) MSTPATH(z� {) – Return a path in MST of Yxy 

connecting cells containing the initial configuration 
'.7837  and the goal configuration '9,8: . During 
construction of MST give priority to cells at levels equal 
or less than { by always treating their weights as lesser 
than weights of the other cells. 

3) ALLCELLS() – Return the set of all leaf cells. 
4) NEIGHBORHOOD(z) – Return the set of all cells in a 

set z and cells adjacent to them. 
5) SUBDIVIDE(z) – Subdivide cells in z. This operation 

is valid only if all of them are leaves. 
6) MINLEVEL(z) – Return the minimal level of a cell in a 

set z. 
7) MAXLEVEL(z) – Return the maximal level of a cell 

in a set z. 
8) SELECTLEVEL(z� {) – Return a subset of a set z 

consisting of all cells at level {. 
9) SOLUTIONFOUND(|) – This predicate returns true if 

and only if a C-space path created by connecting with a 
straight line segments: '.7837 to the center of the first 
cell in P, the centers of every two consecutive cells in P, 
the center of the last cell in P to '9,8: , is collision-free. 

D. Algorithm 

There are three major problems that may appear in 
approximate cell decomposition methods in general and our 
MST-based method in particular. In this chapter we discuss 
them and explain how they can be addressed. Then we give 
the precise motion planning algorithm that realizes these 
solutions. 

Firstly, it has to be decided how many and which cells in 
the neighborhood of the path to subdivide. The complexity 
of MST construction in a sparse graph is ��} � ~�i}�, 
where } stands for the number of vertices. Also, there is a 
constant amount of processing for each new cell. The more 
cells get subdivided at each step of the algorithm the faster 
the growth of } is. On the other hand, choosing a small set 
of cells will in result give little new information about C-
space. In consequence more steps may be necessary. We 
assume that the uncertainty about the quality of the path 
strongly depends on the size of the largest cell on it and in its 
neighborhood. Therefore it is best to subdivide only the 
largest cells in order to verify that the cell decomposition is 
refined in the right region. Initially a set of candidates 
consists of cells on the path and their direct neighbors. Then 
only cells at C-octree level equal to the minimal level in this 
set are chosen. 

Secondly, there is a huge cost of searching the whole 
graph at each step. The function used to assign weights to 
cells is continuous. It is then reasonable to expect that 
subsequent paths in MST will lie close to each other. To take 
advantage of that fact we define a local sub-graph induced 
by a path. It is obtained by removal of all cells except those 
that belong to the path and their neighbors. After a single 
step of a method that searches the whole graph, there is a 
sequence of steps that restrict the computation to a local sub-
graph induced by a path from the previous step. The process 
starts again with the search of the whole graph, if a path | is 
found for which MINLEVEL(NEIGHBORHOOD(|)) is 
equal to MAXLEVEL(NEIGHBORHOOD(|)). We call this 
sequence of steps a super-step. 

The last problem is the tendency to explore the regions of 
C-space for which the cell decomposition is already very 
refined. The smaller the cells the denser the sampling of C-
space is. Better alternatives to the path in MST of the whole 
graph might exist in regions of sparse sampling. In order to 
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be able to find them we perform super-steps in sequences of 
length {�8� ! {�or, with {�8� being the maximal and {�or 
the minimal level of any cell at the beginning of the 
sequence. In C-th super-step we give priority to cells at levels 
less than {�or � C by always treating their weights as 
smaller than the weight of any cell at level greater than or 
equal  {�or � C. 

The complete algorithm for MST-Based planner is listed 
below. It uses a subroutine SuperStep which takes two 
arguments: a set of cells z and a level value {. In the 
description {�or  is the constant representing the level of all 
leaves in the initial C-octree. 
 

Algorithm 1 SuperStep(W,L) 
  1: found = false; 
  2: while not found do 

  3: P = MSTPATH(W, L); 
  4: W = NEIGHBORHOOD(P); 
  5: if MINLEVEL(W) = MAXLEVEL(W) then 

  6: found = true; 
  7: else 
  8: S = SELECTLEVEL(W, MINLEVEL(W)); 
  9: SUBDIVIDE(S); 
 
Algorithm 2 MST-Based Planner 
  1: BUILD(Lmin); 
  2: loop 

  3: Lmax = MAXLEVEL(ALLCELLS()); 
  4: for L = Lmin to Lmax do 
  5: P = MSTPATH(ALLCELLS(), L); 
  6: if (SOLUTIONFOUND(P)) then 
  7: return P; 
  8: else 
  9: W = NEIGHBORHOOD(P); 
10: S = SELECTLEVEL(W, MINLEVEL(W)); 
11: SUBDIVIDE(S); 
12: SuperStep(W, L); 
 

II. RESULTS 

We implemented and tested our method on three tasks 
shown in Fig. 3 that required finding a C-space path through 
one or more narrow passages. In two of the tasks the 
workspace was a cube that had been divided into eight areas 
by thin walls, some of them containing holes. In task A the 
rigid body was a “snake” composed of a chain of three 
mutually orthogonal cylinders and the holes in the walls had 
circular shape. In task B the rigid body was a cube with a 
part of it removed in such a way, that two of the orthogonal 
projections on a plane along coordinate axes gave a square 
and the third was a “U” shape. The holes had a shape of a 
square and thin rods connected sides of the holes, forcing the 
rigid body to rotate around them while passing to the other 
side. The third task was a popular benchmark called α-
puzzle with a goal of separating two pipes bent into α letters. 
We repeated each experiment several times with different 
size of holes or thickness of pipes and observed their 
influence on performance. 

We compared our method to Probabilistic Roadmap 
(PRM). Tab. I lists total computation times in seconds, 
which include times needed to prepare signed distance table 
and approximating balls, number of all samples taken by 
PRM including collision configurations, and number of cells 
used in MST-based method. Initial C-octree had all leaves at 
level 5. All processing was done in a single CPU thread 

 
 
Fig. 3. A set of benchmarks: (a) Task A, (b) Task B, (c) task C (α-puzzle). 
  

TABLE I 
PERFORMANCE 

Benchmark 
Total 
time 
MST 

Total 
time 
PRM 

#Cells 
MST 

#Samples 
PRM 

Task A 1 2.57 41.22 149,796 347,111 
Task A 2 5.73 455.43 278,612 5,208,326 
Task A 3 22.47 4285.79* 793,156 35,000,000* 

Task B 1 11.31 6059.65* 447,556 35,000,000* 
Task B 2 11.22 5949.86* 430,804 35,000,000* 
Task B 3 30.41 5943.30* 850,180 35,000,000* 
Task C 1 7.78 49.95 246,708 220,115 
Task C 2 4.15 2971.13 182,492 13,971,794 
Task C 3 113.56 6407.84* 880,852 35,000,000* 
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accept for signed distance table computation which was 
executed on GPU. Timings given for PRM method are 
average results of four runs. We stopped PRM method each 
time it exceeded 35 million samples. Such a situation is 
indicated by a star in the table. The test machine was an Intel 
Core 2 Quad Q9300 2.50 GHz CPU system with 4 GB of 
RAM and a NVIDIA GeForce GTX 260 GPU with 1 GB of 
RAM. 

III. CONCLUSION 

We proposed a motion planning method based on 
sampling of configuration space in which iteratively refined 
cell decomposition determines positions of the samples. The 
concept of a hybrid motion planner that combines 
approximate cell decomposition with sampling of 
configuration space is not new, see e.g. [15]. Our main 
contribution is the concept of estimating signed distance 
value at each sample and then using minimum spanning tree 
of a weighted graph of samples to select cell subdivision 
regions. We proposed to approximate the rigid body with 
balls for fast and simple computation of weights in this 
graph. We also made an analysis of possible problems and 
based on that designed an efficient and practical algorithm. 
We demonstrated its effectiveness on tasks involving 6DOF 
rigid body and narrow passages. In difficult tasks we 
observed a drastic improvement over PRM. 

Let us consider obstacles bounded by a surface of small 
curvature and two runs of our method: first with original 
obstacles and second with their thickened version obtained 
by offsetting the surface. It can be proved that for offsets 
small enough the second run will start by doing all the work 
of the first one and continue from that point with the final 
cell decomposition of the first. This observation suggests 
that MST-based planner might be less sensitive to tight 
corridors than PRM. 

We see three possible enhancements: classifying cells as 
full, empty or partial to achieve resolution completeness; 
using cell decomposition to design a probability distribution 
for PRM similarly to [15]; adding retraction of nodes of C-
space paths into free space as in [16]. 
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