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Abstract— Localization of rail vehicles is fundamental for any
autonomous systems to perform tasks in logistics or personal
transport. This contribution presents a novel onboard localiza-
tion system, based on an eddy current sensor system (ECS), that
is capable of a precise train localization when combined with a
simple topological map. In contrary to commonly applied travel
distance determination by integrating the estimated velocity, we
propose an event triggered counting approach, which makes use
of the unique sensor capabilities. Rail switches are chosen as
landmarks for a global map association and as reliable start
and end points for the counting procedure. They are extracted
via a Bayesian filter approach, in particular hidden Markov
models are applied for detection and classification. Additional
features are modeled in a subsequent step and merged within
a topological map employing a naı̈ve Bayesian approach in
the spatial domain. This allows for a flexible sensor integration
and an easy determination of the most probable vehicle position
based on traveled distanced.

I. INTRODUCTION

Autonomous rail vehicles are restricted to production lines
or closed marine facilities at present. Potential fields of ap-
plication are logistics, ore transportation in mining sites [1],
and side track networks for local passenger transportation in
flexible transportation units [2].

Current rail vehicle localization systems are either based
upon track side infrastructure installations, positioning with
global navigation satellite systems (GNSS) [3], or a combi-
nation of both [4]. One drawback of these approaches is the
relatively low accuracy of odometrial measurements, usually
implemented with inductive rev-counters. Even the GNSS
speed and position information is often too inaccurate taken
into account that rail side tracks are commonly situated either
in industrial areas, forests or valleys with dense vegetation
and comprise additional obstacles such as tunnels and station
halls.

Localization in robotics is often based on accurate geo-
metrical maps [5]. Autonomous rail vehicles are not to leave
the tracks, and thus represent a one dimensional motion
conditioned on the track. We propose to use topological
maps to solve the localization. They are well examined and
applications can be found in [6] or [7], whereas geometric
maps for rail networks are scarcely available and expensive
in creation, especially for side tracks. Topological network
plans are well established in contrary, e.g. metro plans
or schemata at train control centers. If not available, a
rough drawing is trivially done by any person that knows
the track [7]. Besides their availability and easy creation
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topological maps expose an efficient and natural way of
depicting the environment [8].

Yet, there are two main problems, that must be solved
to achieve a reliable localization within the maps. Deter-
mination of the current track segment is necessary for any
global assignment and the estimation of the position upon
that segment is needed for local accuracy. We propose a
system solely based on a novel eddy current sensor (ECS).
The sensor system is capable of a slipless and hence pre-
cise velocity estimation and the detection of common track
features, e.g. turnouts or bridges. The latter can be used
to distinguish discrete intervals on rail tracks separated by
sleeper clamps. Our contribution focuses on this discrete
distance information, i.e. the traveled distance is determined
by sleeper counting techniques. We show that this approach
is better suited for longer distances between two landmarks,
which mainly occurs in autonomous mining transports and
side track logistics. This is in contrast to odometrial tech-
niques, better suited for areas with a high turnout density [9].

The whole localization is thus performed in relative dis-
tance units, initialized on distinctive turnouts that represent
landmarks defining the topological edges. We apply proba-
bilistic methods for landmark detection, classification, and
information fusion in the map to cope with misclassification
noisy measurements, and partly incorrect a priori informa-
tion. Advantages of this stochastic concept are impressively
shown in many robotics [5], [8], tracking [10] and machine
learning [11] applications. The Bayesian framework we
employ for turnout extraction and map based localization is
intuitive, robust, and easy augmentable. For the successive
fusion, the measurements can arrive in different frequency
and represent landmarks or edge features.

The remainder of the paper is organized as follows:
Section II will introduce the eddy current sensor system
and how it is applied for estimation of discrete distance
information. Pattern recognition with hidden Markov models
is object of Section III. It is shown how probabilistic models
can be employed to detect and continuously extract turnouts
and subsequently classify the extracted samples. Distance
and turnout information are combined within the map, which
is subject of Section IV. An overall overview with interde-
pendencies of the system is given in Fig. 1 for clarification.

II. EDDY CURRENT SENSOR SYSTEM (ECS)

Eddy current sensors are used to detect inhomogeneities
in the magnetic resistance of ferromagnetic materials. The
presented system consists of two differential sensors in a
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Fig. 1. Blockdiagram of proposed localization algorithm.

row, separated by the distance l. The sensors are placed in
a housing for electromagnetical shielding, which is mounted
100 mm above the railhead of the train bogie. This enables
the sensor to detect all major changes in the magnetic
field along the track, mainly rail clamps but also turnouts
and their components. The theoretical signal s1(x) of one
differential sensor is shown in Figure 2 a). The ECS has

Fig. 2. a) Ideal spatial signal s1(x) of one differential sensor, built up
of two coils C1 and C2 when crossing an inhomogeneities. b) Valid zero
crossings in a given signal. The crossings are marked with circles, crossings
too close together are rejected due to prior knowledge.

two measurement outputs: The velocity vest, calculated with
a closed loop correlator (CLC, see [12]) based on cross
correlation techniques and a subsequent fusion in a Kalman
Filter (see [13] for further details), given the coil distance
l. The second are raw signals s1(t) and s2(t) of each
sensor. On open tracks, it is mainly induced by the clamps,
whose equidistant spacing yields an almost periodic signal.
A considerable change of the signal, mainly in amplitude, is
observable when the sensor enters turnout areas, bridges or
comparable regions.

A. Distance Measurement

Prerequisite for event detection is a spatial signal s(x)
transformed from one of the original time signals s1(t)
or s2(t) and the estimated velocity vest, with x̂(t) =

∫ t

0
vest(τ)dτ . The remainder of the paper uses s(x) instead

s1,2(x̂), whereas the second channel can be used for re-
dundancy and measurement uncertainty taken into mind.
Figure 3 shows exemplary real data signals. To avoid wrong
counting in turnout areas (as seen in the middle of Figure 3)
a bandpass filter is applied to the signal. The band is chosen
around the main sleeper frequency fsl = 1.5 1

m for open
track areas. Given this information, one can estimate the
sleeper number even in bad signal to noise conditions that
appear in low speed maneuvers as depicted in the right plot
in Figure 3. Utilizing that every sleeper induces two zero
crossings, we apply a signum transform and consecutive
search of the falling flank. In addition, using spatial signal
properties, peaks too close together are rejected. Results
for this algorithm are shown in Figure 2 b). The number
of sleepers nsl(t) at a specific time t can be used for an
incremental distance measurement that is free of integrative
drift. Nonetheless, one must cope with counting errors. The
sleeper count distance is discrete with

d̂sl(t) =
nsl(t)∑
i=1

∆ni, (1)

which implies a minimum error of ∆n = 0.65m. Given this
average space between two sleepers the error becomes signif-
icantly smaller than integrative distance measures, the longer
the measured distance between two points. This approach is
therefore especially useful on side tracks, e.g. heavy transport
routes, with only few stations.

III. TURNOUT EXTRACTION AND CLASSIFICATION

To sensibly count the sleepers, a reliable start and end
point determination is needed, as mentioned before. This is
realized by identifying turnouts within the signal. Because
they are also the natural choice for nodes in a topological
map, they represent landmarks, useful for global positioning
and counter resets.

A. Hidden Markov Models

Besides noise and amplitude changes due to bogie move-
ments and external influences like temperature gradients,
exists a vast diversity of turnouts different in type, size and
specific local features. To cope with this variety a stochastic,
model based approach with hidden Markov models (HMMs)
is applied to localize the turnouts and separate them from
other track specific features.

Each HMM is completely determined by its parameter set
λ = (π,A,B). Where π is the initial probability vector, A
the transition matrix and B the emission matrix, containing
information for the parameterized emission densities. Further
information on HMMs can be found in [14].

B. Turnout Segmentation

Again, the transformed signal s(x) is basis for any turnout
extraction. Afterwards, the stochastic model is built based
upon an ideal turnout shown in Figure 4, which also depicts
an exemplarily ECS signal of a turnout. It illustrates the
different amplitudes and shapes of the signal when passing
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Fig. 3. Examples of ECS signals. They depict from left to right: Common rail clamp signals, rail guard of a turnout and filter effects when decelerating
to and accelerating from stand still.

turnouts. Each physical segment, e.g. frog, represents a state
of the HMM. This allows a validation of the segmented
results by evaluating the state duration and probability char-
acteristics of the estimated a posteriori sequence. To obtain

Fig. 4. Scheme of a turnout and corresponding sensor signal r̃(l) when
driving on the right branch track.

a non-periodic signal, the envelope of the power signal is
computed via Hilbert transformation (see [15]). This signal
represents the input for the segmentation HMM. The param-
eters of the emission matrix are determined with maximum
likelihood estimation of real ECS signals using Gaussian
distributions. The transition probabilities and, therefore, im-
plicitly the state durations of the HMM are modeled with the
state-tying technique [14] to transform the intrinsic geometric
distribution to the negative binomial distribution. This allows
to set position and precision of the binomial modes to
represent the length of the turnout components. Turnout parts
with high discriminative character, such as guard rails or
switchblades contain more sub states, while interconnecting
areas are built up of few sub states to catch up with the
different length of the several turnout types.

The resulting HMM consists of six sub models λ1..6

that represent the four possible turnout passing directions
and two models for disturbances such as bridges, cables
or accidentally placed metal parts, e.g. tin cans. The six
models are interconnected by an additional bimodal sleeper
state to enable continuous signal segmentation. Evaluation is
performed with the Viterbi algorithm according to [11]. The
path is continuously computed with a moving window length
varying from 100 to 600 meters depending on the occurring
events. The HMM is capable of segmenting an ECS signal

into turnouts, disturbances and common track areas as well
as giving a classification of the driving direction. This allows
to distinguish between passing the turnout facing or trailing,
which is essential to determine the starting point of the
turnout. A typical result of the segmentation algorithm for
a station on the test track is depicted in Figure 5. The red
boxes indicate the segmented areas. The height represents
their type and in case of a turnout also the driving direction.
Further details on signal preprocessing, turnout modeling
and segmentation are given in [16]. For Verification, 26 test

Fig. 5. Turnout segmentation and classification in passing facing or trailing.
Observation sequence is the envelope of the power signal of s(x).

drives on a real side track were done. An overall of 845
true turnout events are present in the signal, of which 831
were detected given only one false positive. Evaluation of
the driving direction preclassification in the detection step
lead to the following confusion matrix in Table I. The overall

TABLE I
CONFUSION MATRIX FOR HMM DETECTION RESULTS

Predicted Turnout No turnout Facing Failing
Turnout 831 14 - -

No Turnout 1 ∞ - -
Turnout Facing - - 409 24
Turnout Failing - - 33 365
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recognition rate is 98.23% for solely detection. From the 831
properly detected turnouts 774 were positively classified in
the correct driving direction when distinguished in facing and
failing what corresponds to a true positive rate of 93.14%.

C. Turnout Classification

The extracted signal samples are associated to a specific
turnout and transformed in a new feature space for classi-
fication. Best results are achieved with wavelet transformed
spatial signals (for details see [9]), of which three scales
are taken. This results in a feature vector for every detected
turnout that represents an observation sequence Oj for the
second HMM stage. Given J passings for a turnout one
can assign Om

J sequences to an according HMM Λm, with
m = 1...M and M = 4 · M for M turnouts. In this
notation is each driving direction of a turnout represented
by a single HMM. The models are trained with a modified
Baum-Welch algorithm for multiple training sequences and
Gaussian mixture models for the emissions (details in [14]).
The classification is based on the log-likelihood computed
with the common forward algorithm. After an initial manual
association all new classified sequences Om

j for a turnout m
are used as training samples for further off-line refining of
the model. This allows an adaptive response to slow changes
in the ECS, e.g. phase angle shifts or deterioration (see [12]).
The classifier performance was verified with real data from
a side track that contains a medium amount of M = 14
turnouts, resulting in m = 34 classes since not every turnout
was crossed in every direction.

The overall error is computed on the test and validation
sets that contain 277 turnout detections, taken from the
overall segmented results in III-B. One false positive results
in an classification performance of 99.64%. The HMM
classification is robust up to a velocity estimation error
(corresponding to a distortion of the signal) of 15%. It is also
nonsensitive against possible cutting offs at the beginning or
end of turnouts, that can occur in the detection HMM stage.
A cut up to 3m from the switchblade area and up to 7m
from the tail only slightly reduces performance to 99.28%,
corresponding to two errors out of 277.

IV. LOCALIZATION IN TOPOLOGICAL MAPS

Rail vehicles are not steerable and can be modeled with
one degree of freedom preset by the rail network. Turnouts
represent exceptions for this assumption if driven over facing.
It is therefore sufficient to know the current track segment
and the position on it to realize a train localization. The
sleeper count estimate nsl(t) described in Section II and the
turnout extraction outlined in (Section III) are sufficient to
solve this task. We combine them in topological maps which
are a natural choice to represent a rail network. We assume
a map in which the connections between nodes are known
a priori. The number of sleepers between every two distinct
locations are estimated from data. This assumptions allow
to create a map out of very rough knowledge. Although we
imply that the positioning can be done solely based on the
ECS system, the probabilistic framework allows for an easy

enhancement with additional sensors for landmark or feature
detection, e.g. vision systems.

A. Map representation

Topological maps are a graph based abstract representation
of the environment. They are an adequate choice for the
given application due to their intuitive understanding, the
scalability, and compact representation. We interpret the
turnouts as vertices V and the connecting rail tracks as edges
R in a graph. Figure 6 displays a map commonly present
in signalling centers and trains. It contains all necessary
information of the turnout connections and is enhanced with
track specific features, such as road crossings or platform
positions. The storage of the average sleeper distance ∆ni

of rail segment Ri within the map (this can be done at every
100 m of a segment for inter station segments and 10 m
within a station) allows a rough estimate of traveled distance
in meters, if a comparison or fusion with other metrical
distance sensors is needed. The relative position on a track
element Ri is measured by the actual sleeper count divided
by the number of sleepers between two turnouts that is stored
within the map according to xrel = nsl(t)

ni
sl

.
For an internal representation in the positioning system,

the map in Figure 6 is first transformed into a directed
graph represented by the adjacency matrix G. In addition,
each turnout Ts with s = 1...M can be driven over in four
directions, and is thus associated with four HMMs Λm where
for convenience m = s, i with i = 1..4. The mapping and
association is depicted in detail in Figure 7. The nodes V

Fig. 6. Topological representation of a railway station on a side track.

and edges R are augmented with additional information, such
as turnout coordinates for visualization purposes or special
features such as the sleeper number.

Fig. 7. Association of HMMs to specific turnouts and transformation of
given map from Figure 6 into graph representation.
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B. Probabilistic Recursive Positioning

The final localization of the rail vehicle is done in two
parallel threads. The first continuously counts nsl(t) as
described in Section II-A, resetting the counter to zero after
any turnout detected by the first HMM stage.

The second thread associates a probability for being on
a distinctive track segment Ri. This results in a multimodal
location probability. The conditional a posteriori probabil-
ity P (Ri|S) of being on track segment Ri given sensor
information S allows an augmentation to N independent
information sources. Each source Sn with n = 1..N is
assumed independent what results in

P (S1, S2, ..., SN |Ri) =
N∏

n=1

P (Sn|Ri). (2)

If (2) holds, the a posteriori probability P (Ri
k+1|Sk, Sk+1)

for the next step, where Sk = S1, ..., Sk, can be rearranged
to a recursive Bayesian update

P
(
Ri

k+1|Sk+1

)
=

P
(
Sk+1|Ri

k+1

)
P
(
Ri

k

)∑
i

[
P
(
Sk+1|Ri

k+1

)
P
(
Ri

k

)] , (3)

with the a priori probability P (Ri
k) = P (Ri

k|Sk), as de-
scribed in [17]. The subsequent steps k represent the discrete
distance in multitudes of ∆ni and with 1 follows k = d̂sl(t).
The overall likelihood Li(k) for being on track segment Ri

at the distance k becomes with (2)

Li(k) = P
(
Sk|Ri

k

)
=

N∏
n=1

P (Sn
k |Ri

k), (4)

where P (Sn|Ri) is the likelihood of a single sensor n for
hypothesis Ri.

Thus, the relative rail vehicle position on each segment
follows from its particular probability P (Ri

k|Sk) conditioned
on the current distance k. The most probable vehicle position
is calculated with a maximum a posteriori (MAP) estimate
according to

RMAP(k) = argmax
i

P (Ri
k|Si

k), (5)

given the posterior from (3).

C. Experimental Results

The proposed localization procedure was verified with real
data from test drives with a common non-autonomous rail
vehicle. The test track comprises a length of 18 km and
52 turnouts. Several test drives were performed spanning
11 turnouts and i = 17 rail segments Ri. The ECS was
exclusively used as sensor, but split up in four virtual sensors
Sn with n = 1...4 each representing specific track features.
Each feature is stored within the topological map, whereas
the most important information, the number of sleepers ni

sl
for each edge in the graph is estimated first.

We assume the map structure to be known initially, without
additional information. All detection results are separately
evaluated for each test drive j off-line. Each spatial signal
s(x) can afterwards be evaluated between two nodes by using

the time indexed detection event of the HMM. We apply
an iterative reweighted least squares (IRLS) as in [18] to
robustly determine ni

sl. Table II displays exemplary results
for open track areas with mainly sleepers and segments in
stations, where vehicles stand still and heavy disturbances
induced by infrastructure are present. Working sites or de-

TABLE II
ESTIMATE OF NUMBER OF SLEEPERS

Edge Ri n̂sl σ̂n̂ length [m]

Open track 1 4379.37 2.0 ≈ 2890

Open track 2 3973.57 4.65 ≈ 2620

Within station 21 391.21 1.79 ≈ 260

Within station 2 442.25 2.76 ≈ 290

terioration of the ECS could lead to a constant offset in the
detection windows or change the track geometry. Therefore,
the sleeper count is always estimated off-line, based on the
ten latest drives to realize an adaptive behavior. The repeat
accuracy on open tracks is up to ≈ 0.2h and significantly
outperforms integrative distance measures that comprise an
average error of approx. 0.8%. Table III compares the com-
mon onboard velocity and distance sensors, whereby the GPS
distance is calculated by velocity integration. Approximate
values were estimated by test drives, radar system values
given by manufacturer. The advantage of discrete localization

TABLE III
COMPARISON OF DIFFERENT DISTANCE SENSORS

Type Stations (100m) Open track (3000m)

Odometer ≈ 2% ≈ 2%

GPS ≈ 2% ≈ 0.8%

Radar 1.5% 1%

ECS ≈ 2− 4% ≈ 0, 5− 1, 5%

Sleeper count ≈ 1− 2% 0.01%− 0.2%

diminishes in stations, where the average counting error is
≈ 0.8%, with a minimum error quantized to εmin = ∆nsl ≈
0.65m. The relative position estimate for each rail segment
is combined with the edge probability, that consists of four
features:
S1 is assumed to determine the average clamp distance

within a specific interval of 25 sleepers.
S2 evaluates the current sleeper count ni

sl(k) with the
number of estimated sleepers n̂i

sl.
S3 calculates the average signal power Ps(k)

Ps(x0) =
1
I

∫ x0

x0−I

s2(x) dx, (6)

within the interval I and x0 = d̂sl(t).
S4 applies the signal power on a larger interval to calculate

the distance to map-stored power signatures via correlation
optimized warping (COW) [19], a dynamic programming
approach for pattern recognition, that augments the well
known dynamic time warping and is based on a correlative
measure that better fits the ECS signals. The initial rail
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segment association is either uniform or depending on the
last known position. The probabilities for entering a new
segment Ri are updated after a turnout detection, based on
the classification result and prior probabilities of the recur-
sive update. A likelihood probability function is designed for
each sensor Sn and the recursive MAP estimate evaluated
as described in Section IV-B. This allows a sequential edge
hypothesis update at non specific intervals. Figure 8 shows
results for a station, comprising of five possible rail segments
Ri. An additional rejection hypothesis H0 allows a validation

Fig. 8. Recursive edge hypothesis update for real data when crossing the
station from Figure 6 (driving direction from left to right).

of the current position estimates and adds robustness against
wrong detections. An undetected turnout or misclassified
driving direction results in a significant rise of the rejection
hypothesis and a new initialization with uniform prior on all
hypothesis is applied. Figure 9 displays the efficiency of the
validation step for a simulated non-detection of a turnout.

Fig. 9. Increase of the rejection probability H0 after uniform initialization
and a not detected turnout at sleeper position nsl = 73.

V. CONCLUSIONS
This contribution describes a novel approach for the lo-

calization of railroad vehicles. This is prerequisite for any

autonomous applications in logistics or passenger transport.
The combination of a discrete sleeper count algorithm,
turnout detection, turnout classification and track segment
identification allows a localization solely based on a novel
eddy current sensor. Our approach is robust against wrong
classification and detection, proves robust against hard envi-
ronment conditions that appear in railway applications and
outperforms commonly used distance sensors especially on
longer track segments. the localization system was verified
with real data recorded on a side track near Karlsruhe.

Future work will examine the combination of the dis-
crete localization presented in this paper with continuous
approaches as presented in [9]. Although a relative and
discrete position information is not easy to combine with
absolute sensors such as GPS, it will be crucial to incorporate
different sensor principles and fusion techniques to satisfy
the security standards for autonomous personal transportation
systems.
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