
  

  

Abstract—Wheeled exploration robots are prone to slip 
during locomotion on deformable rough planetary terrain, 
which leads to loss of velocity and extra consumption of energy. 
Experimental results show that the power required for driving a 
wheel is an increasing function of its slip ratio; further, the 
tractive efficiency decreases rapidly after it reaches a peak value 
when the slip ratio is between 0.05 and 0.2. In this study, 
wheel-soil interaction terramechanics, which considers the slip 
ratio as an important state variable, is applied to analyze the 
quasi-static equations of a planar robot system. The slip ratios 
of wheels are controllable, but the degree of freedom is the 
number of wheels minus 1. A generalized algorithm for 
distributing the slip ratios of all the wheels of a robot to optimize 
the energy consumption is presented. Experimental and 
simulation results show that the “equal slip ratio” is at least a 
sub-optimal solution for optimizing energy consumption. 
Further, a more robust control method has been developed; this 
methods aims to equalize the slip ratios of all the wheels while 
maintaining a constant body velocity on rough terrains, without 
solving the values of the slip ratios. This method is verified by 
controlling a virtual four-wheeled robot using dynamics 
simulations. 

I. INTRODUCTION 
ASA’S Mars exploration rovers Sojourner, Spirit, and 
Opportunity have achieved beneficial results and greatly 

enhanced our knowledge [1]; moreover, their discoveries 
have led to a surge in planet exploration using wheeled 
mobile robots (rovers) such as the Mars rovers, MSL and 
ExoMars, and the lunar rovers from SELENE and Chang’E 
Missions [2]. Future planetary missions will require the robot 
to move on even more challenging deformable rough terrain 
than previously encountered [3]. Moreover, rovers will be 
required to perform more difficult tasks on such 
“roughormable” (portmanteau of “rough” and “deformable”) 
terrain autonomously with limited supervision from their 
operators. 

While traversing over the unstructured roughormable 
terrain of the moon or Mars, a wheeled robot is prone to slip, 
making it waste time and energy, or in the worst case, even 
get stuck [4, 5]. However, most motion planning and control 
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algorithms do not consider the physical characteristics of the 
rover and the planetary environment, thereby restricting the 
mobility performance. Iagnemma et al. understood this 
problem and developed a “physics-based” approach 
considering the terrain information, including the wheel-soil 
interaction mechanics, to optimize the motion of a rover [6–8]. 
They proposed a rough-terrain control (RTC) methodology, 
which exploits the actuator redundancy of multi-wheeled 
mobile robot systems to improve ground traction and reduce 
power consumption [8]. 

Yoshida et al. extended the “physics-based” approach 
based on terramechanics [9, 10]. They proposed a traction 
control method to reduce the slip ratio to a small value and to 
limit the driving torque to less than the maximum shear. On 
loose soil such as dry sand, the velocity control of a wheel 
results in undesirable situations wherein as the wheel spins, it 
penetrates into the soil; however, the slip-based control is 
effective in preventing such critical or undesirable situations. 
In order to avoid the “fight” among the wheels, Baumgartner 
et al. proposed a velocity synchronization algorithm. The 
velocities of different wheels are synchronized according to 
the deviations from the closed-loop position along the 
nominal velocity profile. Experiments with field integrated 
design and operation (FIDO) rovers verified that the method 
can decrease the required power and wheel slippage [11]. 

With the development of wheel-soil interaction 
terramechanics for planetary rovers, including experiments 
[12–13], mathematical models [14–15], and applications 
[16–19], the influence of the important state variable—wheel 
slip ratio—on energy consumption and rover velocity is well 
understood. Moreover, it has now become feasible to develop 
better control algorithms for both minimizing the energy 
consumption and compensating the velocity loss caused by 
wheel slip; this is the focus of this paper.  

In Section II, the influence of slip ratio on energy 
consumption is analyzed based on existing knowledge of 
wheel-soil interaction terramechanics. Section III analyzes 
the degrees of freedom (DOFs) for slip ratio control and 
designs a time-energy optimal control algorithm. Section IV 
verifies that the “equal slip ratio” is a sub-optimal solution of 
optimizing energy consumption and improves the control 
algorithm including compensation of velocity loss. Section V 
derives the inverse kinematics model of a four-wheeled robot 
moving on roughormable terrain. Finally, Section VI verifies 
the control algorithm based on dynamics simulation for a 
wheeled robot. 
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II. TERRAMECHANICS-BASED ANALYSIS OF SLIP RATIO’S 
INFLUENCE ON ENERGY CONSUMPTION 

A. Wheel-Soil Interaction Terramechanics 
Fig.1 shows the forces and torque acting on a driving 

wheel by the soil, vehicle body, and driving motor. 
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Fig.1 Forces and torque acting on a driving wheel 

For a wheel that moves steadily, the following quasi-static 
equations can be obtained: 
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Here PS represents the soil parameters; PW, the wheel 
dimension parameters; PL, the wheel lug parameters; and PR, 
the running state variables. For a rover moving in a certain 
environment, all the parameters except PR can be considered 
as known. FN, FDP, and MR are the normal force, drawbar pull, 
and moment of resistance, respectively, which are balanced 
by a vertical load W, resistance force fDP, and a driving torque 
T generated by the motor and reduction gears, respectively. 
The soil acts on the wheel in the form of a continuous normal 
stress σ(θ) and shearing stress τ(θ); the equivalent 
concentrated forces and moment acting on the wheel center 
by the soil are the integration of distributed stresses. PR 
includes the entrance angle θ1, leaving angle θ2, maximum 
stress angle θm, moving velocity v, repetitive passing times np, 
and slip ratio s. Experiments have shown that the parameters 
v and np have little influence on the soil mechanics of a 
low-speed mobile robot. The angles θ2 and θm are functions of 
the entrance angle θ1 and soil parameters. The lengths e and l 
can be calculated using the knowledge of terramechanics. 
From the simplified results of [17], 
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the equivalent radius where the shearing between the moving 
soil and static soil occurs [18].  

The slip ratio s is one of the most important state variables 
during wheel-soil interactions, and it is defined as a function 
of the longitudinal traveling velocity and the circumference 
velocity of a wheel: 
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where  v is the traveling velocity; ω, the angular velocity; and 
rsω, the circumference velocity.  

B. Influence of Slip Ratio on Energy Consumption 
There are five unknown parameters in Eq. (1), i.e., FN, FDP, 

MR, θ1, and s. Given W, which is primarily determined by the 
terrain geometry and robot configuration, and s, which can be 
controlled by coordinating the velocities of different wheels, 
the equations for calculating FDP and MR are obtained as the 
functions of FN and s as follows: 
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According to Eq. (4), the slip ratio can be controlled to not 
only generate the desired drawbar pull and drive a robot 
moving forward, but also influence the resistance moment 
acting on the wheel by the soil, which should be balanced by 
the driving torque from the motor and reduction gears. The 
effective power that a motor should supply is the product of 
the driving torque and angular velocity. Hence, there exists a 
relationship between the slip ratio and energy consumption 
for a wheel. 

Experiments were conducted on the wheel-soil interaction, 
and their results were adopted to analyze the influence of the 
slip ratio on the energy consumption. The experiments were 
conducted with a single wheel-soil interaction testbed 
developed at the State Key Laboratory of Robotics and 
System, Harbin Institute of Technology. Six kinds of wheels 
with different dimensions and wheel lugs were used, as 
shown in Table 1, where r is the wheel radius; b, wheel width; 
h, lug height; and nL, lug number. The travelling velocities of 
the wheels were 10 mm/s. 
Table 1 Experimental wheels and parameters 

 Wh31 Wh32 Wh21 Wh22 Wh11 Wh12
r (mm) 157.4 157.4 135 135 135 135 
b (mm) 165 165 165 165 110 110 
h (mm) 15 10 15 10 15 10 
nL (mm) 30 30 24 24 24 24 
Two indices related to energy consumption are used for the 

analysis: power P and tractive efficiency TE.  
/ [ (1 )]sP T Tv r sω= = −                      (5) 

/ (1 ) /DP DP sTE F v T F r s Tω= ⋅ = ⋅ −             (6) 
Fig. 2 shows the curves of tractive efficiency and effective 

power versus slip ratio. TE is maximum when the slip ratio is 
between 0.05 and 0.2. The effective power increases in order 
to maintain a constant travelling velocity. If the slip ratio is 
greater than 0.4, there is an obvious increment in the slope of 
the power varying with the slip ratio. Further, the energy 
consumption of the motor decreases with the slip ratio. This 
implies that we should try to decrease the wheels’ slip ratios 
in order to save energy. However, common sense suggests 
that it is impossible to always realize this goal when a rover is 
moving on the rough terrain. Moreover, all the slip ratios are 
not independent, but they are controllable. Further analysis 
should be conducted in order to understand this problem 
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better so that an optimal control algorithm based on the slip 
ratio can be designed. 
  

Po
w

er
 (P

/W
)

 
Fig. 2 Tractive efficiency and motor power 

versus slip ratio 

III. SLIP RATIO-COORDINATED OPTIMAL CONTROL 

A. Degrees of Freedom (DOFs) for Slip Ratio Control 
Since it is not feasible to independently control the slip 

ratios of all the wheels, it is necessary to analyze the DOFs for 
slip ratio control.  

Wheeled robots moving on a symmetric terrain, which 
could be simplified as a planar system, are used for analysis. 
Let ns denote the number of wheels of the planar system. Fig. 
3 shows the forces and moments acting on planar robots, 
where ns = 2, 3, and 4, corresponds to 4-, 6- and 8-wheeled 
robots, respectively. 

 

 
Fig. 3 Mechanics diagram and degrees of freedom (DOFs) of slip ratio 

for planar wheeled mobile robots 
From Fig. 3, every wheel has 3 unknown forces / moment 

impacted by the soil; the number of links is ns - 1, providing 
3(ns - 1) equations; the number of joints is ns - 2, each of 
which has 2 unknown forces; the wheel’s motion can be 
considered as a local DOF; and G is the rover gravity. The 
number of unknown forces is  

3 2( 2) 3( 1) 2 1f s s s sn n n nδ = + − − − = −         (7) 
According to Eq. (4), 2ns terramechanics equations can be 

added, but ns slip ratios are introduced. The number of 
unknown parameters can be considered as the DOF of the slip 
ratio: δs = ns - 1. By using ns - 1 constraints by coordinating 
the slip ratios of wheels, as shown in Eq. (8), all the force 
parameters and motion parameters can be determined.  
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However, the angular velocities of the wheels, rather than 

the slip ratios, are controlled directly. A four-wheeled robot 
moving on symmetric rough terrains, as shown in Fig. 4, is 
analyzed to show how to control the slip ratios by 
coordinating the angular velocities.  
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Fig.4 Force diagram of 4-wheeled robot on symmetric rough terrain 

The relationship between the slip ratios is  
1 1 1
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The supplementary equation of s2 as the function of s1 can be 
derived from Eq. (9); the force equilibrium equations can then 
be written as follows: 
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  (10) 
From Eq. (10), the slip ratios of the wheels are determined by 
the terrain geometry, soil property, and the ratios among 
angular velocities. The independent controllable variable in 
Eq. (10) is 1 2/ω ω , which can, in turn, influence the ratios 
among slip ratios.  

B. Slip-Ratio-Coordinated Time-Energy Optimal Control 
Algorithm 
An energy optimal algorithm was developed based on the 

criteria that the overall consumed effective energy should be 
minimal while moving for a certain distance, subject to the 
following constraints: (1) force equations; (2) all the wheels 
kept on the ground; (3) resistance moment smaller than the 
maximal effective driving torque provided by the motor; and 
(4) wheel-soil interaction terramechanics. It is shown in Eq. 
(11). 
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where wn  is the number of wheels.  
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The slip ratios of all the wheels could be obtained by 
optimizing Eq. (11). Given the desired velocity of the rover vd, 
the linear velocity of all the wheels can be calculated 
according to inverse kinematics equations. In order to 
compensate the loss of velocity caused by wheel slip and 
maintain the velocity of the body as vd, the angular velocities 
of all the wheels should be compensated with Eq. (12).  

/ [ (1 )]i i s iv r sω = −                         (12) 
Fig. 5 shows the diagram of the slip-ratio-coordinated 

control for saving both energy and time.  

 
Fig.5 Diagram of slip-ratio-coordinated time-energy optimal control  

The optimal control algorithm is proper theoretically. 
However, Eq. (11) includes complex nonlinear 
terramechanics equations, and some feedback information is 
not easy to obtain; this makes it difficult to obtain reasonable 
solutions. The algorithm should be simplified to make it 
feasible. 

IV. CONTROL ALGORITHM IMPROVEMENT 
An intuitive idea is that the controller should try to avoid 

the “fight” among wheels to save energy, i.e., it should ensure 
that all the wheels have equal slip ratios; this implies that an 
approximate solution of Eq. (11) is 

1 2 ns s s= = =                                 (13) 
Both experiments and simulations were performed to 

verify the effectiveness of (13) in saving the energy for a 
robot. 

El-Dorado II, a four-wheeled mobile robot developed at 
the Space Robotics Laboratory, Tohoku University, was used 
for the experimental study. The robot has four F/T sensors to 
measure the wheel-soil interaction terramechanics. A visual 
odometry system was developed based on a telecentric 
camera to measure its position. Encoders were attached to 
each motor to measure their angular displacements and 
velocities. The slip ratios of the wheels were calculated 
according to the rover displacement and motors’ angular 
displacements. The wheels’ radius was 92 mm, and 30 lugs 
with a height of 10 mm were mounted on it. 

The robot was controlled to climb a slope of 12 degrees. 
The motors were given different angular velocities to 
generate different slip ratios for the wheels, as shown in Table 
2. The motors’ angular velocities nm1 = nm4 and nm2 = nm3. The 
resulting wheels velocities were 49.437 10  rad/sw mnω −= × . 

Moreover, the virtual El-Dorado II rover was controlled to 
climb slopes of 9 degrees with a high-fidelity dynamics 
simulation program [19]. The ratios of the angular velocities 
ωw1/ωw2 were 1, 1.05, 1.1, 1.2, 1.4, 1.7, 2, and their inverse 
values. Since the velocity has little influence on the 
terramechanics of the wheeled robot moving with a low 
velocity (such as 50 mm/s), the effective energy consumed is 
primarily related to the angular displacement of wheels, 

rather than the velocity.  
Fig. 7 shows the effective energy consumption (rover 

displacement is 0.5 m) and slip ratio distributions obtained by 
both experiments and simulations. The minimum effective 
work provided by the motor from the experimental results is 
182.09 J when the slip ratios of the wheels are equal. 
However, the minimum value from simulations is 68.87 J 
when the slip ratios of wheels 1 and 2 are 0.273 and 0.307, 
respectively (ωw1/ωw2 = 0.952). If the slip ratios are equal 
(0.295), the energy consumption is 68.94 J.  

In conclusion, Eq. (13) is not always the best solution for 
Eq. (11), but it is at least a sub-optimal solution that can be 
used easily. The problem remaining is to solve the value of 
the slip ratio to compensate the loss of velocity. 

Table 2 Angular velocities setup of the wheels 
nm1 /RPM 200 200 200 200 200 200 
nm2 /RPM 200 240 280 320 360 400 
nm1 /RPM 240 280 320 360 400 -- 
nm2 /RPM 200 200 200 200 200 -- 

 
 

 
Fig. 6 Experiment with El-Dorado II robot (nm1 = 360 RPM, nm2 = 200RPM) 

  

 
(a) Experimental results                  (b) Simulation results 

 
(c) Slip ratios of experimental and simulated wheels 

Fig. 7 Experimental and simulation results with changing speed ratios 
Even if the slip ratio values are obtained, it changes 

periodically on the rough terrain, which makes the desired 
motor velocity calculated by Eq. (12) change considerably. 
Hence, the algorithm is not robust. 

A new control method without calculating the slip ratios is 
designed, as shown in Fig. 8. The wheel velocity is calculated 
using the inverse kinematics model to try to maintain the slip 

Wheel 2

Wheel 3

Wheel 1

Wheel 4 

Telecentric camera F/T sensor 
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ratios of the wheels equal to one another. The rover velocity 
is kept constant with a PID control algorithm based on a 
feedforward and feedback approach.  

 
Fig. 8 Improved time-energy optimal control algorithm 

V. INVERSE KINEMATICS OF A FOUR-WHEELED ROBOT ON 
ROUGH TERRAIN 

The four-wheeled El-Dorado II robot was used to show 
how to deduce the kinematics equations for controlling a 
rover over rough terrain. In Fig. 9, coordinates 1 and 2 have 
the same orientation and so do coordinates 3, 4, 5, 6 and 7, 8, 
9, 10. The accesses from the body to the wheels are 0, 1, 3, 7; 
0, 1, 4, 8; 0, 2, 5, 9, and 0, 2, 6, 10, respectively. Given the 
velocity of the body, the desired velocities of the wheels can 
be calculated. Let us consider wheel 1 as an example. The 
velocity of coordinate w1 (wi = I + 6) located at the wheel 
center is [19]: 
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Fig. 9 Coordinates of 4-wheeled El-Dorado II robot 
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Here iq is the joint variable corresponding to the coordinate 
I; j

iA  is the transformation matrix from Σi to Σj; 
[0 0 1]i T

i =Z  because the z axis is set to coincide with the 
joint displacement axis; Pi, the position vector of coordinate i; 
and Pij=Pj - Pi, the link vector from joint i to joint j. I indicates 
that the inertial coordinate is usually omitted. 

Let the origin of Σ0 be located at the center of the first joint, 

and only consider the height h, length (2l), and width (2d) of 
the robot for simplification. Then, 2 4 5 0D D D= = = , and 
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The velocity of the center of wheel i is deduced as follows: 
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Here f1 to f6 are functions of the kinematic information and the 
dimensions of a rover. 

While moving on rough terrain, the wheels can be 
considered as interacting with different tilt planes or slopes. 
Fig. 10 shows the coordinates of a wheel moving on a 
deformable slope. 

iwA can be calculated using the plane 

normal vector [    ]T
ti ti tiA B C  and 

iwϕ , the angle between 
wheel direction and xI axis[19], as follows: 
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Fig. 10 Wheel coordinate on deformable slope 

Given the velocity of a rover vd, a control velocity vc is 
obtained with the PID control method, as shown in Fig. 8. 
The controlling linear velocities for the vehicle body are 

0 cosc dx v φ= , 0 sinc dy v φ= , where dφ  is the desired yaw 

angle of the rover. Let dφ  denote the desired angular velocity 

of the rover around the z0 axis. Both dφ  and dφ  can be 
determined by the path following algorithm [16]. The other 
variables in Eq. (15) can be measured or ignored. From Eqs. 
(15) to (17), the wheels’ desired linear velocities and steering 
angles dδ  are obtained: 
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             (18) 

Here iβ  is the slip angle of the ith wheel. 

VI. SIMULATION VERIFICATION OF THE CONTROL 
ALGORITHM 

To check the effectiveness of the virtual El-Dorado II robot, 
it is controlled to traverse over rough terrains using the 
control algorithm.  

Three methods are used: M1, the wheels’ motors are given 
same angular velocities all the time; M2, “equal slip ratio 
control” without compensating velocity (i.e., vc = vd); M3, 
control motors with the algorithm of Fig. 8 (PID parameters 
for calculating vc are: kp = 10, kd = 2, ki = 0). The robot is 
controlled to move on a bumped unsymmetrical terrain and a 
randomly generated rough terrain. The trajectories of the 
robot are shown in Fig. 11. Fig. 12 shows the simulation 
results. The differences in the slip ratios of the different 
wheels generated by M2 and M3 are considerably smaller 
than those for wheels generated by M1; hence, the energy is 
saved, as shown in Table 3. The linear velocity obtained by 
M3 is steady with few fluctuations, and the moving time is 
saved considerably. Although M3 can also save energy, M2 is 
optimal for saving energy and time is also saved.  

Table 3 Energy consumption and time with different methods 
Bumped terrain (x0: 1.5m-4m) Random terrain (x0: 1.5m-4m) M1 M2 M3 M1 M2 M3 

Effective 
Work /J 387.5 384.6 385.8 434.1 401.3 433.3 

Time /s 13.26 13.06 9.52 15.91 15.14 13.18 

  
Fig. 11 Terrain and wheel trajectories 
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(c) Rover velocity on bumped terrain       (d) Rover velocity on random terrain 

Fig. 12 Simulation results with different control methods 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have shown that controlling wheels 

moving with “equal slip ratios” is effective in saving energy. 
An easier method to realize this goal without solving for the 
slip ratio is to control the wheel angular velocity according to 
the inverse kinematics. The loss of velocity caused by the 
wheel slip can be compensated by a feed-forward and 
feedback control method. Simulation results have verified the 
control algorithm designed in this paper.  

In the future, the control algorithm will be implemented 
with an experimental robot using the available sensed data. 
Advanced control theories will also be adopted to improve 
the control method.  
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