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Abstract— The control of a snake-like robot is a challenging
problem because of the complex dynamics and the unknown
environment. We have proposed an energy-based method, called
passive creeping, to control the serpentine locomotion. This
paper lays emphasis on the stability and the adaptability of
the method. First, the local orbital stability of the movement is
explicated based on the maximal Lyapunov exponent and the
recurrence plot. Second, the adaptability to the environment
is analyzed, and an optimal adaptive law based on the energy
proportion is put into use to perfect the method. The particular
advantages of the passive creeping include the comprehensive
concept, the explicit control, and the inherent adaptability.

I. INTRODUCTION

A snake can perform various locomotion gaits, e.g. serpen-

tine locomotion, according to different environments ([1]),

so the snake has great environment adaptability. A snake-

like robot has this merit potentially by imitating the snake.

However, these characteristics, such as the redundant degrees

of freedom (DOFs), and the interaction between the robot

and the environment, make the dynamics of the robot very

complicated. Thus, it is difficult to construct an effective

control method for the snake-like robot.

Many researchers focus their interests on the serpentine

locomotion to increase the environment adaptability of the

snake-like robot. The existing control modes of the locomo-

tion can be mainly divided into three categories [2]. First,

the curve based method controls the joint angles fitting a

reference curve to shape the robot [1], [3]. The method

produces diverse gaits easily, but the parameter changing and

gait transforming are clumsy and discontinuous. Second, the

model based method includes the rigid-body-model based

method [4] and the continuum-model based method [5]. The

limitation is that the dynamic model is too complicated,

and some predigested conditions are disabled in a real

environment. Third, the CPG based method uses nonlinear

differential equations to generate rhythmical traveling waves

[2], [6], [7]. The sensory information can be integrated

into the method. However, modulating the parameters for
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different gaits is difficult, because of the intractability of the

nonlinear equations.

The mentioned methods neglect the energy effect in the

serpentine locomotion. We have presented passive creeping

integrating the energy-based control with the basic gait to

control the snake-like robot in [8]. Comparing to the previous

work, we analyze the orbital stability and the environment

adaptability of the passive creeping, and propose an optimal

adaptive law to perfect the method in this paper. The work

can be considered as a step toward insightfully understanding

and effectively controlling the serpentine locomotion. Ac-

cording to the analysis in the paper, we can summarize the

advantages of the passive creeping as follows: 1) The concept

of the method including the environment effect, dynamics

effect and generalized gait is comprehensive; 2) The control

strategy is explicit, because that regulating the input torque,

evaluating the locomotion and constructing the adaptive law

all focus on the kinetic energy; 3) The robot adapts to the en-

vironments according to the energy state inherently, without

measuring the environments or computing the dynamics.

II. CONCEPT OF PASSIVE CREEPING

The snake-like robot is an articulated mechanical system

as shown in Fig. 1. The length, mass, and inertia tensor of

the ith module (i = 3, . . . ,n. The 1st and 2nd module are

not referred to in the paper. See [9] for details) are li, mi,

and Ib
i , respectively. The configuration in coordinates can be

written as x =
[

x1,x2,x3,x4, . . . ,xn
]T

, where
[

x1,x2,x3
]T

is

the position and orientation in the inertial coordinates, and
[

x4, . . . ,xn
]T

represents the relative joint angles.

The concept of the passive creeping is recalled in the

section, and the details can be found in [8]. The kernel of

the method is the energy point of view. The kinetic energy

of the snake-like robot relates with the following aspects of

the serpentine locomotion.
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Fig. 1. Mechanism of a snake-like robot with passive wheels, but the head
module is not installed the wheel.
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First, the energy dissipation relates to the friction inter-

action. We describe the interaction effect between the robot

and the environment by using Coulomb friction as

fi =
[

−µ t
cmig·sgn(vt

s,i),−µn
c mig·sgn(vn

s,i)
]

(1)

for i = 3, . . . ,n − 1, where 1) vt
s,i and vn

s,i are the tangent

and the normal velocity along the robot’s body respectively;

2) g is the gravitational acceleration. 3) µ t
c and µn

c are the

friction coefficients in the tangent and the normal direction

respectively. Essentially, µ t
c is the dimensionless coefficient

of rolling friction (CRF) of the passive wheel, and µn
c is the

coefficient of kinetic friction, so µn
c is one or two orders

of magnitude bigger than µ t
c. The dissipative power of the

energy led by the interaction effect can be written as

Pd =
n−1

∑
i=3

(

µn
c mig

∣

∣vn
s,i

∣

∣+ µ t
cmig

∣

∣vt
s,i

∣

∣

)

. (2)

Second, the energy transformation relates to the dynamics

of the serpentine locomotion. When the snake-like robot

winds the body continuously in order to push itself onwards,

the rotational kinetic energy ER transforms to the transla-

tional kinetic energy ET. These two kinds of energy can be

defined as

ER =
1

2

n

∑
i=3

(

ωb
s,i

)T

Ib
i ωb

s,i, ET =
1

2

n

∑
i=3

mi

(

υb
s,i

)T

υb
s,i. (3)

where ωb
s,i and υb

s,i are the angular and the linear velocity

component of the body velocity of the ith module respec-

tively. ET is directly correlated with the forward velocity

of the robot along the trajectory. The proportion of the

translational kinetic energy to the whole kinetic energy η2 is

a special quantity describing the efficiency of the serpentine

locomotion in a stable state, and can be written as

η2 =
ET

ER +ET
. (4)

Third, the serpentine locomotion relates to the energy

balance among the numerous joints, because the locomotion

is the resulting effect of the movements in many joints.

Biologically, the head-to-tail undulatory wave along the body

propels a snake onwards. The phase order of the joint angles

can be found from the snake motion clearly. According to

the priori knowledge, dynamic shift is proposed as

τn−i = An−i

(

xn−i+1(t)− xn−i(t)
)

(5)

for i=1, . . . ,n−4, where An−i is a proportional coefficient.

The latter joint is impelled to follow the former. The dynamic

shift considered as a generalized gait expects to realize the

synchronization of the joint movements. In [5], Date et al.

deduced the joint torque being similar to (5) mathematically.

The concept of the passive creeping is depicted in Fig. 2.

The dynamic shift produces the serpentine locomotion ten-

dency; the environment affects the movement through the

energy dissipation; and the robot dynamics influence the

motion through the energy transformation.

Accordingly, we propose a control method of the snake-

like robot integrating the dynamic shift with the energy-based

Joint Joint Joint Joint
Dynamic

shift

Environment

Energy dissipation

Energy transformation Passive
creeping

Dynamics

Fig. 2. Concept of the passive creeping combining the energy point of
view and the basic property of the serpentine locomotion.

feedback as shown in Fig. 3. The mathematic equations of

the passive creeping control are as follows.

� Control torque of head joint:

τn =aIn

∣

∣

∣

∣

Kn

(

∫ t

0
(Eref −E)dt

)

+Eref −E

∣

∣

∣

∣

·
(

ẍn
d + kd (ẋ

n
d − ẋn)+ kp (x

n
d − xn)+ϕt

)

(6)

� Control torque of body joint:

τn−i = Kn−i

(

∫ t

0
(Eref −E)dt

)

(

xn−i+1 − xn−i
)

(7)

for i= 1, . . . ,n−4, where 1) a, kd, and kp are three coeffi-

cients; 2) In is the moment of inertia of the head module

around the head joint axis; 3) K =
[

Kn,Kn−1, . . . ,K4

]T
is a

vector of the integrating amplification factors; 4) xn
d is a

reference angle of the head joint; 5) ϕt is a turning parameter;

6) Eref and E are the reference and the real mechanical energy

respectively. The reference energy Eref is used to adapt to

the various environments, but it is considered as an ordinary

control parameter before an adaptive law is proposed.

refE
E

x

−

τ

K

Dynamic shift
Snake-like robot

+

tϕ

∫

Fig. 3. Elementary control of the passive creeping. The generation of the
basic movement tendency is distributed in the bottom layer; the adaption to
the environment is concentrative in the middle layer; and the head joint is
affected by an external excitation to lead the locomotion in the top layer.

The head joint torque τn implements the top-level control,

such as turning, and is based on the computed torque

control.
∣

∣Kn

(
∫ t

0 (Eref −E)dt
)

+Eref −E
∣

∣ which is PI control

has two functions as: 1) compensating the steady energy error

because of the integral part, and 2) quickening the startup
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TABLE I

BASIC PARAMETER OF SIMULATION STUDY

Parameter name Symbol Value

Number of real units n′ = n−2 10

Length of the ith unit li 0.08 m

Mass of the ith unit mi 0.50 kg

Inertia of the ith unit Ib
i 0.00027 kg·m2

Time step of simulation T 0.01 s

Reference angle xn
d 0.5sin(2t +π/2) rad

Other factors

a 10.0

kd 1.0

kp 1.0
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Each real unit of the snake-like robot is of the same length, mass, and
inertia respectively. In addition, the physical parameters are based on the
snake-like robot in SIA, and the control coefficients are empirical.

due to the proportional term. Correspondingly, the body joint

torques τn−i’s realize the serpentine locomotion. The energy

error integral
∫ t

0 (Eref −E)dt has the following two functions:

1) adjusting the amplitude of the body joint based on the

energy control, and 2) adapting the body wriggling amplitude

to the uncertain environment. To distinguish the different

tasks of the head and the body module, the passive wheel is

not installed on the head module as shown in Fig. 1.

The passive creeping is studied sequentially in a simula-

tion environment based on Open Dynamics Engine (ODE).

The basic fixed parameters of the simulations are presented

in Table I. The variable parameters are the environment

parameters (i.e., µn
c and µ t

c) and the control parameters

(i.e., Eref and ϕt). The effect of the turning parameter on

the serpentine locomotion is explicit. If ϕt = 0, the robot

moves straight. Otherwise, the robot turns right or left. For

convenience, a triple (Eref,µ
n
c ,µ

t
c) is used to denote the

variable parameters when the turning parameter ϕt is zero.

III. STABILITY OF PASSIVE CREEPING

By comparing the configurations, torques and angles in

the initial stage with those in the final state in Fig. 4, the

movement of the passive creeping is a dynamic process from

an unordered state to an ordered state. The energy can reach

the reference value with fluctuation, but cannot converge at it

as shown in Fig. 5. This is because that the head swing which

is a persistent exciting effect leads the fluctuation, and the

control law cannot forecast the complex relationship between

the swing and the fluctuation. The slight energy fluctuation

is intricate but endurable in the serpentine locomotion.

The stability in the sense of Lyapunov is most acceptable.

However, the following difficulties, e.g., energy fluctuation,

nonlinear high-dimensional dynamics, and nonexistence of

a fixed-frequency orbit, make it hardly to use the analytical

method to prove the stability. We use the maximal Lyapunov

exponent λ to describe the stability of the passive creeping.
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Fig. 4. Initial creeping state and final creeping state with the variable
parameters (0.5, 0.50, 0.010). (See the attached video for more details.)
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Fig. 5. Kinetic energy of the snake-like robot under the passive creeping.

The exponent is a quantity that characterizes the exponential

rate of divergence or convergence of infinitesimally close

trajectories in a phase space [10]. Because the joint move-

ments which represent the locomotion mode are interested,

the position and orientation of the robot in the inertial

coordinates are not included in the phase space. Therefore,

the movement state in the phase space can be written as

z = [x4, . . . ,xn, ẋ4, . . . , ẋn]. Quantitatively, λ is determined by

δ (t)≃ δ (0)eλ t (8)

where δ (t) = ‖z1(t)− z2(t)‖∞ is the distance some time t

ahead between the two trajectories emerging from two close

initial points z1(0) and z2(0). According to (8), we estimate

λ as shown in Fig. 6. At the initial stage (A), the system

is divergent, because the energy is injected by the motors.

After startup (B), the energy is also injected, while the

environment friction leads the dissipation. Wholly, the energy

of the system is increased (Fig. 5). The serpentine locomotion

is gradually established and rhythmized under the persistent

excitation of the passive creeping at this stage, so λ < 0

and the phase volume decreases. At the final stage (C), the

injected and the dissipated energy are in a dynamic balance,

so λ ≈ 0 and the phase volume is invariable. A limit cycle is

generated in the phase space finally. Therefore, the passive

creeping with certain parameters is locally orbit-stable.

The above method is suitable for the qualitative analysis

not the quantitative, because of nonexistence of a fixed

frequency orbit and the non-visualization of the high dimen-

sional space. A recurrence plot (RP, [11]) can investigate the

high-dimensional phase trajectory through bringing out the
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Fig. 6. Estimation of the maximal Lyapunov exponent λ of the passive
creeping with the variable parameters (0.5, 0.50, 0.010). In the logarithmic
presentation of the distance δ (t) over time, the slope of the fitted regres-
sion line (dashed) corresponds to λ . From nine distance sequences, the
estimations for λ ’s in the time intervals (B) and (C) are at −0.059±0.009
(mean±SD) and 0.000±0.005, respectively.

recurrence of states in a time series. The RP is shaded within

a two-dimensional square matrix with black and white dots

to visualize the recurrence. The black dot at (i, j) marks the

recurrence of the state between the time i and the different

time j. The mathematical expression of the RP is as

R(i, j) = Θ(ε −‖y(i)− y( j)‖∞) (9)

where y(i) =
[

x4(i),x5(i), . . . ,xn(i)
]T

with the embedding

dimension n− 3, Θ(·) is the Heaviside step function, and

ε is a threshold distance with ε = 0.2 (rad). The RP of the

time series of the passive creeping is plotted in Fig. 7, and

the black diagonal lines (meaning the periodic recurrence)

distinctly indicate that the snake-like robot implements the

stable coordinate movement after the 7th second. In essence,

the recurrence of the states in the phase space suggests

the Poisson stability. Furthermore, recurrence quantification

analysis quantifies the small scale structures in the RP

beyond the visual impression. According to the quantitative

analyses of the passive creeping in the different stages as

shown in Fig. 8, we can conclude that: 1) The determinism

of the movement (DET, L, and Lmax) is increased, and the

divergence of the trajectory (DIV, or the reciprocal of L and

Lmax) is decreased. That is, the passive creeping becomes

insensitive to the initial conditions, and is robust-stable to

some extent. 2) The recurrence and correlation among the

joint movements (RR and ENTR) is increased in creeping.

This means the synchronization is established gradually,

and the energy assignment becomes balanced. Note that the

stability of the passive creeping concluded from the above

analyses is local but not global. These numerical methods

are compromises before an analytic approach is useable.

IV. ADAPTABILITY OF PASSIVE CREEPING

On the foundation of stability, we analyze the adaptability

of the passive creeping to the environments with the variable

parameters varying over a broad range. The variations of

the average joint angle amplitude, the average energy error

integral, and the average energy proportion in the stable

stage are plotted in Fig. 9. The following conclusions can

be obtained as: 1) The bigger reference energy Eref leads to
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the bigger angle amplitude and error integral, but the smaller

energy proportion wholly. 2) The smaller tangential Coulomb

friction coefficient µ t
c results in the smaller angle amplitude

and error integral, but the bigger energy proportion. 3) When

the normal Coulomb friction coefficient µn
c is big enough to

sustain the serpentine locomotion, the angle amplitude and

the energy proportion are almost invariable with the different

Eref’s, and µn
c can hardly influence the three values here. 4)

When µn
c is too small to sustain the locomotion, the snake-

like robot skids sideways on the slippery ground. Here, the

angle amplitude increases, the energy proportion decreases,

and the error integral undulates acutely. 5) The bigger Eref

is set, the more easily the robot skids, and the bigger µn
c

is needed to avoid skidding. In short, the reference energy

describes the intensity of the serpentine locomotion; the

tangential friction decides the performance of the movement;

and the normal friction sustains the movement.
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t
c). Eref is set at 0.3(J), 0.5(J), 0.7(J), or 1.0(J), experientially. µn

c and µ t
c vary

in the range of [0.05,0.50] and the range of [0,0.030], respectively. The ranges of the friction coefficients are based on the variation of the coefficient of
kinetic friction between the wheel (rubber) and the floor, and the variation of the dimensionless coefficient of rolling friction of the passive wheel (bearing),
respectively. The value of each point is the average in the stable state of the passive creeping during the time ranged [100,120] second. Each centric
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Before skidding, the different environments with the dif-

ferent friction coefficients are all same to the snake-like

robot, because the environments sustain the robot to creep

alike. Even the environment force can not be calculated from

the dynamic equations, because the environment interaction

is overconstrained (i.e., there are many contact points on the

robot interacting with the environment at the same time).

On the other hand, when the movement of the robot is too

violent and the environments can not sustain the movement,

the different environments behave disparately because of the

different upper bounds of the push force affording by the

environments (See (1)). The movement capability decreases

acutely, once the robot begins to skid as shown in Fig. 10.
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to be in skidding at about the 55th second with the variable parameters
(1.3,0.30,0.012). The right column is always in unskidding with the variable
parameters (1.0,0.30,0.012).

Observing Fig. 10, when the snake-like robot skids, the

average energy proportion decreases sharply and the torque

amplitude increases greatly. Although the torque amplitude

in the skidding sample is more than twice as big as that

in the unskidding, the translational kinetic energy of the

skidding one (0.4869 (J)) is much less than that of the

unskidding (0.6464 (J)). Therefore, the skidding is a dan-

ger to the serpentine locomotion. How can the snake-like

robot avoid skidding and optimally adapt to the different

environments? Apparently, the robot can not try to measure

the environment directly, because the real environment is

too complex. Additionally, the robot can not compute the

environment force in real time, because of overconstraint.

The average energy proportion η̄2 is selected to use in the

optimal adaptation, but not the torque amplitude (which was

used to detect the friction coefficient in [7]). The reasons

are listed as follows: 1) The average energy proportion is

dimensionless with a normalized variation range [0,1], but

the torque amplitude is of the range [0,∞). The change of the

former can be estimated more easily. 2) The average energy

proportion, relating to the energy transformation in the stable

state, can be directly used in the energy optimization.

Accordingly, the concepts “skid” and “efficient” of the

serpentine locomotion of the snake-like robot are quantified

by the average energy proportion η̄2 as

Rule I: If η̄2 < 0.50, then the snake-like robot skids.

Rule II: If η̄2 > 0.75, then the creeping is efficient.

Rule II is mostly based on Rule I and observation (Fig. 9(c)).

Now, we explain Rule I qualitatively as follows:

From the basic assumption of the snake-like robot (i.e.,

friction anisotropy), we obtain that µn
c ≫ µ t

c. When in the

unskidding movement, vn
s,i = 0; and when in the skidding

movement, vn
s,i and vt

s,i are supposed in the same order of

magnitude, so µn
c mig|v

n
s,i| ≫ µ t

cmig|v
t
s,i|. Therefore, when the

robot skids, the dissipative power Pd greatly increases (See

(2)). The control of the passive creeping attempts to hold the

kinetic energy E invariable. Consequently, the torque τ must

increase, and the rotational kinetic energy ER increases. On

the other hand, the upper bound of the friction is invariable

in the same environment whether the robot skids or not

(from (1)), so the forward push force acting on the robot

is invariable almost. Consequently, the translational energy

ET can not increase when skidding. Furthermore, because

ER increases and E holds invariable, ET can only decrease.

According to (4), the energy proportion η2 will greatly

decrease when the snake-like robot skids. In addition, the

range of η2 being [0,1] and the variation of η̄2 in Fig. 9(c)

make us to experientially set the critical value at 0.5.
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According to Rule I, the adaptive method is designed to

perfect the passive creeping as shown in Fig. 3. Only the

reference energy Eref can be use to construct an optimal

adaptive law for the environments as follows,

max Eref

s.t. η̄2 ≥ 0.5 (10)

(Eref +∆Eref) (η̄2 +∆η̄2)> Erefη̄2

where ∆Eref is the turning value of Eref such that the robot

tentatively adapts to the unknown environment, and ∆η̄2 is

the change of η̄2 with the turning of Eref. The first constraint

is used to avoid skidding according to Rule I, and the second

insures the average translational kinetic energy ĒT increased.

In fact, after the transient process, ĒT ≈ Erefη̄2. The adaptive

law (10) searches Eref so as to ĒT maximal apparently. In

essence, the law searches the most intensive movement in the

range of the movements which the environment can sustain.

Thus, the adaptive law is disabled when the environment is

too slippery to sustain any serpentine locomotion.

We explain the optimal adaptive law by using an example

as shown in Fig. 11. The robot implements the passive

creeping in an unknown environment. Initially, the robot is

skidding in Stage A2. According to the adaptive law (10),

Eref is decreased in order to avoid skidding first (Stages B,

C, and D), and then to optimize the energy (Stages D and

E). Decreasing Eref means lessening the movement intensity.

From the figure, τn−2, η2, and ET fluctuate acutely after the

change of Eref, so the dwell time in each stage should be

much longer than the transient time in order to eliminate the

transient process. The on-line locomotion can not allow the

robot to slowly test every possible Eref in the finite time, so

the adaptive step is tentative and the optimization is local.

The snake-like robot adapts to the unknown environment

only based on the kinetic energy without the environment

information ([6]) or dynamic model ([4]). The velocity of the

control parameter change is much slower than the velocity

of the transient process. Thus, the optimal adaptive law dose

not influence the stability of the passive creeping. Finally, we

have introduced the passive creeping with the environment

adaptability completely as shown in Fig. 3.

V. CONCLUSION

We have recalled the concept of the passive creeping,

including the dissipation, transformation, and assignment of

the energy in the serpentine locomotion. The control law

of the passive creeping which integrates the energy process

with the basic gait (i.e., dynamic shift) through the energy-

based feedback has been introduced. The snake-like robot

can implement the stable serpentine locomotion under the

method. The local orbital stability has been explained by

using the maximal Lyapunov exponent and the recurrence

plot. Moveover, the adaptability to the environment has been

analyzed, and the optimal adaptive control based on the

kinetic energy is used to perfect the passive creeping. The

particular advantage of the method is that the snake-like

robot can adapt to the environments with different friction
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Fig. 11. An example about the adaptive process of the passive creeping.
The initial stage A1 is in the startup with the reference energy Eref being
1.3. In stage A2, the reference energy Eref, the average energy proportion
η̄2, and the average translational kinetic energy ĒT are 1.3, 0.37, and 0.44,
respectively. The rest can be read in the same manner. The environment
parameters µn

c and µ t
c, which are unknown to the snake-like robot, are 0.30

and 0.012 respectively. (See the attached video for more details.)

coefficients according to the energy state itself, so the envi-

ronment information and the dynamic model are not needed

to the adaptive process. In addition, each control parameter

in the method has the explicit meaning and function. Finally,

the measure of the kinetic energy is a difficulty, and we use

an Optotrak Certusr motion capture system to obtain the

kinetic energy in the experiment which is ongoing.
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