
Trajectory Planning for Robots in Dynamic Human Environments

Mikael Svenstrup, Thomas Bak and Hans Jørgen Andersen

Abstract— This paper presents a trajectory planning algo-
rithm for a robot operating in dynamic human environments.
Environments such as pedestrian streets, hospital corridors,
train stations or airports. We formulate the problem as planning
a minimal cost trajectory through a potential field, defined
from the perceived position and motion of persons in the
environment.

A Rapidly-exploring Random Tree (RRT) algorithm is pro-
posed as a solution to the planning problem, and a new method
for selecting the best trajectory in the RRT, according to the cost
of traversing a potential field, is presented. The RRT expansion
is enhanced to account for the kinodynamic robot constraints by
using a robot motion model and a controller to add a reachable
vertex to the tree.

Instead of executing a whole trajectory, when planned, the
algorithm uses a Model Predictive Control (MPC) approach,
where only a short segment of the trajectory is executed while
a new iteration of the RRT is computed.

The planning algorithm is demonstrated in a simulated
pedestrian street environment.

I. INTRODUCTION

As robots integrate further into our living environments,
it becomes necessary to develop methods that enable them
to navigate in a safe, reliable, comfortable and natural way
around humans.

One way to view this problem is to see humans as dynamic
obstacles that have social zones, which must be respected.
Such zones can be represented by potential fields [1], [2].
The navigation problem can then be addressed as a trajectory
planning problem for dynamic environments with a potential
field representation. Given the fast dynamic nature of the
problem, robotic kinodynamic and nonholonomic constraints
must also be considered.

In the recent decade sampling based planning meth-
ods have proved successful for trajectory planning [3].
They do not guarantee an optimal solution, but are often
good at finding solutions in complex and high dimensional
problems. Specifically for kinodynamic systems Rapidly-
exploring Random Trees (RRT’s), where a tree with nodes
correspond to connected configurations (vertices) of the robot
trajectory, has received attention [4].

Various approaches improving the basic RRT algorithm
have been investigated. In [5], a dynamic model of the robot
and a cost function is used to expand and prune the nodes
of the tree. A Model Predictive Control (MPC) approach is
taken, where only a small part of the trajectory is executed,

M. Svenstrup and T. Bak are with the Department of Electronic Sys-
tems, Automation & Control, Aalborg University, 9220 Aalborg, Denmark
{ms,tba}@es.aau.dk

H.J. Andersen is with the Department of Media Technology, Aalborg
University, 9220 Aalborg, Denmark hja@imi.aau.dk

while a new trajectory is calculated. When expanding a
vertex, a random vertex and a random control input is chosen.

In [6], an approach for better choices of vertices to expand,
is proposed. It is based on a reachable set of configurations
for each vertex.

It is often desirable to run the planning algorithm in real
time, hence requiring bounded solution time. One approach
is to use anytime algorithms, which initially find a quick
suboptimal solution, and then keep improving the solution
until time runs out [7].

Methods for incorporating dynamic environments, have
also been investigated. Solutions include extending the con-
figuration space with a time dimension (C − T space), in
which the obstacles are static [8], as well as pruning and
rebuilding the tree when changes occur [9], [10].

All these result only focus on avoiding collisions with
obstacles. However, there have been no attempts to navigate
through a human crowd taking into account the dynamics of
the environment and at the same time generate comfortable
and natural trajectories around the humans. E. Hall [11] has
analysed how people position themselves socially relative to
each other. He divides the area around a person into four
zones (public, social, personal and intimate). These zones
can be used to plan how a robot should move to make the
motion natural and comfortable.

In this paper will formulate the problem of navigating
through a dynamic human environment, as planning a tra-
jectory through a potential field. The overall mission of the
robot is, to move forward through the environment with a
desired average speed and direction, which can be set by a
top level planner. This paper contributes by enhancing the
basic RRT planning algorithm to accommodate for naviga-
tion in a potential field and take into account the kinodynamic
constraints of the robot. The RRT is expanded using a control
strategy, which ensures feasibility of the trajectory and a
better coverage of the configuration space. The planning is
done in C−T space using an MPC scheme to incorporate the
dynamics of the environment. To be able to run the algorithm
on-line, the anytime concept is used to quickly generate a
possible trajectory. The RRT keeps being improved until a
new trajectory is required by the robot, which can happen at
any time.

The trajectory planning problem is formulated in Section
II, and the algorithm for generating the trajectory is described
in Section III. Finally in Sections IV-V the algorithm is
demonstrated in an experiment, where the robot plans the
trajectory through a simulated pedestrian street.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4293

II. TRAJECTORY GENERATION PROBLEM

A. Robot Dynamics

The robot is modelled as a unicycle type robot, i.e. like a
Pioneer, an iRobot Create or a Segway. A good motion model
for the robot is necessary because it operates in dynamic
environments, where even small deviations from the expected
trajectory may result in collisions. So instead of using a
purely kinematic robot model of the robot, it is modelled as a
dynamical system, with accelerations as input. This describes
the physics better, since acceleration and applied force are
proportional. This dynamical model can be described by the
five states:

x(t) =

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

 =

x(t)
y(t)
v(t)
θ(t)
θ̇(t)

→ x position
→ y position
→ linear velocity
→ rotation angle
→ rotational velocity

(1)

The differential equation governing the robot behaviour is:

ẋ(t) = f (x(t),u(t)) =

ẋ(t)
ẏ(t)
v̇(t)
θ̇(t)
θ̈(t)

=

v(t) cos(θ(t))
v(t) sin(θ(t))

uv(t)
θ̇(t)
uθ(t)

 =

x3(t) cos(x4(t))
x3(t) sin(x4(t))

u1(t)
x5(t)
u2(t)

 (2)

where u1 = uv is the linear acceleration input and u2 = uθ
is the rotational acceleration input.

Without loss of generality the starting time can be set to
0, and the trajectory is then calculated as:

x(t) = x(0) +
∫ t

0

f (x(τ),u(τ)) dτ (3)

B. Dynamic Potential Field

The value of the potential field, denoted G, at a point in
the environment is calculated as a sum of the cost associated
with three different aspects:

1) A cost related to the robots position in the environment
without obstacles. For example high costs might be
assigned close to the edges.

2) A cost associated with the robot position relative to
humans in the area.

3) A cost rewarding moving towards a goal.
The combined cost can be written as:

G(t) = g1(x(t))) + g2(x(t),P(t)) + g3(x(t)) . (4)

P(t) is a matrix containing the position and orientation of
persons in the environment at the given time. g1(x), g2(x)
and g3(x) are the three cost functions. They are further
described below.

1) Cost related to environment: This cost function is
currently designed for non agoraphobic behaviour of the
robot, i.e. in open spaces, such as a pedestrian street. It has
the shape of a valley, such that it is more expensive to go
towards the sides, but cheap to stay in the middle:

g1(x(t)) = cyy
2(t) (5)

where cy is a constant determining how much the robot is
drawn towards the middle.

2) Cost of proximity to humans: This is not a straightfor-
ward calculation, and for more detail, see [2]. The shape
of the potential field is related to how humans position
themselves around others, and is based on Hall’s proxemic
distances [11]. For example the potential is lower in front
of the person than behind, because it is more comfortable to
have other persons, where you can see them.

Fig. 1 shows a potential field around a person. The person
stands in the point (0, 0) and is looking to the left. A robot
should try to move towards the lower parts of the potential
function, i.e. towards the dark blue areas, and avoid the red
area. The formula for calculating the potential around one
person is a summation of four normalized bi-variate Gaussian
distributions:

g2(x1:2) =
4∑
k=1

ck exp(−1
2

[x1:2 − 0]TΣ−1
k [x1:2 − 0]) (6)

where ck are a normalizing constants, x1:2 are the first two
states of the robot state, i.e. the position relative to the person,
where the cost function is evaluated. 0 is the position of the
person, in this case the origin, and Σk are the covariances
of each of the Gaussian distributions. The covariances are
adjusted according to the orientation of the person. The total
cost, g2 is a summation over all of the persons in the area.

Fig. 1. Potential field around a person standing at (0, 0) and looking to
the left. The robot should try to get towards the lower points, i.e. the dark
blue areas. The size of the person in this figure is approximate equal to a
normal human being.

3) Cost of end point in trajectory: The cost at the end
point penalizes if the robot does not move forward, and if the
robot orientation is not in a forward direction. An exponential
function is used to penalize the position. It is set up such that
short distances are penalized much, while it is close to the

4294

same value for larger distances, i.e. it does not change much
if the robot goes 19 or 20 meters from its starting position.

g3(x(t)) = ce1 exp(ce2(x(t)− x̃(0))) + cθθ
4(t) , (7)

where c(·) are scaling constants and x̃(0) is the desired
position at t = 0. The reason that θ is raised to the fourth,
is to keep the term closer to zero in a larger neighbourhood
of the origin. This means that the robot will almost not be
penalized for small turns. On the other hand larger turns, like
going the wrong way, will be penalized more.

C. Minimization Problem

Given the above cost functions a potential landscape may
be formed. Fig. 2 illustrates an example of a pedestrian street
landscape with five persons. The robot is initially positioned
at position (2, 0) and has to move to the right. The area
is bounded to be 20m wide, i.e. 10m to each side of the
robot from the initial position. Examples of three different
randomly chosen trajectories are shown in the figure.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 2. Person potential field landscape, which the robot has to move
through. The robot starting point is the green dot at the point (2, 0). Three
examples of potential robot trajectories are shown.

At a first glance it looks like all three trajectories would
run into at least one human, but since the persons move
while the robot advances along the trajectory, this might not
be the case. Conversely the robot may also run into a person,
who was not originally on the path. Therefor it is important
to take into account the dynamics of the obstacles (i.e. the
humans), when planning trajectories.

If the current time is t = 0, the planning problem can
be posed as follows. Given an initial robot state x0, and
trajectory information for all persons until the given time
P̃start:0. Determine the control input ũ0:T , which minimizes
the cost of traversing the potential field, subject to the
dynamical robot model constraints:

minimize I(ũ0:T) = (8)Z T

0
[g1(x(t)) + g2(x(t),P(t))] dt + g3(x(T))

s.t. ẋ(t) = f (x(t),ut)

where g1(x(t)) = cyx2(t)2

g2(x(t),P(t)) =
pX
j=1

4X
k=1

ck exp(−
1

2
[x1:2 − µj]TΣ−1

j,k[x1:2 − µj])

g3(x(T)) = ce1 exp(ce2(x1(T)− x1(0))) + cθx
4
4(T),

were x1:2 = [x1(t), x2(t)] is the position of the robot at
time t, ũ0:T is the discrete input sequence to the robot. T
is the ending time horizon of the trajectory, gx(·) are cost
functions and p is the number of persons in the area. The
position and orientation of all persons at time t is given by
P(t) and µj is the center of the j-th person at a given time.

To be able to calculate the cost of a trajectory according
to Eq. (8), only the person trajectories remains to be de-
fined. A simple model is that the person will continue with
the same speed and direction [12]. More advanced human
motion models could be used without changing the planning
algorithm, but it is outside the scope of this paper to derive
a complex human motion model.

III. RRT BASED TRAJECTORY PLANNING

The structure of the planning algorithm can be seen in
Fig.3. The idea is that while a trajectory is executed, a new
is calculated on-line. Input to the trajectory planner is the
previous best trajectory, the person trajectory estimates, and
the dynamic model of the robot.

Execute Trajectory
in Real World

Seed Tree Find
Nearest
Vertex

RRT Trajectory Planner

Pick Best
Trajectory

Estimate Person
Trajectories

Dynamic Robot Model

Sample
Random

Point

Extend
Tree

T < Tplanning

T ≥ Tplanning

Fig. 3. The overall structure of the trajectory generator. The blue real
world part and the red trajectory planning part are executed simultaneously.

The minimization problem stated in Eq. (8) is addressed
by RRT’s. A standard RRT algorithm is shown in Algorithm
1, where the lines 4, 5, 6 correspond to the three blocks in
the larger RRT Trajectory Planner box in Fig. 3.

The method presented here differs from the standard
RRT in lines 1, 3, 6, 9, which are marked red. Furthermore,
between line 6 and 7, node pruning is introduced. Since an
MPC scheme is used, only a small portion of the planned
trajectory is executed, while the planner is restarted to plan
a new trajectory on-line. When the small portion has been
executed, the planner has an updated trajectory ready. To
facilitate this, the stopping condition in line 3 is changed.
When a the robot needs a new trajectory, or when certain
maximum number of vertices have been extended, the RRT
is stopped. Even though the robot only executes a small part
of the trajectory, the rest of the trajectory should still be valid.
Therefore, in line 1, the tree is seeded with the remaining
trajectory.

In line 9 the trajectory with the least cost is returned,
instead of returning the trajectory to the newest vertex. The

4295

Algorithm 1 Standard RRT (see [13])
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Dist(q.new , q.goal) < ErrTolerance do
4: q.target = SampleTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

SampleTarget()
1: if Rand() < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

tree extension function and the pruning method are described
below.

A. RRT Control Input Sampling
When working with nonholonomic kinodynamic con-

strained systems, it is not straightforward to expand the
tree towards a newly sampled point in the configuration
space (line 6 in Algorithm 1). It is a whole motion plan-
ning problem in itself to find inputs, that drive the robot
towards a given point [14]. The algorithm proposed here
uses a controller to turn the robot towards the sampled point
and to keep a desired speed. A velocity controller is set
to control the speed towards an average speed around a
reference velocity. The probabilistic completeness of RRT’s
in general, is ensured by the randomness of the input. So
to maintain this randomness in the input signals, a random
value sampled from a Gaussian distribution is added to the
controller input. The velocity controller is implemented as
a standard proportional controller. The rotation angle is a
second order system with θ and θ̇ as states, and therefore a
state space controller is used for control of the orientation.
The control input can be written as:

u =

»
u1

u2

–
=

»
kv(µv − v(t))

kθ1(φpoint − θ(t))− kθ2θ̇

–
+

»
N (0, σv)
N (0, σθ)

–
. (9)

µv is the desired average speed of the robot and φpoint is the
angle towards the sampled point. k(·) are controller constants
and σv, σθ are the standard deviations of the added Gaussian
distributed input.

The new vertex to be added to the tree is now found by
using the dynamic robot motion model and the controller to
simulate the trajectory one time step. This ensures that the
added vertex will be reachable.

B. Tree Pruning and Trajectory Selection

A simple pruning scheme, based on several different
properties of a node, is used. If the vertex corresponding to
the node ends up in a place where the potential field has a
value above a specific threshold, then the node is not added to
the tree. Furthermore a node is pruned if |θ(t)| > π

2 , which
means that the robot is on the way back again, or if the

simulated trajectory goes out of bounds of the environment.
It is not desirable to let the tree grow too far in time, since
the processing power is much better spend on the near future,
because of the uncertainty of person positions further into the
future. Therefore the node is also pruned if the time taken to
reach the node is above a given threshold. Finally, instead of
returning the trajectory to the vertex of the last added node,
the trajectory with the lowest cost (calculated from Eq. (8)),
is returned. But to avoid the risk of selecting a node, which
is not very far in time, all nodes with a small time are thrown
away before selecting the best node.

The final algorithm is shown in Algorithm 2.

Algorithm 2 Modified RRT for human environments
RRTmain()

1: Tree = q.oldBestTrajectory
2: while (Nnodes < maxNodes) and (t < tMax) do
3: q.target = SampleTarget()
4: q.nearest = NearestVertex(Tree , q.target)
5: q.new = CalculateControlInput(q.nearest,q.target)
6: if PruneNode(q.new) == false then
7: Tree.add(q.new)
8: end if
9: end while

10: return BestTrajectory(Tree)
SampleTarget()

1: if Rand < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

IV. SIMULATIONS

The above described algorithm is implemented, and
demonstrated to work on a simulated pedestrian street, as
shown in Fig. 2. The experiments consist of two parts.
First, the algorithm is applied on the environment shown
in Fig. 2. This will demonstrate that the algorithm is capable
of planning a trajectory, which does not collide with any
persons. It will also demonstrate how the tree expands. The
algorithm is compared to an algorithm where a random
vertex and a random control input is chosen, as suggested
in [4] and used to different extends in e.g. [5], [6]. Next,
a simulated navigation through several randomly generated
worlds is performed. This will demonstrate the robustness of
the algorithm over time.

The following parameters for the potential field are used:
cy = 0.1, ce1 = 20, ce2 = −0.1, cθ = 10, and the parameters
for the Gaussian distributions can be seen in [2]. The poles
of the controllers, the reference velocity and the standard
deviation of the velocity input, are the only other parameters
to set. The poles have experimentally been determined, such
that the robot has a relatively quick response, but the exact
pole placement does not influence the trajectory generation
much. The pole of the velocity controller is placed in s =

4296

−2, and both the poles of the rotational controller are placed
in s = −2 as well. The standard deviation of the added
random velocity input is set to σv = 2ms and the standard
deviation of the rotational input is set to σθ = 0.5 rads . The
reference velocity is set to 1.5ms , which is considered as a
normal human walking speed.

A. Robustness Test

The robustness test is performed in 50 different randomly
generated environments, where the robot has to navigate
forwards in one minute. With an average speed of 1.5ms , this
corresponds to the robot moving approximately 90m ahead
along the street. In each simulation the robot’s initial state
is:

x0 = [2 0 0 0 0]T (10)

First the motion of all the persons in the world are simulated.
Initially a random number of persons (between 10 and 20)
are placed randomly in the world. Their velocity is sampled
randomly from a Gaussian distribution. The motion of each
person is simulated as moving towards a goal 10m ahead
of them. The goal position of the y − axis of the street is
sampled randomly, and will also change every few seconds.
Additional Brownian motion is added to each person to
include randomness of the motion. Over time new persons
will enter at the end of the street according to a Poisson
process. This means that at any given time, persons will
appear and disappear at the ends of the street. Because of
this randomness, the number of persons can differ from the
initial number of persons, and ranges from 10 to around 40,
which is different for each simulation.

At each time instant, the robot will only know the current
position and velocity of each of the persons within a range
of 45m in front of the robot, and it has no knowledge about
where the persons will go in the future.

As it is a simulation, there is no real time performance
issues, and nothing has been done to optimize the code for
faster performance. So the tree is set to grow a fixed number
of 2000 vertices at each iteration. The planning horizon is
set to 20 seconds and at each iteration the robot executes 2
seconds of the trajectory, while a new trajectory is planned.

V. RESULTS

An example of a grown RRT, with 2000 vertices, from the
initial state can be seen in Fig. 4. The simulated trajectories
of the robot are the red lines, and the red dots are vertices
of the tree. It is seen how the RRT is spread out to explore
the configuration space, although only every 10th vertex is
plotted to avoid clutter on the graph. Note that the persons
are static at their initial position on the figure, and some
trajectories seem to pass through persons. But in reality, the
persons have moved when the robot passes the point of the
trajectory. The best of the all trajectories, which is calculated
using Eq. (8), is the green trajectory.

In Fig. 5 a RRT has been run for the same environment,
but by choosing a random vertex to expand, instead of the
one closest to a random sampled point. The algorithm is a
little faster, since it does not have to calculate distances to all

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 4. An RRT for a robot starting at (2, 0) and the task of moving
forward through the human populated environment. Only every 10th vertex
is shown to avoid clutter of the graph. The vertices are the red dots, and
the lines are the simulated trajectories. The green trajectory is the least cost
trajectory.

vertices. But as can be seen, the tree does almost not expand
over the configuration space.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 5. The RRT after 2000 expansions, where a random vertex is chosen
to be expanded. The tree expands very slow over the configuration space.
The lowest cost trajectory is shown in green.

An example of the tree after 2000 expansions, when
choosing the nearest vertex, but using a random control
input , is illustrated in Fig. 6. The configuration space is not
covered very well, since there are only two major branches
of the tree, and the top area above the first person has not
been explored at all. When comparing to Fig. 4, it is clear
that our control sampling method covers the configuration
space much better.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 6. An example of choosing random control input. The tree expands
better than if choosing random nodes, but it still does not cover the
configuration space very well. The lowest cost trajectory is shown in green.

In Fig. 7 a typical scene from one of the 50 simulations
can be seen. The blue dots are persons, and the arrows are

4297

velocity vectors, with a length proportional to the speed.
The black star with the red arrow, is the robot position and
orientation.

15 20 25 30 35 40 45 50 55
−10

 −5

 0

 5

 10
Time: 13.5s Number of persons: 39

Distance [m]

D
is

ta
nc

e
[m

]

Fig. 7. A scene from one of the 50 simulations. The blue dots are persons,
with their corresponding current velocity vectors. The black star is the robot.

In none of the 50 simulations the robot ran into a person.
This demonstrates that the algorithm is robust enough to
handle simulated human motion with changing goals and
additional random motion, even though using the simple
human motion model when planning. A few close passes
in the combined 50 minute run, down the pedestrian street,
are seen. But, as seen in Fig. 8, the robot stays out of the
personal zone of any of the persons in more than 97.5% of
the time, and out of the intimate zone (a distance closer than
0.45m) 99.7% of the time. This only occurs on 9 separate
instances of the 50 minutes of driving.

Intimate Personal Social Public
 0

10

20

30

40

50

60

tim
e

in
 %

Zones

0.3 %
d ≤ 0.45 m

2.2 %
0.45 m < d ≤ 1.20 m

45.7 %
1.20 m < d ≤ 3.60 m 54.8 %

d > 3.60 m

Fig. 8. The bar plot shows how large a part of the time the closest person
to the robot has been in each zone. The robot should try to stay out of the
personal and intimate zones. The distance interval for each zone, can also
be seen in the plot.

Except in very densely populated environments, the model
runs approximately one third of real time on a 2.0 GHz CPU
running MATLAB. This is considered to be reasonable, since
no optimization for speed has been done.

In very dense environments, the planning takes longer,
since many new added vertices, are pruned again, and hence
more points has to be sampled before 2000 vertices are
expanded. Additionally the more persons in the area, the
longer it takes to evaluate the cost of traversing the potential
field.

On average approximately 1
4 of the sampled points led

to an expansion of the tree and correspondingly 3
4 led to a

pruned node.

VI. CONCLUSIONS

In this paper a new algorithm for trajectory planning for
a kinodynamic constrained robot, has been described. The
robot is navigating in a highly dynamic environment, which
in this case is populated with humans. The algorithm is based
on RRT’s, but with a new trajectory selection method. The
method enables the costs of traversing a potential field to be
minimized, thereby supporting planning of comfortable and
natural trajectories. Further, a new control input sampling
strategy has been presented. This leads to better tree coverage
over the configuration space, than if sampling e.g. a random
control input. Together with a dynamic model of the robot,
an MPC scheme is used to enable the planner to continuously
plan a reachable trajectory on an on-line system.

The algorithm is challenged when the environments be-
come very densely populated, but so are humans. Humans
react by mutual adaptation and allowing violation of the
social zones. This is not done here, where the robot takes
on all the responsibility for finding a trajectory.

Potential future work include real life experiments, and
incorporation of human to human motion correlation into
the algorithm.

REFERENCES

[1] E. Sisbot, A. Clodic, L. Marin U., M. Fontmarty, L. Brethes, and
R. Alami, “Implementing a human-aware robot system,” in The 15th
IEEE International Symposium on Robot and Human Interactive
Communication, 2006. ROMAN 2006., 6-8 Sept. 2006, pp. 727–732.

[2] M. Svenstrup, S. T. Hansen, H. J. Andersen, and T. Bak, “Pose
estimation and adaptive robot behaviour for human-robot interaction,”
in Robotics and Automation, 2009. ICRA ’09. IEEE International
Conference on, Kobe, Japan, May 2009, pp. 3571–3576.

[3] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[4] S. LaValle and J. Kuffner Jr, “Randomized kinodynamic planning,”

The International Journal of Robotics Research, vol. 20, no. 5, p.
378, 2001.

[5] A. Brooks, T. Kaupp, and A. Makarenko, “Randomised mpc-based
motion-planning for mobile robot obstacle avoidance,” in Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 3962–3967.

[6] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 2859–2865.

[7] D. Ferguson and A. Stentz, “Anytime, dynamic planning in high-
dimensional search spaces,” in Proc. IEEE International Conference
on Robotics and Automation, 2007, pp. 1310–1315.

[8] J. van den Berg, “Path planning in dynamic environments,” Ph.D.
dissertation, Ph. D. dissertation, Universiteit Utrecht, 2007.

[9] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in Proc.
IEEE International Conference on Robotics and Automation ICRA
2006, 2006, pp. 1243–1248.

[10] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid
replanning in dynamic environments,” in Proc. IEEE International
Conference on Robotics and Automation, 2007, pp. 1603–1609.

[11] E. T. Hall, “A system for the notation of proxemic behavior,” American
anthropologist, vol. 65, no. 5, pp. 1003–1026, 1963.

[12] A. Bruce and G. Gordon, “Better motion prediction for people-
tracking,” in Robotics and Automation, 2004. ICRA ’04. IEEE Inter-
national Conference on, April 2004.

[13] D. Ferguson and A. Stentz, “Anytime rrts,” in Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2006, pp.
5369–5375.

[14] B. Siciliano and O. Khatib, Handbook of Robotics. Springer-Verlag,
Heidelberg, 2008.

4298

