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Abstract— In this paper, we investigate a moving target
tracking problem with mobile sensor networks. The moving
target is assumed to be an intelligent agent, which is ‘smart’
enough to escape from the detection. We formulate this target
estimation problem as a zero-sum game in this paper and use
a so-called minimax filter to estimate the target position. The
minimax filter is a robust filter that minimizes the estimation
error by considering the worst case noise. Furthermore we
develop a distributed version of the minimax filter for multiple
sensor nodes. The distributed computation is implemented via a
consensus filter. Finally, the mobile sensor nodes need to control
their motions to move towards the estimated target position
and avoid collisions with neighbors. A flocking algorithm is
developed for this purpose. The simulation results show that
the target tracking algorithm proposed in this paper provides
a satisfactory result.

I. INTRODUCTION

The problem tracking a moving target in a mobile sensor
network can be solved in two steps: estimating the target
position by using readings from sensors, and moving towards
the target by controlling mobile node’s motion. Each sensor
node has a local sensor to detect the moving target. An
estimation filter needs to be developed in each node to
estimate the target position. A flocking algorithm needs to
be developed in each node to control itself to move towards
the estimated target position.

One challenging problem in this tracking task is that the
moving target is very likely an intelligent agent, which is
‘smart’ enough to increase the tracking difficulty. Basically
it can maximize the estimation error and therefore has the
potential to lead to the failure of the tracking task. Another
challenging problem in this tracking task is that mobile
sensor nodes only have limited wireless communication
capability and there is a need to find a way to cooperate
efficiently in target estimation.

In this paper, we solve the first challenging problem by
applying the differential game theory approach [1] to the
estimation of target position. A zero-sum game is used
to model the estimation problem. By solving the saddle-
point equilibrium of the game, an iterative minimax filter
is developed. The minimax filter is robust to the adversary
moving target since it is obtained by minimizing the esti-
mation error under the worst case noise. The minimax filter
is then formatted into the information form [2], which helps
developing the distributed implementation.

We solve the second challenging problem by developing a
distributed version of the minimax filter. The cooperation in
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the estimation problem is established by exchanging sensor
readings and sensor related information between nodes.
However, a sensor node is difficult to communicate with
all other nodes in the sensor network because it has limited
wireless communication range. The distributed version of the
minimax filter only requires a sensor node to communicate
with its neighbors that are located in the range of wireless
communication. To obtain sensor readings and sensor related
information from all other sensor nodes over the entire
network, a consensus filter is employed in the minimax filter.
The function of the consensus filter is to diffuse the local
information over the entire network via local communication.

Once the estimated target position is obtained, a flocking
algorithm can be developed in a distributed way: each mobile
node controls its motors to move towards the estimated target
position. Since all of them try to move to the same target
position, it is very likely to collide with each other. Thus,
a mobile node also needs a collision avoiding mechanism
to avoid collisions with its neighbors. When mobile sensor
nodes can move to the estimated target position and avoid
collisions with neighbors simultaneously, a balance will be
kept where their distances between each other will keep
constant and all of them move towards the target as a flock.
Consequently the local communication is maintained.

Using a sensor network to estimate the position of a
moving target has been investigated recently by some re-
searchers. The distributed Kalman filter is one of the popular
approaches for such a purpose. The work in [3] [4] [5] [6] [7]
[8] employed a consensus filter to implement the distributed
version of Kalman filter to estimate the position of a moving
target in a static sensor network. In [9], the problem is solved
by communicating estimates between neighbors and then
forming a weighted average as the new estimate. The weights
are optimized off-line to yield a small estimation error covari-
ance. In [10], they adopted a strategy to reduce information
transmitted for sensor networks. They demonstrated that
only a single bit per sensor reading will be good enough
for the Kalman filter. In [11], they developed an adaptive
dynamic strategy for sensor selection and fusion location
using a certainty equivalence approach that seeks to optimize
a tradeoff between tracking error and communications cost.
In [12], a cluster of sensor nodes is self-organized and a
cluster head is elected to implement the Kalman filter. The
cluster will vary with the moving target.

For the problems where the noise does not possess the
Gaussian distribution, the distributed particle filters have
been developed via message passing method [13] or con-
sensus filter [14]. In [15], an information utility of data is
optimized to route the communication and tracking path in
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a static sensor network.
In the rest of this paper, the tracking problem with an

adversary moving target and multiple sensors is formulated
in section II. The distributed minimax filter is developed
in section III. The simulation is given in section IV. The
conclusion and future work are summarized in section V.

II. GAME MODEL AND MINIMAX FILTER

A. Target and Measurement Models

The minimax filter is used to estimate states of a dynamic
system based on the measurements related to the estimated
states, the measurement model, and the system state model. It
looks the same as other state estimators, such as the Kalman
filter. However the difference is that the system state model
includes a fictitious adversary disturbance which is used
to model an adversary target, i.e. the noise in the system
state model is not only limited to the Gaussian noise, but
also includes some partially unknown noise. The adversary
target is assumed ‘smart’ enough to deliberately maximize
the estimation state error. The minimax filter is a minimized
estimator in the case of the worst adversary disturbance.

The centralized minimax filter consists of multiple sensors
and a centralized node to where all sensors send their
readings in order to execute a minimax filter to estimate
the target position. The target is modelled as a discrete time
linear time-invariant system defined by the system equation:

xt+1 = Axt +Bwt + dt (1)

where xt is the system state and wt is the system noise with
zero mean and covariance matrix Q ≥ 0. A and B are the
matrices of the appropriate dimensions with bounded entries.
dt is the adversary disturbance. Assume that the target is
intelligent and can maximize the estimation error. Let x̂
denote the estimated state, the estimation error is xt − x̂t.
The adversary disturbance is modelled as:

dt = L(C(xt − x̂t) + nt) (2)

where L is a gain to be determined, nt is the Gaussian noise
with zero mean and diagonal covariance matrix S > 0. C is
a matrix that is the same as the one used in the measurement
equation.

Assume that N sensors are used, each of which has a
measurement yit at time t. For sensor i, the measurement
equation is defined as

yit = Cixt + vit (3)

where vit is the Gaussian noise with zero mean and covari-
ance matrix Ri > 0.

Multiple measurements are stacked into a measurement
vector and the compact measurement equation is

yt = Cxt + vt (4)

where

yt =

 y1t
...
yNt

 , C =

 C1

...
CN

 , vt =

 v1t
...
vNt



R is the covariance matrix of vt:

R =

 R1

. . .
RN


The noises wt, vt, and nt are mutually uncorrelated and

also uncorrelated with x0.

B. Zero-Sum Game

In general, unbiased estimators are preferred over biased
estimators due to the mathematical tractability. The minimax
filter is also confined to the unbiased estimator with the
following form:

x̂t+1 = Ax̂t +K(yt − Cx̂t) (5)

where K is the gain of the filter. The estimation error is
defined by

et = xt − x̂t (6)

The estimation error is evolved by the following form:

et+1 = (A−KC + LC)et +Bwt + Lnt −Kvt

= Fet +Bwt + Lnt −Kvt

where F = A − KC + LC. In order to form a minimax
problem, the estimation error is decomposed into two parts:

et = eKt + eLt

where

eKt+1 = FeKt +Bwt −Kvt, eK0 = x0

eLt+1 = FeLt + Lnt, eL0 = 0

The cost function in the minimax problem is then defined
by

J(K,L) = tr

H∑
t=0

gtE[||eKt ||2 − ||eLt ||2] (7)

where H is the time horizon, gt is the weight parameter, and
K,L are the filter gains to be optimized. By denoting Pt+1 =
FPtF

′+BQB′+KRK ′−LSL′ and F = A−KC+LD,
the cost function J is given by the following [16] [17]:

J(K,L) = tr
H∑
t=0

gtPt (8)

C. Minimax Filter

With the given cost function and the error state equation,
we can find the worst case adversary performance by max-
imizing the cost function with respect to L and find the
best performance given the worst case adversary performance
by minimizing the cost function with respect to K. By
denoting the optimized gains as K∗ and L∗ respectively, the
equilibrium of the zero-sum game is satisfied with

J(K∗, L) ≤ J(K∗, L∗) ≤ J(K,L∗) (9)
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By solving this zero-sum game, the game equilibrium is
found as follows:

K∗ = AΣtC
′R−1 (10)

L∗ = AΣtC
′S−1 (11)

and

Σ−1
t = P−1

t + C ′(R−1 − S−1)C (12)

The minimax filter algorithm can be summarized as:

x̂t+1 = Ax̂t +K∗(yt − Cx̂t)
Σ−1

t = P−1
t + C ′(R−1 − S−1)C

Pt+1 = AΣtA
′ +BQB′

K∗ = AΣtC
′R−1

(13)

with x̂0 = x0 and P0.

III. DISTRIBUTED MINIMAX FILTER AND FLOCKING

It is not scalable and robust to receive readings from all
other sensor nodes in order to use the minimax filter to
estimate the result. The distributed filter advocates each sen-
sor node only communicates with its neighbors to exchange
sensor readings and executes the estimation using its own
readings and neighbor’s readings.

A. Consensus Filter

We will use the information filter form [2] to deduce the
distributed algorithm. The centralized minimax filter in the
information form can be written as:

Σ−1
t = P−1

t +
N∑
j=1

Cj ′(Rj−1 − S−1)Cj

Pt+1 = AΣtA
′ +BQB′

x̂t+1 =Ax̂t +AΣt

( N∑
j=1

Cj ′Rj−1
yjt −

N∑
j=1

Cj ′Rj−1
Cj x̂t

)
Let

χj,1
t = Cj ′Rj−1

Cj

χj,2
t = Cj ′Rj−1

yjt

χj,3
t = Cj ′(Rj−1 − S−1)Cj

And χj
t =

[
χj,1
t , χj,2

t , χj,3
t

]
. It can be seen from the cen-

tralized minimax filter that the estimation requires the sum
calculation of χj

t from all network members. To develop
a distributed filter, the sum calculation of χj

t has to be
calculated in a distributed way. A consensus filter can be
used to implement the distributed sum calculation of χj

t .
Before we present the consensus filter, the wireless com-

munication network should be modelled as a graph. A
graph represents interconnections between sensor nodes. A
vertex of the graph corresponds to a node and edges of
the graph correspond to interconnections between nodes.
Formally, a graph G = (V, E) consists of a set of vertices
V = {ν1, ..., νN}, indexed by nodes in the network, and a
set of edges E = {(νi, νj) ∈ V × V}, containing unordered

pairs of distinct vertices. Assume that the graph has no loops,
i.e. (νi, νj) ∈ E implies νi ̸= νj .

Let E denote the distance that a node can communicate
via wireless radio links. Edge (νi, νj) is connected if the
Euclidean distance between nodes i and j is less than or
equal to E. Node j is a neighbor of node i. Node i makes
sensor measurement yit, send it to its neighbors, and also
receives the measurement yjt from its neighbor j.

A graph is connected if for any vertices (νi, νj) ∈ V ,
there exists a path of edges in E from νi to νj . The set of
neighbors of vertex i is defined as Ni = {j ∈ V : (i, j) ∈
E}. The degree of vertex i is defined as δi = Ni and the
maximum degree is δmax = maxi δi. Let ∆ be the degree
matrix, ∆ = diag(δi). The adjacency matrix A is the integer
matrix with rows and columns indexed by the vertices, such
as the ij-entry of A is equal to the number of edges from
i to j. Following [18], the Laplacian matrix of a graph G is
defined as L:

L = ∆−A (15)

Let the initial value χi
t be given

χi
0 =

 Ci′Ri−1
Ci

Ci′Ri−1
yit

Ci′(Ri−1 − S−1)Ci


The consensus filter is in the following form:

χi
t+1 = χi

t + η
∑
j∈Ni

(χj
t − χi

t) (16)

where η is the updating rate and should be constrained by:

η ≤ 1

δmax

When the sensor nodes are in motion, the graph is changed
with time. Given the dynamic graph is connected throughout
the whole tracking process, the above constraint guarantees
the stability of the consensus filter according to the Gersh-
gorin theorem. The connectivity of the graph will be secured
by using the flocking algorithm with a potential function
introduced in section III-C. The filter output asymptotically
converges to:

χi
t →

1

N

N∑
j=1

χj
t (17)

Finally Nχ̂i
t can be used as an approximation to the sum

calculation of χj
t .

B. Distributed Filter

In the distributed way, the neighbor nodes exchange their
information via wireless communication. The information
sent out and received in node i are χi

t and χj
t where j ∈ Ni,

respectively. Each node i has an estimation result and the
estimation result is denoted as x̂i

t and P i
t . Figure 1 shows
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the structure of the algorithm. The distributed minimax filter
for node i is as follows:

χi
0 =

 χi,1
t

χi,2
t

χi,3
t

 =

 Ci′Ri−1
Ci

Ci′Ri−1
yit

Ci′(Ri−1 − S−1)Ci

 (18a)

χi
t+1 = χi

t + η
∑
j∈Ni

(χj
t − χi

t) (18b)

Σi
t

−1
= P i

t

−1
+Nχi,3

t

x̂i
t+1 = Ax̂i

t +AP i
t

(
Nχi,2

t −Nχi,1
t x̂i

t

)
P̄ i
t+1 = AΣi

tA
′ +BQB′

In the above, the equations (18a) and (18b) are the consensus
filter. They constitute an inner loop used to calculate the
approximated sum calculation of χj

t .

Fig. 1. Distributed algorithm architecture

C. Flocking Controller

There are N mobile sensor nodes in a network, each of
which is described by its double integrator dynamics. For
a node i with 2D dimensional coordinates qi, the state and
control vectors are zit = [qit, q̇

i
t]
T and ui

t. The dynamics is:

zit+1 = Azit +Bui
t (19)

where

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , B =


T 2/2 0
0 T 2/2
T 0
0 T

 ,

where T is the sample interval. When the estimated target
position is available, each mobile nodes should move towards
to the target and avoid collisions with neighbors. This
behavior requires that the flocking controller to be designed
consist of two basic components. The first one is the tracking

control. The estimated target position plays a key role in
this component. When all mobile nodes move towards the
target, they will have potential to converge to the target
and achieve the cohesive property. Let qi denote the current
position of node i. The cohesive potential function is defined
as Hc = 1/2||qit − x̂i

t||2, where ||qit − x̂i
t|| is the Euclidian

norm of qit − x̂i
t.

The second component is the separation control. Adjacent
mobile nodes are required to keep a specific distance. If the
distance between adjacent nodes is too small, they attempt
to separate. Let Hs denote the separation potential function
between nodes i and j:

Hs = h1e
−||qit−qjt ||/20 − h2e

−||qit−qjt ||/60

where h1 and h2 are two parameters.
The flocking controller should be designed as:

ui
t =− kc

∂Hc

∂qi
− kr

∑
j∈Ni

∂Hs

∂qi
(20)

where kc and kr are the positive gains.

IV. SIMULATIONS

In our simulations, three moving targets are used to test
the estimation performance. The first one is a ‘normal target’
and its model is exactly the same as the equation (1) with
the noise covariance

Q =

[
0.01 0
0 0.01

]
The second one is an ‘intelligent target’ that is to maximize

the estimation error and its model is:

xt+1 = Axt + ke(xt − x̂t)

where ke = 0.04 is the gain.
In the simulations, the minimax filter is compared with

a standard Kalman filter. The Kalman filter is obtained by
taking S → ∞ in both centralized and distributed versions.
All other parameters of the filters are the same.

The number of mobile sensors is 10 and each of them
observe the target via a sensor with

Ci =

[
1 0 0 0
0 1 0 0

]
, Ri =

[
0.04 0
0 0.04

]
and

S =

[
0.09 0
0 0.09

]
Firstly the centralized Kalman filter and minimax filter are
used to estimte a ‘normal target’. The estimation trajectory
of the Kalman filter and the target true trajectory are shown
in figure 2. The estimation trajectory of the minimax filter
and the target true trajectory are shown in figure 3. It can be
seen that both filters can estimate the target with reasonable
accuracy.

The distributed Kalman filter and minimax filter are used
to estimate the ‘intelligent target’ and the estimation trajec-
tories in one of sensor nodes are shown in figure 4 for the
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Fig. 2. ‘Normal target’ estimation trajectory by the Kalman filter

Kalman filter and figure 5 for the minimax filter. Note that
the target trajectories are different for two filters due to the
‘intelligent’ nature of the target. As the target deliberately
maximizes the estimation error, the Kalman filter can not
overcome such adversary noise and gradually the estimation
error is increased. However, the minimax filter takes the
adversary noise into consideration and can always predict
the next-step position to generate good estimation results.
The difference can be clearly seen from their estimation
errors shown in figure 6 where the estimation error of the
minimax filter is bounded with a small value while the
estimation error of the Kalman filter goes without bound.
The distributed minimax filter and the flocking controller
are tested in the final simulation. The estimation error of
the minimax filter is shown in figure 7. Although the error
experiences an increase during the first half period when
the ‘intelligent target’ turns in a sharp angle, it is kept low
and stable afterwards. This shows again the minimax filter
works fine with the ‘intelligent target’. All mobile sensor
nodes move towards the estimated target positions and avoid
collision using the flocking controller. The flocking behavior
can be observed from figure 8 where all mobile nodes marked
with circles are able to track the target and separate with each
other.

V. CONCLUSIONS

This paper mainly concentrates on a distributed minimax
filter developed to estimate a moving target position. The
moving target is assumed to be an adversary agent which
can move away from the estimated position by maximizing
the estimation error. A game theory approach is employed
to develop the minimax filter. The filter is optimized by
minimizing the estimation error and maximizing the worst
case adversary noise. In order to apply the minimax filter to
mobile sensor networks, a distributed version is developed
by using a consensus filter. The distributed minimax filter
only requires local communication between neighbor sensor
nodes. The mobile sensor network also has the ability to
move towards the estimated target by using a flocking
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Fig. 3. ‘Normal target’ estimation trajectory by the minimax filter
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Fig. 4. ‘Intelligent target’ estimation trajectory by the Kalman filter
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Fig. 5. ‘Intelligent target’ estimation trajectory by the minimax filter
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Fig. 7. ‘Intelligent target’ tracking error by the minimax filter

algorithm. In own further work, we will develop a real system
to test the algorithms.
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