
Inspection Planning for Sensor Coverage of 3D Marine Structures

Brendan Englot and Franz Hover, Member, IEEE

Abstract— We introduce an algorithm to achieve complete
sensor coverage of complex, three-dimensional structures sur-
veyed by an autonomous agent with multiple degrees of
freedom. Motivated by the application of an ocean vehicle
performing an autonomous ship hull inspection, we consider
a planning problem for a fully-actuated, six degree-of-freedom
hovering AUV using a bathymetry sonar to inspect the complex
structures underneath a ship hull. We consider a discrete model
of the structure to be inspected, requiring only that the model be
provided in the form of a closed triangular mesh. A dense graph
of feasible paths is constructed in the robot’s configuration
space until the set of edges in the graph allows complete
coverage of the structure. Then, we approximate the minimum-
cost closed walk along the graph which observes 100% of the
structure. We emphasize the embedding of observations within
the edges of the graph as a means of utilizing all available
sensor data in planning the inspection.

I. INTRODUCTION

There are numerous practical applications requiring peri-
odic or persistant surveillance of the indoor/outdoor envi-
ronment and structures within the environment. To automate
these tasks, a variety of planning algorithms have been
developed to solve the robot coverage problem. For applica-
tions in 2D workspaces (e.g., demining, snow plowing, lawn
mowing) in which the agent possesses relatively few degrees
of freedom, a cellular decomposition of the free space is
typically sufficient to achieve coverage [1]. Approaches in
which the inspection of a structure is the goal have often
modeled the task as an “art gallery problem”, which requires
computation of the minimum number of guards who can
together observe the entire gallery [2]. In addition, some cov-
erage algorithms have implemented planning strategies based
on prior knowledge of the specific geometry of the structure
being covered, as in car painting [3] and building inspections
[4]. Finally, various challenging issues remain unsolved from
a computational geometry perspective if highly accurate 3D
models are a desired product of the inspection, especially in
the absence of a priori knowledge [5].

Our application of interest is the inspection of a ship
hull by an autonomous underwater vehicle (AUV), in which
acoustic sensing is required to characterize the surrounding
environment and complete sensor coverage is necessary to
locate foreign objects that may have been placed on the hull.
A fully-actuated, hovering AUV has been developed for the
inspection task, equipped with imaging and bathymetry sonar
to perform the inspection and an inertial measurement unit

This work was supported by the Office of Naval Research under Grant
N00014-06-10043, monitored by Dr. T.F. Swean

B. Englot and F. Hover are with the Department of Mechanical Engineer-
ing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cam-
bridge MA 02139 USA benglot@mit.edu hover@mit.edu

(IMU) and Doppler velocimetry log (DVL) for underwater
navigation [6]. Efforts are also underway to use the sonar
data itself to improve navigation via simultaneous localiza-
tion and mapping [7]. With respect to the motion planning
problem, a large portion of the hull is relatively flat and
can be inspected suitably by an imaging sonar and a planar
vehicle trajectory, which a cellular decomposition approach
would solve easily. It is the complex structures under the
hull, such as the propellers, rudders, and portions with severe
curvature, which require nontrivial inspection paths and the
use of bathymetry sonar to accurately observe their geome-
tries. To model these structures a discrete representation of
the ship hull will be used, allowing our algorithm to utilize
a CAD model or a preliminary range scan (such as the
bathymetry scan depicted in Figure 1) for the planning task.
In addition, five degrees of freedom are available for planning
the inspection (surge, sway, heave, yaw, and sonar pitch).

Given the dimensionality of the problem, a sampling-based
motion planning algorithm, in which robot configurations
are sampled quasi-randomly and used to catalog feasible
paths through the workspace, is an appealing alternative to
an exhaustive deterministic search of a multi-dimensional
configuration space (C-Space). Prior work in sampling-based
planning of inspection paths has solved the problem by
adopting the aforementioned “art gallery” approach of choos-
ing a set of configurations which offer complete coverage and
finding a feasible tour among these nodes [8], [9], [10]. This
approach plans using a graph in which sensor information
is embedded in the nodes and the edges are used as a
means of transit between nodes. We propose instead to use
the full set of sensor information obtained from traversing
the edges of the graph, modeling the inspection task as a
postman problem rather than a traveling salesman problem.
The postman framework has been used previously to solve
deterministically-designed inspections for point robots in a
2D workspace [11], [12], in which the robot possesses a
small field of view relative to the size of the workspace. We
adopt this information-efficient approach both to accomodate
the small sensor footprint of the bathymetry sonar and to
ensure that all views of the structure are utilized in planning
the inspection.

In Section II we introduce the algorithm used to construct
a dense graph whose traversal is guaranteed to offer complete
sensor coverage of the structure of interest. In Section III
the method for finding a minimal-cost closed walk on the
graph which offers complete sensor coverage is presented.
A closed walk is sought to allow cyclical traversal of the
inspection path for persistent surveillance. Section IV offers
results of the algorithm using a simulation of the Bluefin-

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4412

Fig. 1. Imaging and bathymetry sonar data from a survey of a 65’
boat are depicted. Included is a photograph of the Bluefin-MIT HAUV,
version 1B, which was used to perform the survey. Imaging sonar mosaic
courtesy of AcousticView. Bathymetry sonar reconstruction courtesy of
Hordur Johannsson, MIT.

MIT Hovering Autonomous Underwater Vehicle (HAUV)
and triangle meshes of the marine structures of interest to
our application.

II. GRAPH CONSTRUCTION ALGORITHM

Given a triangle mesh which represents the structure to be
inspected and the obstacles in the surrounding environment,
an iterative algorithm is used to construct a dense graph of
feasible configurations (nodes) and feasible paths between
them (edges). Although this approach draws inspiration from
the well-known Probablistic Roadmap algorithm (PRM) [13],
some distinctly different design choices are made to develop
a dense graph instead of an expansive, sparse graph.

We denote a robot configuration by q ∈ ℜN , where N is
the dimension of the configuration space, and a discrete node
of the structure mesh by s ∈ ℜ3. Given a feasible initial
configuration q0, the set of mesh nodes in the structure,
referred to hereafter as Structure, and the set of triangles
belonging to the structure, Algorithm 1, BUILD GRAPH,
begins constructing a graph in configuration space using
ADD TO GRAPH(), which is described by Algorithm 2.
Configurations qrand are sampled quasi-randomly (using a
Sobol sequence) and Algorithm 4, FIND NEIGHBORS(),
is used to connect qrand to a user-designated number of
neighboring configurations which are already on the graph.

Taking qrand as input, FIND NEIGHBORS() draws
straight-line paths through C-Space between qrand and the
designated number of nearest neighbors. Each candidate edge
is then checked for collisions with obstacles, and all nodes
s in the structure mesh are checked by OBSERVAT ION()
to determine whether they lie inside the workspace vol-
ume swept by the robot sensor along the traversal of each
collision-free candidate edge. This swept volume will differ
depending on the constraints of the robot, and specifically
in the case of the HAUV we define a sequence of steps by
which the agent travels from one configuration to another.
The user may allow the agent to change its position and
orientation simultaneously, but for the purpose of obtaining
a swept volume which is easy compute and to implement

during the underwater inspection we first require the agent
to adjust its orientation to that of the adjacent node, and
then to move to the position of the node in a separate step.
In addition, the swept volume may vary depending on the
direction of travel along the edge, and if this is the case
the observations along both directions of travel must be
cataloged by OBSERVAT ION().

For all s that lie within the sensor’s swept volume,
OBSERVAT ION() proceeds to check the line of sight be-
tween the mesh node s and the robot configuration along
the candidate edge which sees s. This is achieved using a
ray-tracing algorithm which checks for intersection between
the line of sight and the triangles of the structure mesh. All
structure nodes s that are observed by an edge of the graph
are cataloged, and any structure nodes being observed for
the first time are removed from the set Unobserved. After
the observations of collision-free edges are checked, the
collision-free edges are returned by FIND NEIGHBORS().

Once the size of Unobserved is diminished to a
certain percentage ε of the size of Structure, Algo-
rithm 1 begins calling ADD MISSING V IEW () instead of
ADD TO GRAPH(). ADD MISSING V IEW (), which is de-
scribed by Algorithm 3, is designed to locate the remaining
handful of structure nodes that have not been seen, once the
vast majority of the structure has already been observed by
the graph. It does so using NEWTON SEARCH(), which
applies Newton’s method for root-finding using the robot’s
Jacobian pseduoinverse to find a configuration qview which
sees the missing structure node smissing. The configuration
qview returned by NEWTON SEARCH() is planted at the
center of a new edge in C-Space, and if the swept volume of
the edge sees a member of Unobserved, the edge’s endpoints
q1

view and q2
view are subjected to the same collision check and

observation check used in FIND NEIGHBORS(). To ensure
that a consistent diversity of good configurations is returned
by NEWTON SEARCH(), every call to this algorithm is
initialized with a randomly sampled configuration qrand .

After the entirety of the discrete structure has been ob-
served by the graph’s edges, graph construction stops and a
closed walk is found which selects an efficient subset of the
graph to use as an inspection path.

III. PATH-FINDING ALGORITHM
A. Exact Formulation for the Optimal Inspection Path

First we present the integer programming formulation
which solves exactly for the minimum-cost subtour that
observes the entire structure. The graph of feasible paths
constructed in C-Space is treated as a flow network, in which
a unit flow represents a single traversal of an edge by the
robot, and each edge of the C-Space graph is modeled as a
pair of directed edges. Associated with each directed edge is
the set of observations gathered by the agent along the edge,
which in some cases may be the same for both edges in
the pair, and in other cases each member of the pair may
collect different information (depending on the geometry
of the robot’s sensor and its kinematic constraints). The
constraints of the graph are enforced on the flow variables

4413

Algorithm 1 BUILD GRAPH(q0,Structure)
1: G.init(q0)Unobserved← Structure
2: while Unobserved 6= /0 do
3: if (Unobserved.size()/Structure.size())< ε then
4: ADD MISSING V IEW (G)
5: else
6: ADD TO GRAPH(G)
7: end if
8: end while
9: return G

Algorithm 2 ADD TO GRAPH(G)

1: FeasibleNeighbors← /0
2: while FeasibleNeighbors = /0 do
3: qrand ← DRAW SAMPLE()
4: FeasibleNeighbors← FIND NEIGHBORS(qrand)
5: if FeasibleNeighbors 6= /0 then
6: G.addNode(qrand)
7: for qi ∈ FeasibleNeighbors do
8: G.addEdge(qrand ,qi)
9: end for

10: end if
11: end while

through the incidence matrix A, which contains a row for
each node in the graph and a column for each flow variable,
with Ai j ∈ {0,1,−1}. The observations made along the graph
are enforced on the flow variables by the constraint matrix B,
which contains a row for each flow variable x and a column
for each discrete node s in the structure being inspected.
Entry B jk is 1 if edge j observes mesh node k, and 0
otherwise. Using this modeling framework, the problem is
stated by the following:

minimize ∑
j

c jx j

sub ject to ∑
j

Ai jx j = 0 ∀ i

∑
j

B jkx j ≥ 1 ∀ k

∑
j
(A1 j)

2x j ≥ 2

x j integer ∀ j (1)

The indices i, j, and k refer to the graph’s nodes, flow
variables, and the discrete structure nodes, respectively. The
cost ci j applied to each flow variable may represent the time
or energy consumed by the agent while traversing the edge
represented by flow variable x j. The first constraint enforces
the structure of the C-space graph, the second requires that
every node in the structure is observed by the agent at least
once, and the third requires that part of the closed walk must
pass through the node on which the graph was initialized
(designated i = 1), which is assumed to be the configuration
from which the agent starts the inspection.

In its current form, (1) may allow the minimum-cost flow

Algorithm 3 ADD MISSING V IEW (G)

1: f oundMissingView← f alse
2: FeasibleNeighbors1← /0, FeasibleNeighbors2← /0
3: smissing←Unobserved.getFirst()
4: while f oundMissingView = f alse do
5: qrand ← DRAW SAMPLE()
6: qview← NEWTON SEARCH(qrand ,smissing)
7: {q1

view, q2
view}← DRAW EDGE(qview)

8: if FIND V IEW (q1
view, q2

view) = true then
9: FeasibleNeighbors1← FIND NEIGHBORS(q1

view)
10: FeasibleNeighbors2← FIND NEIGHBORS(q2

view)
11: if FeasibleNeighborsi 6= /0 ∀ i ∈ {1,2} then
12: f oundMissingView← true
13: G.addEdge(q1

view, q2
view)

14: for qi
view ∈ {q1

view, q2
view} do

15: G.addNode(qi
view)

16: for q j ∈ FeasibleNeighborsi do
17: G.addEdge(qi

view,q j)
18: end for
19: end for
20: end if
21: end if
22: end while

Algorithm 4 FIND NEIGHBORS(qrand)

1: FeasibleNeighbors← NEAREST NEIGHBORS(qrand)
2: for qi ∈ FeasibleNeighbors do
3: if COLLISION(qrand ,qi) = f alse then
4: for s j ∈ Structure do
5: if OBSERVAT ION(qrand ,qi,s j) = true then
6: Unobserved←Unobserved\{s j}
7: end if
8: end for
9: else

10: FeasibleNeighbors← FeasibleNeighbors\{qi}
11: end if
12: end for

to consist of several unattached closed walks on the graph
rather than a single, continous closed walk. To eliminate
this possibility, additional constraints must be included in
the problem formulation. Unfortunately, the quantity of con-
straints required is exponential in the number of nodes in the
C-Space graph, since the flow through every combination of
nodes in the graph must be inspected to eliminate subtours.
For this reason it is impractical to enumerate all of these
constraints to solve the problem exactly, and an approximate
solution will be found using only (1) and not the exponen-
tially many subtour elimination constraints.

The closest relative of this problem which has been
classified in the operations research literature is known as
the Prize-Collecting Rural Postman Problem (PRPP) [14], an
NP-hard problem in which the agent must find the minimum-
cost closed walk when there is a prize located on each edge
of the graph that is collected only on the first traversal. Our

4414

Algorithm 5 CONNECT SUBTOURS(Subtours,qinit ,G)
1: q1← qinit
2: t1← GET SUBTOUR CONTAINING(q1)
3: EligibleSubtours← Subtours\t1
4: ConnectingPaths← /0
5: while ConnectingPaths.size()< Subtours.size()−1 do
6: {t2,q2}← NEAREST (t1,q1,EligibleSubtours)
7: ConnectPath← DIJKST RA(q1,q2,G)
8: ConnectingPaths.add(ConnectPath)
9: EligibleSubtours← EligibleSubtours\t2

10: q1← q2, t1← t2
11: end while
12: ConnectFinalPath← DIJKST RA(q2,qinit ,G)
13: ConnectingPaths.add(ConnectFinalPath)
14: return ConnectingPaths

agent also collects a one-time prize from certain edges when
it sees a structure node for the first time, but in our case the
collection of all prizes is a hard constraint and not simply an
addition to the reward. This leaves the inspection problem
with a larger number of constraints than the PRPP.

B. Approximate Formulation for the Optimal Inspection Path

An efficient closed walk for the structure inspection may
be found using (1) only, but to do so the resulting unattached
subtours must be connected together into a continuous
closed walk. For this purpose, we have designed Algorithm
5, CONNECT SUBTOURS(), which iteratively fuses each
subtour to a neighboring subtour. This algorithm is called
when there are two or more subtours returned by the solution
to (1), and it takes as input a list of the subtours, the
configuration qinit from which the inspection is initialized,
and the C-Space graph. Given a starting configuration q1,
this algorithm chooses the nearest configuration q2 on a yet
unvisited neighboring subtour. Dijkstra’s algorithm is used
to find a feasible path connecting q1 and q2, and q2 is set to
q1 for the next iteration. This forces a subtour to connect to
two neighbors through a single point of attachment, which
simplifies the execution of the closed walk. In this manner,
the inspection will begin at qinit, carry out the subtour to
which qinit belongs, and once the agent arrives back at qinit,
it will proceed to the next subtour. This pattern repeats,
carrying out the next subtour and departing from the same
configuration through which it arrived.

IV. INSPECTION PLANNING FOR THE HAUV

A. Platform-Specific Constraints

To implement the inspection planning algorithms for struc-
ture inspection by the Bluefin-MIT HAUV, some platform-
specific constraints must be formulated. Although the vehicle
is capable of motion in surge, sway, heave, yaw, and sonar
pitch, we assume that the vehicle always translates using a
combination of surge and heave only, since this constraint
will always sweep the largest possible volume with the
bathymetry sonar, which is mounted with the beam horizon-
tal at zero sonar pitch. Configurations will be sampled in x, y,

Fig. 2. Visual depiction of the sweeping of the bathymetry sonar footprint
across an edge of the graph. The sensor footprint is drawn in green, and the
discrete structure nodes observed by the traversal of the blue graph edge
are plotted in red.

z, and sonar pitch, with the size of the sampling space in x, y,
and z dictated by the size of the inspection environment, and
sampling in sonar pitch dictated by the allowable limits of
sensor motion (sensor can pitch 90 degrees above or below
the horizontal plane). The graph edge connecting any two
configurations will dictate the vehicle yaw, since translation
is constrained to occur in the surge and heave directions only.
For every edge in C-Space added to the graph, we construct
two directed edges, each in which the vehicle starts at a node,
adjusts its sonar pitch angle, turns in yaw to face the adjacent
node, then translates in surge and heave to the adjacent
node. Each directed edge sweeps out a different volume of
Euclidean space than its oppositely directed partner. For the
purposes of the minimum-cost flow optimization problem,
the cost of each edge of the graph is set to the length of
the edge in Euclidean space. Pitching the sonar is modeled
as a cost-free action since it can occur quickly and with
low energy expenditure. Figure 2 illustrates the observation
of some structure mesh nodes during an edge traversal. We
assume the sonar has a 30 degree field of view, a minimum
range of 1m, and a maximum range of 10m.

If we approached this problem from the “art gallery”
perspective, sensor observations collected at the nodes of
the C-Space graph would be the only observations stored.
This could be a viable strategy for the HAUV if a nodding
maneuver is performed with the sonar at each graph node,
but it discards the valuable sensor information gathered while
traveling between nodes. Because of the limited field of
view of the bathymetry sonar and the increased expense of
planning a tour on a larger graph, we have chosen not to
discard this information.

B. Results

The inspection planning algorithms were applied to a
variety of structure meshes, which are pictured in Figure
3. The meshes were scaled to compare with the largest-
sized structures we will inspect with bathymetry sonar during
an autonomous ship hull inspection. In the cases of the
actual ship structures (the propeller with nothing attached

4415

Fig. 3. Four discrete structure models to which the inspection planning
algorithms are applied. The structures are a ship propeller, a sphere, a set
of interwoven tubes, and the propeller and rudder of a large ship, which
includes the complete ship model (in green) for the purposes of obstacle
avoidance. Dimensions are in meters.

and the propeller and rudder attached to a hull), the nodes
of the structure mesh were increased in density such that
the maximum distance between structure nodes occupying
the same triangle was about 0.5m. This spacing between
the discrete nodes of the structure model should be chosen
based on the size of objects the inspection is intended to
detect. Although we increased the density of nodes, the
original, larger triangles were used for collision checking
and ray tracing. For the larger ship mesh, we only require
inspection of the structures possessing severe curvature, and
the remainder of the ship is stored for the purpose of collision
detection and ray tracing. Figure 4 displays the graphs that
were constructed to achieve 100% coverage of each structure.
For each graph, the minimum-cost closed walk selected as
the inspection path is illustrated in Figure 5.

The only tuning of the algorithm which varied between
structures were the boundaries in C-Space from which we
sampled the x, y, and z coordinates of each configuration.
Otherwise, the same algorithm settings, including a choice of
ten nearest neighbors for the number of connections to make
in FIND NEIGHBORS(), and the use of Algorithm 3 for the
final 5% of the structure, were used for all results depicted
here. IBM’s CPLEX solver was used to solve the integer
programming problem for the minimum-cost flow. Data on
computation time and the sizes of the structure meshes and
the C-Space graphs is presented in Table 1. The number of
nodes in each graph scaled approximately with the size of
each respective structure. Although the propeller mesh was
densely populated with discrete nodes, the algorithm solved

Fig. 4. The dense graphs constructed for the four example structures of
Figure 3. Each graph is constructed in a 4D configuration space, and is
projected here in 3D Euclidean space. The limits of the space in which
samples were drawn are identical to the boundaries of the four plots.

for an inspection path quickly and required a relatively sparse
graph to achieve 100% sensor coverage. The other structures
required dense graphs by comparison, and the sphere, the
most sparsely populated structure model, produced the graph
of greatest density due to the ease of connecting each node to
its ten closest neighbors without obstruction. The large ship
mesh, because of the narrow passages between structures,
required significantly more time than the other examples to
complete graph construction. Most of this time was spent
using Algorithm 3 to search for feasible configurations which
observed the structure nodes in the narrow cracks in and
around the rudder, which are approximately 0.5m wide in
most locations. Although the tight spaces in this ship model
posed a challenge, as they do for most planning algorithms,
the resulting inspection path yielded an intuitively curved
trajectory to explore the narrow space between the upper
part of the propeller and the hull.

To offer a benchmark for comparison with the results of
[8], the prior work most similar to ours, we also apply the
algorithm to a set of randomly chosen cube structures, each
of which is comprised of five nodes and four triangles on
each face, the result of which is plotted in Figure 6. Although
the sensor used in our inspections has a rather limited field of
view compared with that of [8], an inspection of comparable
path length and structure is obtained when inspecting the
simpler, dispersed 3D structures assessed in this prior work.

V. CONCLUSION

We have introduced an algorithm for planning inspection
paths which iteratively constructs a dense graph in the agent’s

4416

Fig. 5. Inspection paths planned for the four example structures of Figure
3. Blue edges represent the subtours required for coverage, and red edges
represent the paths selected by Algorithm 5 to connect them.

Fig. 6. An inspection path planned for six randomly planted 1-m cubes,
intended for comparison of our algorithm with the result of [8]. Blue edges
represent the subtours required for coverage, and red edges represent the
paths selected by Algorithm 5 to connect them.

configuration space until the set of edges observes the entire
structure. A sampling-based approach is favored due to the
need to explore four dimensions comprehensively, and the
desire to avoid doing so exhaustively. To accomodate 3D
structures of arbitrary complexity we assume a discrete
model of the structure, which can utilize models produced
by CAD software or produced by previously collected data.
After constructing the graph, we approximate the minimum-
cost closed walk along the graph which observes the entire
structure.

Although this algorithm successfully achieves coverage
planning over arbitrary discrete 3D structures and does so
using an information-efficient postman formulation, there
are desired improvements and extensions. We would like to

TABLE I
ALGORITHM PERFORMANCE FOR THE EXAMPLE STRUCTURES

Propeller Sphere Tubes Ship
Structure Nodes 1922 482 1280 3771

Structure Triangles 712 960 2562 2460
Graph Nodes 194 785 585 958
Graph Edges 806 6014 2786 4078

95% Coverage Time [sec] 32 70 56 187
100% Coverage Time [sec] 62 108 142 2792

IP Solution Time [sec] 2 110 97 50
Alg. 5 Solution Time [sec] 3 71 24 61

Steps in Subtours Only 74 295 256 269
Steps in Inspection Path 84 352 305 330

Length of Inspection Path [m] 351 1779 1331 1005

reduce computation time by searching more efficiently for
feasible views of the last few unobserved structure nodes, the
step which is usually most time-consuming. We also wish to
quantify and, if possible, optimally manage the division of
complexity between the graph construction and path-finding
steps in planning problems of this type, in which an agent
must connect with many thousands of targets rather than
execute a simple point-to-point path.

REFERENCES

[1] H. Choset, ”Coverage for robotics - A survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, 2001, pp. 113-126.

[2] J. O’Rourke, Art Gallery Theorems and Algorithms, New York: Oxford
University Press, 1987.

[3] P. Atkar, A.L. Greenfield, D.C. Conner, H. Choset, and A. Rizzi,
”Uniform Coverage of Automotive Surface Patches” Int. J. Robotics
Research, vol. 24(11), 2005, pp. 883-898.

[4] P. Cheng, J. Keller, and V. Kumar, ”Time-Optimal UAV Trajectory
Planning for 3D Urban Structure Coverage,” Proc. IEEE Int. Conf. on
Intelligent Robots and Systems, Nice, France, 2008, pp. 2750-2757.

[5] W. Scott and G. Roth, ”View Planning for Automated Three-
Dimensional Object Reconstruction and Inspection,” ACM Computing
Surveys, vol. 35(1), 2003, pp. 64-96.

[6] F. Hover, et al., ”A Vehicle System for Autonomous Relative Survey
of In-Water Ships,” Marine Technology Society Journal, vol. 41(2),
2007, pp. 44-55.

[7] H. Johannsson, M. Kaess, B. Englot, F. Hover, and J. Leonard,
”Imaging Sonar-Aided Navigation for Autonomous Underwater Har-
bor Surveillance,” Proc. IEEE Int. Conf. on Intelligent Robots and
Systems, 2010, to appear.

[8] T. Danner and L. Kavraki, ”Randomized Planning for Short Inspection
Paths,” Proc. IEEE Int. Conf. on Robotics and Automation, San
Francisco, 2000, pp. 971-976.

[9] M. Saha, G. Sanchez-Ante, T. Roughgarden, and J.C. Latombe,
”Planning Tours of Robotic Arms Among Partitioned Goals,” Int. J.
Robotics Research, vol. 25(3), 2006, pp. 207-223.

[10] P. Wang, R. Krishnamurti, and K. Gupta, ”View Planning Problem with
Combined View and Traveling Cost,” IEEE Int. Conf. on Robotics and
Automation, Rome, 2007, pp. 711-716.

[11] K. Easton and J. Burdick, ”A Coverage Algorithm for Multi-robot
Boundary Inspection,” IEEE. Int. Conf. on Robotics and Automation,
Barcelona, 2005, pp. 727-734.

[12] K. Williams and J. Burdick, ”Multi-robot Boundary Coverage with
Plan Revision,” IEEE. Int. Conf. on Robotics and Automation, Orlando,
2006, pp. 1716-1723.

[13] L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars, ”Probabilis-
tic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Trans. on Robotics and Automation, vol. 12(4), 1996,
pp. 566-580.

[14] J. Araoz, E. Fernandez, and O. Meza, ”Solving the Prize-collecting
Rural Postman Problem,” European J. of Operational Research, vol.
196, 2009, pp. 886-896.

4417

