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Abstract— To realize real-time goal-oriented navigation for a
mobile robot in unpredictable environments, a fuzzy reactive
system is proposed in this paper. Besides the establishment of
the fuzzy logic system, this paper focuses on the the physical
meaning of the parameters in the fuzzy system, and proposes a
systematic method to automatically suppress redundant fuzzy
rules from the rule base. Under the control of the proposed
system with automatic redundant fuzzy rule removal, the
mobile robot can preferably avoid obstacles autonomously, and
generate reasonable trajectories toward the target in various
situations. The effectiveness and efficiency of the proposed
approach are demonstrated by simulation and experimental
studies.

I. INTRODUCTION

Mobile robot navigation using only onboard sensors is an
essential issue in robotics and artificial intelligence. Many
approaches to steering mobile robots have been developed,
e.g., map-based methods [1], artificial potential field methods
[2], vector field method [3], neural network based approaches
[4], and some other methods. Many of them deal with
only one aspect of the problem, e.g., path planning or path
tracking.

Fuzzy logic is known to be an organized method for
dealing with imprecise knowledge. Using linguistic rules, the
fuzzy logic system mimics human decision-making to deal
with concepts which cannot be expressed in a clear or precise
method, to deal with imprecise or imperfect information,
and to improve knowledge representation and uncertain rea-
soning. Therefore, fuzzy logic approaches are proposed for
controlling a mobile robot in unknown environments. Yang
and Patel [5] developed a navigation algorithm for a mobile
robot by combining a fuzzy logic architecture with a virtual
centrifugal effect algorithm (VCEA). In this model, the goal
seeking sub-problem and obstacle avoidance sub-problem are
solved by two separate fuzzy logic systems. This algorithm
focus on the direction control without considering velocity
control. Aguirre and Gonzalez [6] proposed a perceptual
model based on fuzzy logic in a hybrid deliberative-reactive
architecture. It improved the performance in two aspects
of robot navigation: perception and reasoning, where fuzzy
logic is used in different parts of the perceptual model.
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However, the model focuses on map building, and thus is
computationally expensive.

Fuzzy logic offers a framework for representing imprecise,
uncertain knowledge. It makes use of human knowledge in
the form of linguistic rules. However, the disadvantages are
that fuzzy logic needs highly abstract heuristics, it needs
experts for rule discovery with data relationships, and more
importantly it lacks self-organizing and self-tuning mech-
anisms. The first problem is that it is difficult to decide
the parameters of the membership functions, which can be
resolved by adding neural network learning capability as in
our former paper [7]. Another drawback is the lack of a
systematic procedure to transform expert knowledge into a
rule base. This results in many redundant rules in the rule
base, e.g., Park and Zhang [8] proposed a dual fuzzy logic
approach, but the design of the two 81 fuzzy rules is not
systematism, and redundancy is obvious.

In this paper, a fuzzy reactive system with automatic
suppression of redundant rules is presented for navigation of
mobile robots in unpredictable environments. To generalize
the proposed fuzzy reactive system, an extension of our
previous work [7] is studied. The inputs of the system are
the environment information around the robot, including the
target direction, the obstacle distances obtained from the
left, front and right sensor groups, and the current robot
speed. A fuzzy rule base with initial 243 linguistic fuzzy
rules is developed to implement expert knowledge under
various situations. The output signals from the system are the
velocities of left and right wheels, respectively. Furthermore,
A comparison algorithm is developed to autonomously sup-
press the redundant fuzzy rules based on the understanding
of the physical meaning of the parameters in the fuzzy
system. Under the control of the proposed fuzzy reactive
system, the mobile robot can generate reasonable trajectories
toward the target in various situations, while at the same time
eliminating redundant rules.

II. THE PROPOSED FUZZY REACTIVE SYSTEM

Navigation is a very easy task for human beings or
animals, but it is not easy for robots. While a mobile robot
is moving in an unknown and changing environment, it is
important to the compromise between avoiding collisions
with obstacles and moving towards targets, depending on
the sensed information about the environment.

A. Mobile Robot Model

In this study, the main sensors of the mobile robot are
shown in Fig. 1. The robot has two front co-axle wheels
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driven by different motors separately, and a third passive
omni-directional caster. Adjusting the velocities of the two
driven wheels respectively, controls the motion of the mobile
robot. Nine ultrasonic sensors are placed on the robot (front
left, front right, and front middle) to cover a semicircular
detection area around the front half of the robot and protect
the robot from collisions. These sensors are divided into three
groups to measure the distance from obstacles to the left,
right and front of the robot. Each group has three sensors
for the distance measuring correctly and noise removing
efficiently. In order to reach a target, a simple optical range
finder with a directing beam and a rotating mirror, a global
positioning system GPS, or a indoor positioning system
would be used to obtain the target direction. A speedometer
is equipped on the robot to measure the current robot speed.

Front Sensors

Left Sensors

Right Sensors

Target Sensor

Left Wheel

Castor

Right Wheel

Odometer
Speed

}

}

}

Fig. 1. The mobile robot model with onboard sensors.

The robot motion is controlled by adjusting the speeds of
two driven wheels. At first, the robot system has to judge the
distance as “ far” or “ close”, the speed as “ fast” or “ slow”
and so on, and then decide the motion commands. This
information (“ far”, “ close”, “ fast”, “ slow”, etc) is uncertain
and imprecise. It is also difficult to be represented by conven-
tional logic systems, or mathematical models. However, these
adjustments are easy for human beings, as people do not need
precise, numerical information to make a decision, and they
are able to perform highly adaptive control measures. This
is due to a human’s knowledge and ability to use “ fuzzy”
concepts.

B. Structure of the Fuzzy System

The structure of the proposed fuzzy reactive system is
shown in Fig. 2. The inputs of the fuzzy system are the
obstacle distances dl, df and dr obtained from the left,
front and right sensor groups, the target direction θd (that
is the angle between the robot moving direction and the line
connecting the robot center with the target), and the current
robot speed rs. The output signals from the fuzzy system are
the velocities of left and right wheels, vl and vr, respectively.

First, all sensor signals have to be translated into linguistic
values, which is called “ fuzzification”. Second, the so-called
fuzzy inference step evaluates the set of IF-THEN rules,
identifies the rules that apply to the current situation, and
computes the values of the output linguistic variables. The

Inference mechanism

Rule base

dl

df

dr
θd
rs

vl

vr

Fuzzifi-
cation

Defuzzi-
fication

Fig. 2. Structure of the proposed fuzzy reactive system. dl, df , dr : obstacle
distances to the left, front and right of the robot; θd: target direction; rs:
current robot speed; vl, vr : velocities of the left and right wheels.

result of this step is to obtain linguistic values for the output
variables. The last step is called “ defuzzification” which
translates the linguistic values into real values.

The fuzzification procedure maps the crisp input values to
the linguistic fuzzy sets with membership values between 0
and 1. To simplify the description of the fuzzification proce-
dure and reduce the redundant rules systematically, Gaussian
functions, Sigmoid functions, and anti-Sigmoid functions are
chosen to represent fuzzy membership functions. The outputs
of the fuzzification procedure pij , which provide numerical
values for the i-th input variable, are given as follows: For
a Gaussian function:

pij = e

−(ui−mij)2

2σ2
ij ; (1)

for a Sigmoid function:

pij =
1

1 + e−(mij−σij
2 )(ui−mij)

; (2)

and for an anti-Sigmoid function:

pij = 1 − 1

1 + e−(mij−σij
2 )(ui−mij)

, (3)

where i = 1, 2, · · · , 5 is the index of input signal; j = 1, 2, 3
is the index of sets of the input variables; ui is the i-th input
signal to the fuzzy system (e.g., dl, df , dr, θdorrs); mij is the
center of the membership function corresponding to the i-th
input and the j-th set of the input variable; and σij is related
to the width of the membership function corresponding to the
i-th input and the j-th set of the input variable.

based on experience, the membership functions with all
sets of input and output variables are designed. Usually the
number of input and output variables is fixed along with the
structure of the system. However, the sets of each variable
are flexible, which is dependant upon the experience of the
designer. The more sets of each variable, the more exact the
control, but the more complex the system. In this paper, the
membership functions are designed as shown in Fig. 3.

After the design of the membership functions, the infer-
ence mechanism with a fuzzy rule base is designed. The
inference mechanism is responsible for decision-making in
the fuzzy system using approximate reasoning. According to
the human driving experience, the rule base is created for the
system, which governs the input and output relationship of
the proposed fuzzy system. In this paper, the inference rules
are designed in the form, such as

IF the obstacle distance on the left is near and
the obstacle distance on the front is far and
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Fig. 3. Membership functions. (a) obstacle distances; (b) target direction;
(c) current robot speed; (d) velocities of two wheels.

the obstacle distance on the right is far and
the target direction is right and
the current robot speed is slow

THEN the velocity of the left wheel is fast and
the velocity of the right wheel is slow.

The number of rules in the rule base will be different, as
indicated by variations in the definition of the sets of input
membership function variables. If the membership functions
have three distance variables with three sets (far, middle and
near), one angle variable with three sets (left, front and right),
one recent speed variable with three sets (fast, middle and
slow), and two output variables with four sets (fast, slow,
zero and back), 243 rules will be formulated theoretically. A
portion of this set of rules is given in Table I.

TABLE I

THE RULE BASE. N: NEAR; F: FAR; L: LEFT; C: CENTER; R: RIGHT; S:

SLOW; F: FAST; Z: ZERO, B: BACK.

Rule Input Output
No. dl df dr θd rs vl vr

1 F F F L S S F
2 F F F L F B Z
3 F F F C S F F
4 F F F C F F F
· · · · · · · · · · · · · · · · · · · · · · · ·
240 F N F L S B S
241 F N F L F S Z
242 F N F C S Z B
243 F N F C F S Z

In every rule, the IF part is defined alternatively: IF condi-
tion A is true, AND B is true, AND C is true, AND · · · with
five conditions. Using the fuzzy logic operators, the AND
can be represented mathematically by the min operator in the
aggregation step. The output of the aggregation procedure,
which is the conjunction degree of the IF part of the k-th
rule, is given as

qk = min{p1k1 , p2k2 , p3k3 , p4k4 , p5k5}, (4)

where k =1, 2, · · ·, 243; and piki
is the degree of the

membership for the i-th input contributing to the k-th rule,
i = 1, 2, · · ·, 5; ki = 1, 2, · · ·, 5.

The defuzzification procedure maps the fuzzy output from
the inference mechanism to a crisp signal. The center of
gravity (CoG) method is used in the proposed system,
combining the outputs represented by the implied fuzzy
sets from all rules to generate the gravity centroid of the
possibility distribution for a control action. The value of the
output variables vl and vr are given as

vl =
∑243

k=1 vk,1qk
∑243

k=1 qk

, (5)

vr =
∑243

k=1 vk,2qk
∑243

k=1 qk

, (6)

where vk,1 and vk,2 denote the estimated values of the
outputs provided by the k-th rule, which are related to the
center of membership functions of the output variables.

C. Algorithm to Suppress Redundant Rules

The rule base is designed depending on the environments
and human experience, after the structure of the fuzzy system
and the membership functions are created. However, there are
no systematic methods to design the rule base and to suppress
the useless rules. For example, Godjevac [9] proposed a
neuro-fuzzy model for a mobile robot to avoid obstacles.
More than 600 rules are formulated, where many of them
are redundant and there are no methods to suppress the
useless rules. Marichal et al. [10] presented a neuro-fuzzy
controller by a three-layer NN with a competitive learning
algorithm for a mobile robot. It automatically extracts the
fuzzy rules and the membership functions through a set of
trajectories obtained from human guidance, but it is difficult
to determine the fuzzy rules for complex environments with
obstacles. Song and Sheen [11] developed a heuristic fuzzy
neural network using a pattern-recognition approach. This
approach can reduce the number of rules by constructing the
environment (e.g. obstacles) using several prototype patterns.
It is suitable for simple environments, because the more
complex the environment is, the more difficult it becomes to
to construct the patterns. Rusu et al. [12] proposed a neuro-
fuzzy controller for mobile robot navigation in an indoor
environment. However, the design of the rule base for the
controller is not clear. The meanings of system parameters
are vague when being trained by Neural network. In this
paper, the physical meanings of the variables and parameters
in the proposed fuzzy reactive system are explained in detail,
and then a weight comparison method is used to suppress the
useless rules.

Figure 4 shows the physical meanings, where
[dl, df , dr, θd, rs]T is the input vector; and [vl, vr]T is
the output vector. The variable pij is the degree of
membership for the i-th input corresponding to the j-th
set of the input variable obtained by Eqns. (1-3) according
to different membership functions. The variable qk is the
conjunction degree of the IF part of the k-th rule obtained
by Eqn. (4). The variable wi,k denotes the center of the
membership function corresponding to the i-th input and
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Fig. 4. The physical meanings of the variables and parameters.

the k-th rule, which can be assigned to one of the mij

according to the rule base. For example, from Fig. 4 it
is easy to get w1,1 = m11, w1,x = m12, w1,243 = m11,
w4,x = m43, w5,1 = m51, w5,x = m52, and w5,243 = m53.
The variables vk,l are the estimated value of the outputs
provided by the k-th rule, which are related to one of the
centers of membership functions of the output variables.
Assume nls denotes the centers of the membership functions
of variable vl and vr. Assume the width of the membership
functions are constant (e.g. 1). Then v1,1 = n12, v1,2 = n21,
vx,1 = n13, vx,2 = n22, v243,1 = n12, and v243,2 = n23.

A rule base with 243 rules is defined in the fuzzy reactive
system. However, it is difficult to define the system rules ac-
curately and without redundant rules, if the number of input
variables increases, or the number of the sets of variables
increases to fit a more complex environment. To solve this
problem, a selection algorithm is added to the fuzzy system
to suppress redundant fuzzy rules automatically.

It is clear from Fig. 4 that the variables wi,k and vk,l,
which can be obtained from the parameters mij and nls

described above, determine the response of the fuzzy rules
to the input signals. Every rule is related to a weight vector

Wk = [w1,k, · · · , w5,k, vk,1, vk,2]T , k = 1, 2, · · · , 243.
(7)

If the Euclidean distance between two weight vectors is
small enough, both vectors will generate similar rules in
the sense that a similar result is obtained for the same
input. So, by calculating the Euclidean distances between the
weight vectors, the redundant rules can be reduced. Based
on this idea, the proposed algorithm is summarized in Fig. 5.
First, design the center values of the membership function
by experience, then get the weight vectors, normalize the
weights, and set the tolerant rates. After that, compare the
Euclidean distance of each pair of vectors. If the distance is
less than the tolerant value, remove one of the rules, which

relate to the pair of vectors. Although the number of the
reduced fuzzy rule set is unpredictable, which depends on
the environments and the tolerant rate, the proposed method
gives a significant method to simplify the fuzzy rule system.

set the number of rules and tolerance δ

calculate the distance D of two weights

D < δ

remove one of the rules

set mij, nls and σij

get the weight vectors wi,k and vk,l 

normalize the values of weights to [0, 1]

End of the rules

End

yes

yes

no

no

Fig. 5. The algorithm to suppress redundant rules.

After applying the algorithm, a minimum number of rules
is obtained. Thus, the minimum number of nodes in the
second layer of the structure in Fig. 4 is obtained. For
example, if the environment is simple, the tolerance can be
chosen to be relatively large. Consequently some of the rules
will be suppressed and the number of useful rules will be
smaller than 243. This algorithm has obvious benefits over
rule bases with thousands of fuzzy rules.

III. SIMULATION STUDIES

To demonstrate the effectiveness of the proposed fuzzy
logic based system, simulations using a mobile robot simu-
lator (MobotSim Version 1.0 by Gonzalo Rodriquez Mir) are
performed. The robot is designed as shown in Fig. 1. The
diameter of the robot plate is set to 0.25 m, distance between
wheels is set as 0.18 m, wheel diameter is 0.07 m, and wheel
width is 0.02 m. In addition to the target sensor and the
speedometer, there are nine ultrasonic sensors mounted on
the front part of the robot. The angle between sensors is
20o. The sensor ring radius is 0.1 m. The radiation cone
of the sensors is 25o. The sensing range of the ultrasonic
sensors is from 0.04 m to 2.55 m. The upper bound of the
wheel speed is 0.18 m/s. In every case, the environment is
assumed to be completely unknown for the robot, except the
target location; and the sensing range of the on-board robot
sensors are limited.

A. Removing Redundant Rules

As mentioned above, every rule is related to a weight
vector in Eqn. (7), and the weight vectors depend on the
parameters of the membership functions. Table II shows the
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weights related to some of the rules, which can be obtained
from Fig. 4 and/or Table I.

TABLE II

THE WEIGHTS RELATED TO THE RULES AFTER THE TUNNING.

No. w1k w2k w3k w4k w5k vk1 vk2 Red.

1 2.5 2.5 2.5 -60 5 1 2
2 2.5 2.5 2.5 -60 18 -1 0
3 2.5 2.5 2.5 0 5 2 2
4 2.5 2.5 2.5 0 18 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
240 2.5 0.5 2.5 -60 5 -5 5
241 2.5 0.5 2.5 -60 18 5 0 ∗
242 2.5 0.5 2.5 0 5 0 -5
243 2.5 0.5 2.5 0 18 5 0

After the applying of the weight comparison algorithm
summarized in Fig. 5, the number of the rules will be less
than the original number (such as 243), depending on the
tolerance δ. As δ increases, the number of rules decreases,
however the performance also decreases. In this simulation,
when the tolerance δ = 0.05, only 38 rules are useful. The
others (such as the rule 241 in Table II) are redundant and
can be removed.

The robot trajectories are shown in Fig. 6 when δ = 0,
which having 243 rules (a); and δ = 0.05, which having
38 rules only (b). It is obvious that the trajectories in Figs.
6(a), and (b) are almost the same in this environment. This
means that with only 38 rules, the system can obtain a
reasonable result with respect to robot navigation. There are
many redundant rules that the system automatically removes.

(b)

Target

Obstacles

Obstacles

Start

Robot

(a)

Target

Obstacles

Obstacles

Robot

Start

Fig. 6. Robot trajectories with different number of rules when the tolerance
δ is selected. (a) 0 with 243 rules; (b) 0.05 with 38 rules.

B. Dynamic Environments and Velocity Analysis

In Fig. 7(a), robot navigation is demonstrated in a com-
plicated environment where the robot meets some static or
movable obstacles and a moving target. Assume that the
target moves in a line from the position (5, 5) to (16, 5) and
then back to (5, 5); besides some static obstacles, one robot
considers as an obstacle being moving in a line from the
position (3, 12) to (16, 12) and back to (3, 12); one robot
is moving in a cycle from the position (15, 9) around the
point (11.7, 9) with 3.3 radius and anti-clockwise direction;
another robot is moving randomly; and the controlled robot
with a direction to the right starts from position (10, 18) in
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Fig. 7. Robot navigation in a dynamic environment with moving target
and obstacles. (a) the generated trajectory; (b) the velocities of the robot.

the workspace. A smooth trajectory is executed in which the
robot avoids obstacles and travels to the target.

The recorded velocity profile of both wheels in this
simulation is presented in Fig. 7(b). It can be seen from this
figure that in the beginning, the velocities of both wheels of
the controlled robot increases; and the velocity of the right
wheel increases and the velocity of the left wheel decreases
when the robot turns to the left to avoid obstacles. The
velocity increases or decreases a little when the robot makes
a small turn, and changes much more for large turns.

IV. EXPERIMENT OF STUDIES

As a test bed, real robots will be employed to test the
performance of the proposed fuzzy reactive approach, which
navigates autonomously in an unknown environment using
onboard sensors. The robots used as a test bed are from Dr
Robot Inc. shown in Fig. 8. Because of the limitations of
the robot equipments, only three ultrasonic sensors with the
range between 0.04 m to 2.55 m are used to obtain obstacle
distances from left, front, and right of the robot. The direction
of the target, and the distance between the robot and the
target, are ignored. In this situation, the robot can wander
on a level floor with obstacle avoidance using the proposed
fuzzy reactive system.

In Fig. 9, the robot demonstrates avoidance of an obstacle
encounted on its left side. Fig. 9(a) shows the simulated
trajectory of the robot in this situation, where the robot turns
right to avoid the obstacle on the left side, then goes straight
and turns left when it meets obstacles on the right side. Figs.
9(b)-(e) show the pictures of the real robot at positions 1, 2, 3
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Fig. 8. Robots used as a test bed.

and 4 during its navigation. Fig. 9(f) represents the recorded
sensor profiles of the left, front and right sensors. Fig. 9(g)
represents the recorded velocity profiles of the left and right
wheels.
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Fig. 9. Robot moves with obstacle avoidance. (a) trajectory; (b)-(e)
snapshots; (f) sensor input; (g) robot speed.

From the movies of the experiments, we can see that the
robot can operate smoothly, without obvious oscillation in a
workspace, despite variations in environmental factors. From
the robot speed analysis of the experiments, we can see
that the speeds of the left and right wheels of the robot are
smooth. In general, “ smoothness” is synonymous to “ having
small high-order derivatives”. Smoothness is relative. It can
be easily identified from a picture, or defined as a change less
than a specific value. In this study, “ smoothness” is defined
as “ without obvious oscillation”. It can be defined as a speed
change which is less than 0.05 m/s2 and an angle change
which is less than 30o/s.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel fuzzy reactive system with automatic
suppression of redundant rules is proposed for real-time
reactive navigation of a mobile robot. The inputs of the
system are the target direction, the obstacle distances, and
the current robot speed. A fuzzy rule base with initial 243
rules is developed. The output signals from the system are the
velocities of left and right wheels respectively. Furthermore,
the physical meaning of the parameters in the fuzzy system
is explained in detail. Based on this, a comparison algorithm
is proposed to autonomously suppress the redundant fuzzy
rules. Experiments show that the proposed fuzzy reactive
system can control the mobile robot to autonomously reach
the target along a smooth trajectory with obstacle avoidance
in dynamic environments after automatic suppression of the
redundant fuzzy rules. In this paper, the study focuses on
the generalization of fuzzy reactive system with fuzzy rule
reducing. For the future work, the dead lock problem in U
shape environments will be considered. More sensors will
be considered in back section of the mobile robot. More
sensors and more test environments will be added for real
robot experiments.
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