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    Abstract- For the control of unmanned helicopters in full 
flight envelope, an active model based control scheme is 
developed in this paper. An adaptive set-membership 
filter (ASMF) is used to online estimate both the model 
error due to flight mode change and its boundary, taking 
advantage of ASMF, so that the model error can be 
assumed unknown but bounded (UBB). The proposed 
approach is practical because the model error depends on 
both helicopter dynamics and flight states, and may not 
be assumed as white noise. An active modeling based 
stationary increment predictive control (AMSIPC) is also 
proposed based on the estimated model error and its 
boundary to optimally compensate the model error, as 
well as the aerodynamics time delay. The proposed 
method has been implemented on the ServoHeli-20 
unmanned helicopter platform and experimentally tested, 
and the results have demonstrated its effectiveness. 

I. INTRODUCTION 
Unmanned helicopters are increasingly popular platforms 

for unmanned aerial vehicles (UAVs). With the abilities such 
as hovering, taking off and landing vertically, unmanned 
helicopters extend the potential applications of UAVs. 
However, due to the complex mechanism and complicated 
aero-flow during flight, it is almost impossible to accurately 
model the dynamics of an unmanned helicopter in full flight 
envelope, and the significant model uncertainties associated 
with a nominal model may degrade the performance and 
even stability of an onboard controller.1 

Due to the difficulty in obtaining a high fidelity full 
envelope model, the multi-mode modeling technique has 
been proposed for helicopters such as tilt-rotor aircraft XV-
15 [1], helicopter BO-105 [2], UH-60 [3], R-50 [4] and X-
Cell [5]. The mode-dependent model, which is identified and 
simplified according to a specific flight mode such as 
hovering, cruising, taking off and landing, can be used for 
control design for the corresponding flight mode. However, 
the mode-dependent control suffers from at least two 
problems: one is the difficulty in accommodating the mode 
transition dynamics [6], and the other is the compensation of 
the ‘model drift’ due to flight dynamics change within one 
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particular mode. Up to now, for the purpose of practical 
implementation, the mode transition problem can be partially 
dealt with by limiting the mode switching conditions, e.g., 
mode change is made through hovering mode. 

Robust and adaptive control techniques [7-8], on the other 
hand, have been used to deal with the ‘model shift’ within a 
flight mode. However, such control schemes normally need 
to know the boundary of internal and external uncertainties 
and relative noise distribution, which are difficult to identify 
accurately for a helicopter in full flight envelope.  

In recent years, the encouraging achievement in sequential 
estimation makes it an important direction for online 
modeling and model-reference control [9]. Among stochastic 
estimations, the most popular one is the Kalman-type filters 
(KFs) [10, 11, 12]. Although widely used, the KFs suffer 
from sensitivity to bias and divergence in the estimates, 
relying on assumptions on statistic distribution such as white 
noise and known mean or covariance for optimal estimation. 
In many cases, it is more practical to assume that the noises 
or uncertainties are unknown but bounded (UBB). In view of 
this, the set-membership filter (SMF), which computes a 
compact feasible set in which the true state or parameter lies 
only under the UBB noise assumption, provides an attractive 
alternative [13-14]. 

On the control issue, model predictive control (MPC) can 
compensate for the aerodynamics delay and does not require 
a high accuracy reference nonlinear model [15]. Among 
these methods, linear generalized predictive control (GPC) 
has become one of the most popular MPC methods in 
industry and academia. However, the normal GPC is 
sensitive to process noise and model errors, which are 
unknown but bounded for helicopters in full flight envelope. 

 In this paper, for realizing the coupling control of 
unmanned helicopters in full flight envelope, an active 
modeling based controller is developed based on a modified 
generalized predictive control and adaptive set-membership 
filter estimation (ASMF). The time varying model error and 
its boundary are estimated by the adaptive set-member filter 
Based on this active estimation and the modified GPC 
controller is developed. Flight experiments have been 
conducted to test the performance of the proposed controller 
on our UAV platform, and experimental results have 
demonstrated the effectiveness of the proposed method.  

 
II. ACTIVE MODEL BASED CONTROL SCHEME AND 

REFERENCE MODEL OF A HELICOPTER 
Fig. 1 illustrates the active model based control scheme. 

The error between the reference model and the actual 
dynamics of the controlled plant is estimated by an on-line 
modeling strategy. The control, which is designed according 
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to the reference model, should be able to compensate the 
estimated model error and it in real time. In the followings of 
this paper, we use the ASMF as the active modeling 
algorithm and the modified GPC as the control. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The scheme of active model based control 
 

A reference model is typically obtained by linearizing the 
nonlinear dynamics of a helicopter at one flying mode. The 
model errors from linearization, external disturbance, 
simplification, and un-modeled dynamics can be considered 
as additional process noise [16]. Thus, a linearized state-
space model for helicopter dynamics in full flight envelope 
can be formulated as  

0 0 ( , , )fX A X B U B f X X W

Y CX

   




 
                (1) 

where 13X R  is the state, including 3-axis velocity, pitch 
and roll angle, 3-axis gyro values, flapping angles of main 
rotor and stabilizer bar and the feedback of yaw gyro. 

8Y R  is the output, including 3-axis velocity, pitch and 
roll angle and 3-axis gyro values, 0A  and 0B  contain 

parameters that can be identified in different flight modes, 
and we use them to describe the parameters in hovering 

mode. 4U R  is the control input vector. The detail of 
building the nominal model and physical meaning of 
parameters is explanted in Ref.[17].  
 

III. ASMF BASED ACTIVE MODEL ERROR ESTIMATION 
As illustrated in Fig.1, adopting the active modeling 

process to get the model error f and system state X is the 
basis for elimination of the model error. Controller can only 
work based on nominal model and feedback of state and 
model error from active modeling process. In this section, 
the active modeling process is built based on an adaptive set-
membership filter (ASMF) [14] since the UBB process noise. 

First, we must obtain the reference equation for estimation. 
Compared with the sampling frequency (often >50Hz for 
flight control) of the control system, the model error 

( , , )f X X W  can be considered as a slow-varying vector, 

which means 1t t tf f h   , where tf is the sampling value 

of ( , , )f X X W at sampling time t, and th is the assumed 

unknown but bounded (UBB) process noise. 

Let the extended sampling state  Ta T T
t t tX X f , and 

then we can obtain the discrete equation from Eq. (1) as 

1
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t d t d t t

a a
t d t t
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d dC C  ,  Ta T T

t t tW W h , 13 13fB I   and tf  

is a 13 1 vector for model errors. Here, t is the sampling 
time, m mI   is the m×m unit matrix and 0m n  is the m×n 

zero matrix. { , , }d d dA B C is the discrete expression of 

system 0 0{ , , }A B C . 

Both the model error and the process noise aW  are 
vehicle dynamics and flight states dependent, and do not 
necessarily have a normal distribution. Thus, the Kalman 
type filter cannot be applied, and adaptive set-membership 
filter, which is developed for UUB process noise and can get 
the uncertain boundaries of the states, is considered to 
estimate the states and model errors here. 

In this section we only present the result of ASMF and 
please refer to [14] for the details about ASMF. With respect 
to Eq. (2), we can build the adaptive set-membership filter as 
Eq. (3), 
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where 26 26aQ R   and 8 8aR R   are the initial elliptical 

boundary of process noise a
tW and measurement noise tV , 

respectively, mtr is the maximum eigenvalue of 
aR at 

sampling time t, mtp  is the maximum eigenvalue of 

| 1
a aT
d t t dC P C at sampling time t, operational symbol Tr() is 

the trace of a matrix, t  and t  are the adaptive parameters 
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of the filter, 1|
ˆ a

t tX  is the estimation of the extended 

state 1
a
tX  at sampling time t, |

ˆ a
t tX is the estimation of ˆ a

tX at 

sampling time t, 1|t tP  is the estimation of elliptical 

boundary 1tP at sampling time t, and |t tP  is the estimation 

of elliptical boundary tP at sampling time t . We can also 

obtain the boundary of the ith element a
itX of extended state 

a
tX as ˆ ˆ,a ii a ii

t tit itX P X P   
 

at sampling time t, where 

ii
tP  is the ith diagonal element of matrix |t tP . 

 
IV.   MODIFIED GPC FOR UNMANNED HELICOPTERS 
We describe the normal GPC in Part A, and then, the 

modified scheme is proposed in Part B&C to eliminate the 
negative influence of model errors in real applications. 

A. Preliminary work for Generalized Predictive Control 
Generally, for a linear system with actuator time delay like,  

1t d t d t k t

t d t

X A X B u W

y C X
   

 
                      (4) 

where 1n
tX R  is the system state vector at sampling time t, 

1l
ty R  is the output vector, 1m

tu R  is the control input 

vector, k is the actuators’ time-delay, and tW  is process 

noise; traditional Generalized Predictive Control (GPC) can 
be designed as [18]. 

However, with application to the unmanned helicopters, 
this kind of GPC algorithm has the following three 
disadvantages: 

1) It cannot reject the influence of working mode changes, 
i.e., if  

0 0( )t tX x x x                               (5) 

where 0x is the current operation point,  0( )x  is the valid 

range for model linearization and tx is the absolute state at 

time t, the biased prediction will bring steady errors for 
velocity tracking.  

2) Normal GPC is sensitive to mismatch of the nominal 
model, which means slow change in parameters 
( , )d dA B may result in prediction error and unstable control. 

3) The transient model errors of the nominal model from 
external disturbance, estimated by ASMF, cannot be 
eliminated, and this will also result in the instability of the 
close loop. 

B. Stationary Increment Predictive Control 
To reject the influence of working mode change and 

sensitivity to nominal parameters change in real application, 
we assume that the process noise tW ’s increment in Eq. (4) is 
a stationary random process, which means  

0
1t t ttW W W W                             (6) 

is normal distribution. Where 11 q    is the difference 

operator; 1q  is one-step delay factor. Thus, Eq. (4) can be 

rewritten as follows,  

0
1t d t d t k tX A X B u W                       (7) 

To avoid the step signal reference tracking, which is 
dangerous for unmanned helicopter system, we use a low 
pass filter to calculate the set-point inputs of the output in the 
future i-th step, i=1, …, p.  

Let 1l
tSP R   be the set-point input at time t, then we 

have 

1( ) ,1t k i t t k i tr SP r SP i p              (8) 

where  is the cut-off frequency of the filter, the initial value 

|ˆt k t k tr y  , t k ir    is the i-th set-point input, and |ˆt k ty  is 

the estimate of output at time t+k.  
Thus, the set-point problem is solved and the output 

prediction can be implanted based on increment model (7) as 
follows: 

Let 1 1 1
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(9) 

  Hence, the above problem 1), which comes from working 
mode change, is solved because 0x  disappears in predictive 

equation (9).   
We can obtain the following prediction matrix for the 

output from Eq. (9) : 
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(10) 

where 1
tY  is the known part of  p steps’ prediction, which 

cannot be influenced by current control input, and matrix G 
has the following form: 

1 2

0 0

0 ... 0

... 0
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d d

d d d d d d d

p p
i i

d d d d d dd d
i i

C B
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G

C A B C A B C B
 

 

 
  
 
 
   
 

   (11) 

Compared with the normal GPC, the prediction of SIPC 
has better characteristics that can be described by the 
following theorem, which solves the above problem 2) in 
Part A. 
Theorem: for nominal model (7), the state prediction 
obtained by Eqs. (9) maintains unbiased even when the 
nominal model parameters ( , )d dA B change online. The 

characteristic is also maintained in normal GPC conditions, 
where tW is normal distribution. 
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In order to reduce the computational burden of Eq. (10), 
we propose here a ‘step plan’ technique,  

1t i t iu u                                  (12) 

where   is a m m  diagonal matrix presenting the length 

of one step. Then, we can simplify Eq. (10) by only 
calculating the unknown control,  

 1 1

1
2

ˆ ...
Tp

t t m m t

t t

Y Y G I u

Y G u

  
  

  

          (13) 

where m mI   is a m m  unit matrix.   
The cost function of the stationary increment predictive 

control is designed as:  
ˆ ˆ( ) ( )T T

t t t t t tJ R Y W R Y u u                   (14) 

where  1 2 ...
TT T T

t t k t k t k pR r r r      , lp lpW R   is the 

weight matrix for tracking error, and m mR  is the weight 
matrix of the control increment.  

By minimizing the cost function of Eq. (14), we can 
calculate the control vector as follows: 

1 1
2 2 2

1

( ) ( )

( )

T T
t t t

f t t

u G WG G W R Y

K R Y

    

 
            (15) 

where 1
2 2 2( )T T

fK G WG G W    can be completed offline. 

Consequently, the stationary increment predictive 
controller (SIPC) can be designed as followings.  
 
Step I: Make increment prediction 

Based on the current and history measure value, use 
Eqs. (9-10) to obtain the prediction for future output 

t̂Y and initial plan point |ˆt k t k tr y  . 

Step II: Plan for the set-point input 
Use Eq. (8) to plan the future set-points, and obtain  

 1 2 ...
TT T T

t t k t k t k pR r r r       

Step III: Receding horizon optimization 
Calculate the control increment tu , based on Eq. (15). 

Step IV: Control implementation 
Current control input 1t t tu u u   , which is used as 

the control to the real plant. After that, go back to step I at 
the next time instant. 

C. Optimal strategy for model error compensation 
In order to compensate the model error in Eq. (1), the 

control vector has to match the following equation, which 
can be directly obtained from Eq. (1): 

0
d t f t d tB U B f B U                         (16) 

where 0
tU  is the control vector need to be calculated by the 

predictive controller in section IV.B, designed based on the 
original model (1) without the model error f. 
Thus, we introduce the following cost function with 
quadratic form to solve the above problem 1). 
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(17) 

where H is a weight matrix, which can be selected. 
Actually, the convergence of ASMF algorithm is also 

influenced by the control action tU . This is because the 

stability of the ASMF can be represented by the filter 
parameter t , while t  in Eq. (3) can be rewritten as follows, 

1
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      (18) 

In [14], it has been shown the stability of the ASMF can 
be represented by the filter parameter t , i.e., the ASMF is 

stable when 0t  .  

Firstly, define 

1 1 |

1
1 |
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Then,  
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        (20) 

We should select an Ut to make *
1( , )t t tJ U Y
  small as far 

as possible, that is, 
* *

1 1( ) min ( , )
t

t t t t t
U

J Y J U Y 
                   (21) 

We introduce the following cost function ( )t tJ U  with 

consideration of both (17) and (20) at the same time:  
*

*
1

( )argmin

( ) ( ) ( , )

t

t t t
U

t t t t t t t

U J U

J U J U J U Y 





                 (22) 

where 1 t R     are the positive definite weight matrix. 

To minimize ( )t tJ U , considering ( ) 0t tJ U  , the control can 

be obtained at ( ) 0t t
t

J U
U

  , i.e., 

( ) 2( )t t
t

t

J U MU NU
                     (23) 

where  
1T aT aT a a

d d d d t d dM B HB B C W C B     
0 1

1( )T aT aT
d f t d t d d t tN B H B f B U B C W Y 

    

Thus, we can obtain the optimal control that minimizes 
( )t tJ U  as: 
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  For the unknown measurement at time t+1 in Eq. (24), 
we consider that the control system is stable, so, 1 ( )t tY Y  . 

Here, ( )tY  is the elliptical domain of tY . Thus, we first 

define array i
tS to include the estimate of the i-th element’s 

two boundary endpoints as 

1
{ , 1,...,13}

ˆ | { ( 1) ( { } )}
l ll

i i i h
t t t d ij p l

S Y Y Max C Col j
  

    
  

 (25) 

where  i
tY  is the i-th element in the vector tY , 1

ˆ i
tY  is the 

corresponding output 1tY  ’s endpoints estimation. For set i
tS , 

{1, 2,...,8}i  and h is 0 or 1 for every i, i
  is the absolute 

value of the i-th element in vector  , and the function 
{ }Col j  is defined as follows: 

 1 13{ } ...
TCol j j j                     (26) 

Then, we define a set tS to describe all possible endpoint 

vector of the 1tY   as 

  
1

1 13ˆ | ...
t

EP
t t tS Y S S


                        (27) 

where 1
ˆ EP
tY  is the possible endpoint (EP) for output 1tY  at 

next sampling time t+1. 
Thus, the proposed active modeling based predictive 

controller can be implemented by using the following steps:  
 
Step I: Make increment prediction 

Based on the current estimated state |
ˆ a

t tX , use the 

stationary increment predictive controller, as in section IV.B, 

to obtain the nominal control input 0
tU ; 

Step II: Model error estimation and elimination 

Based on 0
tU , compute the optimal control input *

tU : 

a) Estimate the values and boundaries of  state tX  and 

model error tf , using ASMF in (3); 

b) Calculate the corresponding 1
ˆ( )EP

t tU Y   for every 

1
ˆ EP
tY   in set tS  by Eq. (24); 

c) For every 1
ˆ( )EP

t tU Y  in step 1), use Eq. (19) to obtain 

the maximum of function 1 1
ˆ ˆ( ( ), )EP EP

t t t tJ U Y Y
  , and 

get the *
1

ˆ EP
tY  to let 

 
1

*
1 1 1

ˆ

ˆ ˆ ˆarg { ( ), }
EP

t t

EP EP EP
t t t t t

Y S

Y Max J U Y Y



  


 ;  

d) The corresponding *
1

ˆ( )EP
t tU Y   is the optimal control 

*
tU  at time t, i.e. * *

1
ˆ( )EP

t t tU U Y  . 

Step III: Receding horizon strategy  
Go back to step I at the next time instant.                    

 
V. FLIGHT EXPERIMENT  

All flight tests are conducted on the Servoheli-20 setup, 
more details of this experimental platform can be found in 
[19]. 

 
       Figure 2: SERVOHELI-20 small-size helicopter platform 

Generalized predictive control (GPC), stationary 
increment predictive control (SIPC) and active model based 
stationary increment predictive control (AMSIPC) are all 
tested in the same flight conditions, and the comparison 
results are shown in Figs. 3-5. We use the identified 
parameters in Ref.[17] as nominal model. 

It can be seen that, when the helicopter increases its 
longitudinal velocity and changes flight mode from hovering 
to cruising, GPC (brown line) has a steady velocity error 
(>20%) and increasing position error because of the model 
errors. SIPC (blue line) has a smaller velocity error because 
it uses increment model to reject the influence of the 
changing operation point and dynamics’ slow change during 
the flight. However, the increment model may enlarge the 
model errors due to the uncertain parameters and 
sensor/process noises, resulting in the oscillations (>30%) in 
the constant velocity period (clearly seen in Fig. 3 and 4). 
While for AMSIPC (green line), because the model error has 
been online estimated by the ASMF, the proposed AMSIPC 
successfully reduces velocity oscillations (<5%) and tracking 
errors (<5%).  

VI. CONCLUSIONS 
An active model based predictive control scheme was 

proposed in this paper to compensate model error due to 
flight mode change and model uncertainties, and realize full 
flight envelope control without multi-mode models and 
mode-dependent controls. The ASMF was adopted as an 
active modeling technique to online estimate the error 
between reference model and real dynamics. The proposed 
control scheme was implemented on our developed 
ServoHeli-20 unmanned helicopter. Experimental results 
have demonstrated clear improvements over the normal GPC 
without active modeling enhancement.  

It should be noted that, at present, we have only tested the 
control scheme with respect to the flight mode change from 
hovering to cruising, and vice versa. Further mode change 
conditions, including ground effect, coordinated turning and 
etc, will be flight-tested in near future.  
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Figure 3: Longitudinal tracking results: (a) velocity; (b) position error (<50s hovering, >50s cruising) 

 

  
Figure 4: Lateral tracking results: (a) velocity; (b) position error (25s~80s cruising, others hovering) 

  
Figure 5: Vertical tracking results: (a) velocity; (b) position error (<5s hovering; >5s cruising) 
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