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Abstract— This paper proposes an adaptive and probabilistic
extension of Rapidly-exploring Random Tree (RRT) for visual
route navigation of a mobile robot. Using measurements from
cameras and infrared range sensors, a temporary local map is
built probabilistically with Gaussian processes and adaptively
to the change of the route curvature. Based on the probabilistic
map, RRT searches the most robust and efficient local path with
the probability of collision, and the robot is controlled along
the selected path. The performance of the proposed method
was verified by reducing not only centering error and standard
deviation in simulations but also travel time in real experiments.

I. INTRODUCTION

Visual route navigation is that a robot perceives routes
by vision sensors and navigates while avoiding obstacles
autonomously, which is performed in different ways ac-
cording to the following considerations: environments, robot
dynamics, hardware system configuration, and motion plan-
ning. The environments where a robot navigates highly affect
the navigation strategy of the robot, which include routes,
illumination, ground status, and obstacles. In unknown envi-
ronments, at least, the robot has to be given the definition of
the navigation route because it affects the types of sensors. If
the route is defined by a specific color or the color difference
from other environments, vision sensors should be used for
the route perception.

After the hardware system configuration is completed
according to the environments and robot dynamics, the
method to control the robot motion has to be determined. If
the navigation task requires very rapid actions for real-time
implementation, the reactive control methods are reasonable
and powerful because of its low computational cost, which
affects the performance of the overall navigation. Especially,
in unknown environments, the robot motion for visual route
navigation with the reactive control method can be simply
compressed into the change of the heading angle of the robot.
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In [1], visual route navigation was performed using a
series of reference images and corresponding robot actions
such as go straight, turn left and turn right, which is similar
strategy used in this work. Thorpe et al. [2] accomplished the
roadway following for a car by tracing a white line which is
painted along the roadway or roadsides. Their method to line
detection is used in this work since it can quickly give a robot
the information on correspondence between robot and path.
Ohno et al. [3] performed the campus walkway following
using the vanishing point of the walkway. However, the
strategy to find and move toward vanishing point is not
reliable when obstacles on the walkway disturb the vision
system. Lee et al. [4] proposed the vision system which
consists of two monocular cameras and one stereo camera for
two-wheel drive robot, which is different hardware system
from this work. Zhang et al. [12] performed the appearance
based visual route following for navigation in outdoor envi-
ronments using an omnidirectional camera and sonar range
sensors. They showed robust performance in the condition
that there was no unknown obstacle on the route.

Fulgenzi et al. [5] proposed a navigation algorithm which
integrates perception uncertainty and incompleteness in the
path planning strategy using a probabilistic framework such
as Rapidly-exploring Random Tree (RRT) and Gaussian
Process (GP). On the basis of the local occupancy grid map,
the fusion of the two methods improved the performance of
motion planning in the environments with moving obstacles.
However, off-line process was needed to learn the pattern of
the moving obstacles, and the constraints of the environments
are different from our work.

In this paper, an adaptive and probabilistic extension of
RRT (APRRT) is proposed to improve the performance of
visual route navigation with the reactive control method.
Differently from [5], the proposed method models probabilis-
tically the local space considering constraint lines changed
adaptively to the curvature as well as obstacles. Besides,
the modeled local map is built by not only range-based
measurements but also visual-based measurements. The sys-
tem for the proposed method consists of three cameras for
the perception of the route and infrared range sensors for
obstacle avoidance.

This paper is organized as follows: Section II describes
visual route navigation system, and the problem of the inac-
curate heading angle of a robot is stated. Section III describes
the proposed method to solve the problem. The improved
results are presented by computer simulations in Section IV
and real experiments in Section V. Finally, Section VI gives
conclusion.

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1396



II. VISUAL ROUTE NAVIGATION

In this section, visual route navigation system with the
reactive control method is briefly described with the problem
of the inaccurate heading angle of a robot.

A. Hardware System Configuration

A robot used in this work is IRON-C which was produced
by Redone Technology. The robot has four-wheel drive and
skid differential steering system, and its maximum translation
velocity is 0.36m/s. Nine infrared range sensors whose max-
imum detecting range of 160mm are equipped at the front
of the robot. Three web cameras are equipped to measure
the distance and angle between the robot and routes because
the color of the route is known. As shown in Fig. 1, the two
cameras are equipped at the robots both sides, respectively,
and the other camera is equipped at the front of the robot.
Finally, for image processing and robot control, a lab-top
computer is equipped at the robots rear side.

B. Perception and Measurements for Routes

Routes were perceived by extracting the lines as forward
edges and both side edges of routes whose color was known,
which is a similar strategy with [2]. To overcome the
illumination problem and obtain reliable line features, a lot
of image processing techniques are performed as shown in
Fig. 2, and the results of the line feature extraction at the
route curvature of 30◦ are shown in Fig. 3.

The extracted line features provide the robot with the
measurements of distance and angle between robot and
routes. The angle measurement, θroute, is easily obtained
by computing the angle between the extracted line feature
and horizontal line on image since the both-sides cameras
are equipped perpendicular to the heading of the robot as
shown in Fig. 3(b). A single image, however, cannot give
the distance measurement, droute, from the camera to the
line. Also, the general method to obtain the distance such
as feature matching requires much computation time, which
is not appropriate for rapid robot control. Thus, virtual
distance function which approximately represents the relation
between the real distance from the robot to the line and the
corresponding height of the image is used as shown in Fig.
3(c). Because the orientation of each camera is fixed, the real
distance can be matched to the corresponding heights of the
image. Then, the four-order polynomial function is obtained

Fig. 1. Hardware system configuration. A camera for front-view, two cam-
eras for both side-view, and infrared range sensors for detecting obstacles
are equipped on the four-wheel drive mobile robot.

Fig. 2. The process of the color-based line feature extraction. Two types
of color spaces are used, and Retinex algorithm is used to reduce the
illumination effects. Median filter, erosion, and dilatation are used to reduce
noises. Canny edge and Hough line detector are used to extract line features.

(a) Raw image at 30◦ (b) Extracted line features

(c) Virtual distance function obtained from reference distance data

Fig. 3. Route perception and depth measurements at the curvature of 30◦.
To measure the distance (droute ) from the extracted line features, the virtual
distance function is obtained by matching and interpolating the reference
distance data and the height of line features on the image (himg).

by mapping and interpolating the matched reference distance
data as follows:

droute(himg) = c4h
4
img+c3h

3
img+c2h

2
img+c1himg+c0 (1)

where himg is the height of the line feature, c4 = −686.6,
c3 = 1381.0, c2 = −839.8, c1 = 319.3, and c0 = 17.2.

C. Problem of the Inaccurate Heading Angle of a Robot

In visual route navigation with the reactive control method,
the robot performs obstacle avoidance reactively as used
in [4], [12]. Therefore, the robot motion control can be
compressed into the change of the heading angle of a
robot at every control time step. However, it is difficult to
calculate the accurate heading angle due to the followings:
limitation on the range of infrared sensors, limitation on
the field of view of cameras, and inevitable errors in the
measurements. In this paper, APRRT is proposed to make
visual route navigation with the reactive control method more
robust, and the overall structure of visual route navigation
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Fig. 4. Overall navigation structure. Route following and obstacle avoid-
ance are performed by the reactive control. The rotational velocity of the
robot is calculated by APRRT.

Fig. 5. Rapidly-Exploring Random Tree (RRT). A new configuration qnew

is obtained applying an admissible control from qnear toward qrand.

using the proposed method is shown in Fig. 4. The robot
goes straight initially and changes its rotational velocity
reflectively according to the variation of distance and angles
to the route. If obstacles are detected, a temporary local
map is built using measurements from the cameras and
range sensors. Then, APRRT is performed to calculate the
rotational velocity of the robot for obstacle avoidance.

III. PROPOSED METHOD

In this section, a single-query planning algorithm, Rapidly-
exploring Random Tree (RRT) is introduced, and its prob-
abilistic extension, probabilistic RRT (PRRT), is reviewed.
Then, adaptive PRRT (APRRT) which is another extension
of RRT using adaptive and probabilistic strategies for various
types of curves is proposed.

A. Rapidly-Exploring Random Tree (RRT)

RRT [9] searches both convex and nonconvex high-
dimensional spaces, which is an incrementally constructed
tree which can reduce the expected distance of a randomly-
chosen point to the tree compared with other expansive-
spaces trees. The algorithm randomly chooses a configura-
tion qrand in the configuration space and tries to extend the
current search tree toward the chosen configuration. Then,
the nearest configuration qnear in the original tree T is
chosen for extension as shown in Fig. 5. A new configuration
qnew is obtained applying an admissible control from qnear
toward qrand by a predetermined step size ∆s. If qnew is
collision-free, it is added to T . The algorithm can be stopped

once the goal is found, or it can keep on running to find a
better path. Once the goal state is reached, the path from the
initial state to the goal is retrieved.

B. Probabilistic RRT (PRRT)

RRT needs a local map which requires very accurate
measurements from sensors because it lies on a determin-
istic representation of the environments. However, in real
environments, it is difficult to build a deterministic local
map because the measurements contain inevitable errors.
Fulgenzi et al. [5] proposed PRRT which integrates per-
ception uncertainty and incompleteness in the path planning
strategy using probabilistic frameworks. In their work, GPs
which could represent paths as continuous functions in a
probabilistic manner were used to overcome the disadvantage
of discretization of state spaces. But, this improvement
required off-line processes to learn the pattern of moving
obstacles because they assumed the moving obstacles had
typical patterns. Since K components correspond to each
two dimensional state, the likelihood of the state based on
the N training data is as follows:

P (x|z, µx, θ) =

N∏
n=1

K∏
k=1

G(xn|µx,k, C(θk))Zn,k (2)

P (y|z, µy, θ) =

N∏
n=1

K∏
k=1

G(yn|µy,k, C(θk))Zn,k (3)

where z is the vector of component weights, and θ is the
GP hyper-parameter, and µ is the mean function of GP, and
C(θk) is the covariance matrix of GP parameterized by θ.

Considering a candidate path with J states, M moving
obstacles, and K the number of GPs associated to the
typical patterns, for an obstacle Om at the state sj , the
associated probability of collision Pcd(sj ,m) is calculated
by overlapping of the robot and the combination of the two
likelihoods. If each component k is considered seperately,
the probability of collision can be rewritten by Pcd(sj ,m, k).
Then, for the path π(sJ) = [s0, s1, . . . , sJ ], a single obstacle
m, and the k-th GP, the probability of collision is calculated
by

Pπ(sJ ,m, k) = 1−
J∏
j=0

(1− Pcd(sj ,m, k)) (4)

Finally, the probability of success that the robot traverses
the path without colliding obstacles, which means the prob-
ability of not having collision, is calculated by

Lπ(sJ) =

M∏
m=1

(1− (

K∑
k=1

lk,m · Pπ(sJ ,m, k))) (5)

where lk,m is a predetermined constant of the k-th GP for the
obstacle m. The collision-free path is selected based on the
probability of success, and the robot is controlled according
to the selected path. More detailed description and formulas
are in [5].
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C. Adaptive and Probabilistic RRT (APRRT)
The environments in this work are different from PRRT [5]

in the context of the followings: static obstacles, lack of sen-
sibility, and routes restricted by two lines. The first difference
makes the problem easier. But, the other differences make
the problem more difficult because the lack causes errors in
calculation of the heading angle and the restriction requires
the faster computation process. In this paper, APRRT which
is an adaptive and probabilistic extension of RRT is proposed
to calculate the heading angle more rapidly and accurately.
Differently from PRRT [5], APRRT models the local space
considering constraint lines as well as obstacles, probabilisti-
cally. Besides, the constraint lines are changed adaptively to
the curvature, and the modeled local map is built by not only
range-based measurements but visual-based measurements.

For the constraint line i at the state sj with the k-th GP,
the probability of collision for the constraint lines at time t
is calculated by

Pci(sj , i, k, t) = G(sj |µi,x,k(t), CI(θk, t)) (6)

where x = [x, y]T , and µi,x,k(t) and CI(θk, t) are the
mean and covariance matrix. The mean of the constraint
line i is adaptively changed according to the curvature of
the perceived route as follows:

µi,x,k(t) = λs(i, t)(ds(i, t)− γs(i, κ, t)) (7)

where if it is the left constraint line, i = 1, otherwise i = 2.
λs(i, t) = −1 if i = 1, otherwise λs(i, t) = 1. ds(i, t) is the
measurement of distance between the robot and the left line
if i = 1, otherwise ds(i, t) is the measurement of distance
between the robot and the right line. Finally, γs(i, κ, t) is
the adpative coefficient which is a function of i and the
curvature κ, which is predetermined according to all the
possible curvature κ for each line i. This adaptive change
of the mean yields the more robust and efficient paths for
route navigation than the paths produced by RRT or PRRT.

For the path π(sJ) = [s0, s1, . . . , sJ ] at time t, a single
obstacle m, a constraint line i, and the k-th GP, the proba-
bility of collision with obstacles, Pco(·), and the probability
of collision with the constraint lines, Pci(·), are respectively
calculated similarly with [5] as follows:

Pπo(sJ ,m, k, t) = 1−
J∏
j=0

(1− Pco(sj ,m, k, t)) (8)

Pπi(sJ , i, k, t) = 1−
J∏
j=0

(1− Pci(sj , i, k, t)) (9)

The local space is represented by the probability of collision
with obstacles and constraint lines as shown in Fig. 6(a).

Then, the probability of success at time t that the robot
traverses the path without colliding obstacles, Lπo(sJ , t),
and the probability of success that the robot traverses the
path without crossing the constraint lines, Lπi(sJ , t), are
respectively calculated by

Lπo(sJ , t) =

M∏
m=1

(1− (

K∑
k=1

lk,m · Pπo(sJ ,m, k, t))) (10)

(a) The result of Gaussian processes

(b) Temporary local map for APRRT

Fig. 6. Adaptive and Probabilistic RRT (APRRT). The temporary local map
is built by Gaussian processes in configuration space. APRRT is performed
in the map and selects the most reliable path.

Lπi(sJ , t) =

I∏
i=1

(1− (

K∑
k=1

lk,i · Pπi(sJ , i, k, t))) (11)

where lk,m and lk,i are predetermined constants of the k-th
GP for the obstacle m and the constraint line i, respectively.
Using the two probabilities, the total probability of success
is at time t calculated by

Lπ(sJ , t) = Lπo(sJ , t) · Lπi(sJ , t) (12)

Finally, the most reliable path is selected by the probability
of success as shown in Fig. 6(b). The robot is controlled
along the selected path using the more robust and efficient
rotational velocity at time t, w(t), obtained by the following
equation:

w(t) = α(t)(
β(t) · θIR(t)(wmax − wmin)

π
− wmax) (13)

where α(t) and β(t) are the direction and amount between
the robot orientation and the edge from the state t-1 to the
state t, respectively. If α(t) = −1, the robot turns left, and
if α(t) = 1, the robot turns right, if α(t) = 0, the robot
goes straight. θIR(t) is the angle measurement from the
robot to the obstacle by infrared range sensors. wmax and
wmin are the maximum and minimum rotational velocities,
respectively.
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Fig. 7. The simulator for autonomous robot route navigation with APRRT.
The size of the environments was 30m by 30m. The route of 3m width
was defined by two lines, and there were six curves and seven obstacles
represented by red circles.

IV. SIMULATIONS

A. Simulator Description

The simulator for autonomous robot route navigation with
APRRT was made by MATLAB7.0 as shown in Fig. 7. The
robot which had the width of 0.5m and the length of 0.71m
was represented by a blue circle, and its local map was shown
at the top-right side in the figure. To realistically perform
simulations, the errors in robot motion and measurements
were carefully modeled because they are subject to noise in
reality, are modeled by a zero-centered random variable with
finite variance [8] as follows:(

v̂
ŵ

)
=

(
v
w

)
+

(
σε1|v|+ε2|w|
σε3|v|+ε4|w|

)
(14)

(
d̂

θ̂

)
=

(
d
θ

)
+

(
σε5|v|+ε6|w|
σε7|v|+ε8|w|

)
(15)

where v is the ideal translational velocity of the robot
whose maximum translational velocity was 0.6m/s, and w
are the ideal rotational velocity of the robot whose maximum
rotational velocity was 0.2rad/s. v̂ and ŵ are the erratic trans-
lational and rotational velocities of the robot, respectively. d
and θ are the ideal distance and angle measurements, respec-
tively. d̂ and θ̂ are their erratic measurements, respectively.
σb is a zero-centered random variable with standard deviation
b. The constants from ε1 to ε4 are robot-specific parameters
that represent the accuracy of the robot motion. The less
accurately the robot moves, the larger the parameters are.
The constants from ε5 to ε8 are sensor-specific parameters.
The maximum detectable distance of infrared range sensors
was set by 1.4m, and their detectable range of angles was
set from −π2 to π

2 .

B. Simulation Results

The robot completed successfully the navigation task vari-
ous with APRRTs. Among randomly sampled fifty configura-
tions, the number of configurations which were components

Fig. 8. Comparison of the centering errors. The centering errors of APRRT
were compared with those of the conventional method. The dotted black line
and the thin red line represent the centering error of conventional method
and APRRT, respectively. The dashed thick black line and the thick blue line
represent the averages of conventional method and APRRT, respectively.

TABLE I
TOTAL COMPARISON OF THE PERFORMANCE IN SIMULATIONS

Conventional mtd. APRRT (proposed.)
Total centering error (m) 0.9639 0.8561
Standard deviation (m) 1.1351 1.0542

of the final trees was below ten in almost all time steps.
It means the configuration space was too constrained by
obstacles and line features. The excessive constrained local
map was caused by the errors in line measurements since the
errors affected the mean of the constraint line which was an
component of the local map by (7).

The robot motion affects the errors in line measurements
by (15). If the robot changes its own orientation frequently or
excessively, the variance of the error model becomes larger.
This means the probability that the robot acquires bad mea-
surements becomes larger. If the robot navigates at the center
of the route, the probability of bad measurements acquisition
becomes smaller. Thus, for the performance evaluation, the
centering error at time t was defined by

ec(t) = |ds(1, t)− ds(2, t)| (16)

In Fig. 8, the centering error at every time step t was com-
pared with the conventional method which is the previous
naive method of fully reflective control based navigation.
All the results were averaged from ten simulations including
the worst and best cases. At some time steps, the difference
between the two methods was not clear, but the total center-
ing error and the standard deviation of APRRT were smaller
than those of the conventional method as shown in Table I.

V. EXPERIMENTS

For the more realistic verification of the robustness and
efficiency of APRRT, real experiments were conducted in the
15m route as shown in Fig. 9(a). Based on the knowledge of

1400



(a) Dimensions of the route for experiments

(b) Snapshots of the navigation in the region B

(c) The result of APRRT at the snapshot 2 in the region B

Fig. 9. Experiments in the 15m route whose width was 2.4m. (a) Red
small circles represent obstacles, and the only information given to the robot
was the color of the route. (b) The robot navigated the unknown route
successfully even in the abrupt curve with APRRT. (c) The path selected by
APRRT gave the more robust and efficient rotational velocity to the robot.

the color of the route, the robot autonomously navigated the
route whose width was 2.4m. The perception of the routes
has suffered from the bad illumination status even though
the Retinex algorithm as shown in Fig. 2 was applied for
solving the problem, which affected the overall performance
of the navigation. The route color perceived best was white
in the environments. The abrupt curve with the curve angle
of 90◦ was a challenging situation for the route navigation
of the reactively controlled robot. APRRT enabled the robot
to overcome the difficult situation at the speed of 0.3m/s as
shown in Fig. 9(b), and the result of APRRT at the time is
shown in Fig. 9(c). Among randomly sampled 50 nodes, 19
nodes were used to build the tree, and the only 5 nodes were
selected for the calculation of the heading angle of the robot.

The accurate ground truth which is a general index for
error analysis is difficult to be obtained in real experiments.
Real-time kinematic GPS used by Royer et al. [7] was
considered but inapplicable due to buildings occluding GPS
signals. Therefore, the chosen method to evaluate the per-

TABLE II
COMPARISON OF THE TRAVEL TIME IN EXPERIMENTS

Conventional method APRRT (proposed method)
Region A 23.55 (s) 21.44 (s)
Region B 31.23 (s) 22.98 (s)

formance was the travel time from losing the center of the
route to recovering it. The comparison results between the
conventional method and APRRT in the region A and B
are summarized in Table II. The travel time was reduced by
APRRT in both regions, and the difference was noticeable
in the region B which is the abrupt curve with the curva-
ture of 90◦. Consequently, the performance of visual route
navigation was improved by the proposed method, APRRT.

VI. CONCLUSION

Visual route navigation with the reactive control method
has the problem of the inaccurate heading angle of the robot
due to the limitation on sensibility and the inevitable errors
in measurements. In this work, APRRT which uses adaptive
and probabilistic methods was proposed to solve the problem,
and it enables the robot to perform the route navigation task
more efficiently and robustly. Its improved performance was
verified by reducing centering error, standard deviation, and
travel time in computer simulations and real experiments.
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