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Abstract— This paper proposes a pose-based algorithm to
solve the full Simultaneous Localization And Mapping (SLAM)
problem for an Autonomous Underwater Vehicle (AUV), navi-
gating in an unknown and possibly unstructured environment.
A probabilistic scan matching technique using range scans
gathered from a Mechanical Scanning Imaging Sonar (MSIS)
is used together with the robot dead-reckoning displacements.
The proposed method utilizes two Extended Kalman Filters
(EKFs). The first, estimates the local path traveled by the robot
while forming the scan as well as its uncertainty, providing
position estimates for correcting the distortions that the vehicle
motion produces in the acoustic images. The second is an
augmented state EKF that estimates and keeps the registered
scans poses. The raw data from the sensors are processed and
fused in-line. No priory structural information or initial pose
are considered. Also, a method of estimating the uncertainty
of the scan matching estimation is provided. The algorithm
has been tested on an AUV guided along a 600 m path within
a marina environment, showing the viability of the proposed
approach.

I. INTRODUCTION

During a long term mission with an Autonomous Under-
water Vehicle (AUV) it is necessary to keep the track of
the vehicle’s position. The last decade, a number of studies
in mobile robotics had developed techniques to address the
localization problem with very promising results. In particu-
lar, the so-called Simultaneous Localization And Mapping
(SLAM) techniques have been broadly and successfully
applied to indoor and outdoor environments. Hence, it is of
interest to study how to adapt these techniques in the hostile
underwater environments.

This paper is a contribution in this area, proposing a
pose-based algorithm to solve the full SLAM problem of
an AUV navigating in an unknown and possibly unstruc-
tured environment. The technique incorporates probabilistic
scan matching with range scans gathered from a Mechan-
ical Scanning Imaging Sonar (MSIS), taking into account
the robot dead-reckoning displacements estimated from a
Doppler Velocity Logger (DVL) and a Motion Reference
Unit (MRU). Scan matching is a technique that estimates
the robot relative displacement between two configurations,
by maximizing the overlap between the range scans normally
gathered with a laser or a sonar sensor [1]. Due to the rapidly
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attenuation of the high frequencies in water, the use of high
resolution devices like laser scanners it becomes impractical,
so normally low frequency sonars are utilized. Acoustic sonar
frequencies can penetrate deep the water (e.g. 10 - 150 m for
a forward looking sonar), they are not subject of the water
visibility but provide limited information and medium to low
resolution and refresh rate.

Although a large literature exists reporting successful
applications of scan matching and SLAM to mobile robots,
very few attempts have been done to use sonar scan matching
in underwater applications and even fewer putting them in
a SLAM framework. In [2] a non-probabilistic variation of
Iterative Closest Point (ICP) is proposed to achieve on-line
performance for registering multiple views captured with a
3D acoustic camera. Silver et al. [3], proposed to use a
particle filter to deal with the sonar noisy data but only
simulated results are reported whilst in [4], sonar scans are
registered with FastSLAM and occupancy grids in order
to map flooded ancient cisterns. An application combining
SLAM and sonar scan matching underwater is reported in
[5] were an ICP variant is used for registering bathymetric
sub-maps gathered with a multibeam sonar profiler. With
the same type of sensor, [6] modeled the uncertainty in the
vehicle state using a particle filter and an Extended Kalman
Filter (EKF). In [7], a real time SLAM is used with an
AUV the explores underwater caves and tunnels, in a 3D
environment. Their method consists of a Rao-Blackwellized
particle filter with a 3D evidence grid map representation.
The Mechanical Scanning Imaging Sonar Probabilistic It-
erative Correspondence (MSISpIC) algorithm proposed in
[8], is dealing with data gathered by an AUV utilizing
MSIS. Is based on the Probabilistic Iterative Correspondence
(pIC) algorithm [9] but taking into account the distortions
in the acoustic image due to vehicles’ motion. In order to
deal with them, an EKF using a constant velocity model
with acceleration noise updated with velocity measurements
from a DVL and attitude measurements from MRU, is used
to estimate the trajectory followed by the robot along the
scan. This trajectory is used to remove the motion induced
distortion on the acoustic image as well as to predict the
uncertainty of the range scans prior to register them through
the modified pIC algorithm.

In this paper we extend the MSISpIC algorithm in the
pose-based SLAM framework. Now, each new pose of a scan
is maintained in a second Augmented State EKF (ASEKF)
and is compared with previous scans that are in the nearby
area. If there is enough data overlapping, a new scan match
will put a constraint between the poses updating the ASEKF.
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These constraints help to identify and close the loops which
correct the entire previous trajectory, bounding the drift. The
proposed method has been tested with a real world dataset,
including Differential Global Positioning System (DGPS) for
ground truth, acquired during an experimental survey in an
abandoned marina located in the Girona coast. The results
show substantial improvements in trajectory correction and
map reconstruction.

The main principles of pose-based SLAM can be rooted
back to [10] where the authors proposed a nonlinear op-
timization technique to estimate the robot path, in con-
sistency with relative pose constrains established through
odometry and scan matching. In [11] observed that the
information form formulation of the feature-based SLAM
posterior was almost diagonal and proposed the Sparse
Extended Information Filter (SEIF) to force the sparseness
of the Information matrix through an approximation called
sparsification. More over, [12] showed that the information
form of the pose-based SLAM (referred by them as delayed
state filter) is exactly sparse. With the aim of reducing as
much as possible the size of information vector, as well as
to delay inconsistency [13] have recently proposed methods
to keep only high informative loop-closure links as well as
non redundant poses within the information vector. Because
the focus of our work consists in applying probabilistic
scan matching techniques on sparse sonar data to perform
underwater SLAM, having access to the uncertainties of the
robot poses plays an important role. Hence, even though that
there exist more computationally efficient formulations of the
pose-based SLAM [14], [15], [16], [17], the EKF form is
preferred here given the size of the validating experiment.

The paper is structured as follows. In section II the prob-
abilistic scan matching algorithm is described. Section III
details the MSISpIC following by its uncertainty estimation
in section IV. Both are essential parts of the proposed SLAM
algorithm which is described in section V. Section VI reports
the experimental results before conclusions.

Fig. 1. Scan matching problem description.

II. PROBABILISTIC SCAN MATCHING
The goal of scan matching is to compute the relative

displacement of a vehicle between two consecutive con-
figurations by maximizing the overlap between the range
measurements obtained from a laser or a sonar sensor. That
means, that given a reference scan Sref , a new scan Snew
and an rough displacement estimation q0 between them, the
objective of scan matching methods is to obtain a better
estimation of the real displacement q = (x, y, θ) (Fig. 1).

Several scan matching algorithms exists with most of
them being variations of the ICP algorithm. The geometric
representation of a scan in the conventional ICP algorithm
does not model the uncertainty of the sensor measurements.
Correspondences between two scans are chosen based on the
closest-point rule normally using the Euclidean distance. As
pointed out in [9], this distance does not take into account
that the points in the new scan, which are far from the
sensor, could be far from their correspondents in the previous
scan. On the other hand, if the scan data are very noisy,
two statistically compatible points could appear far enough,
in terms of the Euclidean distance. Both situations might
prevent a possible association or even generate a wrong one.
Probabilistic scan matching algorithms are statistical exten-
sions of the ICP algorithm where the relative displacement
q0 as well as the observed points in both scans ri and ni,
are modeled as Random Gaussian Variables (RGV).

III. MSISPIC ALGORITHM
Scan matching techniques are conceived to accept as

input parameters two range scans with a rough displacement
estimation between them. Most of the approaches utilize
laser technology sensors, which beside their high accuracy,
they also have two more major advantages: they gather each
scan almost instantaneously and the beams angle can be
consider almost perfect. However, when using ultrasonic
range finders these advantages are no longer valid because
of their lower angular resolution and the sparsity of the
readings. To overcome this problem the Sonar Probabilistic
Iterative Correspondence (spIC) is proposed in [18], as an
extension of the pIC. Further than mobile robotics, as the
light propagation in the water is very poor, AUVs utilized
acoustic sonars instead of laser sensors. In [8] the MSISpIC
algorithm is proposed, modifying the pIC in order to deal
with the strong deformations that, by its nature, are intro-
duced in the scan whilst is formed in the underwater domain.

Commercially available underwater scan sensors are based
on acoustics with a mechanical head that rotates at fixed
angular steps. At each step, a beam is emitted and received,
measuring ranges and intensities to the obstacles found
across its trajectory. Acquiring a complete scan can take
several seconds, therefor it can be distorted from the vehicle’s
motion. Thus, getting a complete scan that lasts few seconds
while the vehicle is moving, generating deformed acoustic
images. For this reason, it is necessary taking into account
the robot pose when the beam was grabbed.

One part of the MSISpIC algorithm forms a scan, cor-
rected from the vehicle’s motion distortion. MSISpIC uses an
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EKF with a constant velocity model and acceleration noise
for the prediction step. Then, it updates with velocity and
attitude measurements obtained from a DVL and a MRU
respectively, in order to estimate the trajectory followed by
the robot along the scan. This trajectory is used to remove
the motion induced distortion of the acoustic image as well
as to predict the uncertainty of the range scans prior to
register them. After the corrected scan has formed, MSISpIC
grabs two scans and registers them using a modified pIC
algorithm. MSISpIC algorithm, consist of three major parts:
Beam segmentation, Relative vehicle localization and Scan
forming.

A. Beam Segmentation and Range Detection

The MSIS returns a polar acoustic image composed of
beams. Each beam has a particular bearing angle value
and a set of intensity measurements. The angle corresponds
to the orientation of the sensor head when the beam was
emitted. The acoustic linear image corresponding to one
beam is returned as an array of acoustic intensities detected
at a certain distance. The beam is then segmented using a
predefined threshold to compute the intensity peaks. Due to
the noisy nature of the acoustic data, a minimum distance
between peaks criteria is also applied. Hence, positions
finally considered are those corresponding to high intensity
values above the threshold with a minimum distance between
each other.

B. Relative Vehicle Localization

To maximize the probability for data overlapping, we
collect a complete 360o scan sector and register it with the
previous one in order to estimate the robots’ displacement.
From now on we will refer this sector as a scan. Since MSIS
needs a considerable period of time to obtain a complete
scan, if the robot does not remain static (which is very
common in water), the robot’s motion induces a distortion in
the acoustic image (Fig. 2). To deal with this problem it is
necessary to know the robot’s pose at the beam reception
time. Hence, it is possible to define an initial coordinate
system I to reference all the range measurements belonging
to the same scan. In order to reduce the influence of the
motion uncertainties to the scan, as [18] suggested, we set
this initial frame at the robot pose where the center beam of
the current scan was read. The localization system used in
this work is a slight modification of the navigation system
described in [19]. In this system, a MRU provides heading
measurements and a DVL unit is used to update the robot’s
velocity during the scan. MSIS beams are read at 30 Hz
while DVL and MRU readings arrive asynchronously at a
frequency of 1.5 Hz and 10 Hz respectively. An EKF is used
to estimate the robot’s 6 Degrees Of Freedom (DOF) pose
whenever a sonar beam is read. DVL and MRU readings are
used asynchronously to update the filter. To reduce the noise
inherent to the DVL measurements, a simple 6 DOF constant
velocity kinematics model is used. The model prediction is
updated by the standard Kalman filter equations each time a
new DVL or MRU measurement arrives.

Fig. 2. The distortion produced by the displacement of the robot while
acquiring data can be corrected with the relative displacement.

C. Scan Forming

The navigation system presented above is able to estimate
the robot’s pose, but the uncertainty will grow without limit
due to its dead-reckoning nature. Moreover, we are only
interested in the robot’s relative position (and uncertainty)
with respect to the center of the scan (Icenter-frame, Fig. 3).
Hence a slight modification to the filter is introduced making
a reset in position (setting x, y, z to 0 in the vector state)
whenever a new scan is started. modified filter provides the
robot’s relative position where the beams where gathered
including its uncertainty accumulated during the scan. Hence,
it is possible to reference all the ranges computed from the
beams to the frame I , removing the distortion induced by
the robot’s motion.

IV. SCAN MATCHING COVARIANCE

Although the ICP-style algorithms lead to very good
estimations of relative displacements, they all missing the
part of the uncertainty of their estimation. Calculating the
covariance of a measurement is essential when it has to be
fused with other measurements in a stochastic localization
framework, like the SLAM. To the authors knowledge, very
few works exists which try to address in depth this problem.
Covariance estimation based on the environment and the
uncertainties of the sensor model has been introduced in
[20] and [21] but as has been shown in [22], that kind
of estimation in a number of cases can be very optimistic.
The authors conclude that the Hessian method is suitable for
online estimation being able to capture the shape but not the
size of the covariance matrix. On the other hand, the second
method while capturing the size and shape of the covariance
matrix can only be applied offline due to the computational
cost.

In a SLAM context, an approach similar to the offline
method is used in [23], although in this case only the initial
guess of the displacement is sampled. In [24], the authors
suggested that the method for estimating the covariance
should be independent from the algorithm used for the mini-
mization. They observed the paradox that different optimiza-
tion methods led to seemingly different uncertainties, but
none of them indicate which uncertainty is to be adopted. The
Hessian method can be considered a method in this line since
it is based on the error function being minimized. Neverthe-
less, [25] has shown that for square environments the Hessian
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a) b)

Fig. 3. The scan forming process, simplified for clarity. a) Each beam is grabbed in different vehicle poses. b) The beams of a full scan are referenced
in the center I-frame of the vehicle trajectory covering that scan. The uncertainty of the motion has been propagated to the scan points.

method provides pessimistic estimations for the covariance
matrix. In the same work the author proposed an approach
formerly proposed by the computer vision community [26],
based on: 1) the Hessian of the error function with respect
to the scan displacement, and 2) the derivative (with respect
to sonar scan points) of the Jacobian (with respect to the
scan displacement) of the error function. We will refer this
method as Haralicks method, which allows propagating the
uncertainty of the sonar points to the uncertainty of the scan
matching solution. By means of Monte Carlo simulations,
equivalent results for corridor and circle shaped environments
and further better results for square type environments are
reported in [25]. Also the author has made widely available in
his webpage a numerical based implementation of Haralicks
method algorithm. Hereafter, the method is adapted to the
MSISpIC for which a close form solution is proposed.

A. Closed-form equation

Let ai = [axi
, ayi ]

T ∈ Sref be the corresponding point
of ci = [cxi , cyi ]

T ∈ Snew and qk = [x, y, θ]T the
predicted displacement, then the real robot displacement
q̂min = [x, y, θ]T can be estimated by the Non-Linear Least
Squares (NLLS) of the MSISpIC, through the minimization
of the error function ei = ai − qk ⊕ ci:

E (Sref , Snew, q̂min) =
1

2

n∑
i=1

(
eTi ·P−1

ei · ei
)

(1)

The estimation of the covariance of (1) in a closed form
is not trivial. Depending on the error function and the
parameters, the construction of the necessary matrices can
be tricky. Bellow, we unfold analytically the closed-form
expressions for approximating the covariance of (1).

B. Closed-form implementation

Let,

• ẑ, be the vector of the measured scan points assumed to
be perturbated with a zero mean Gaussian random noise.
In our case, the pIC does point-to-point association,
therefore the measurements vector ẑ is a dimension of

4n× 1:

ẑ = [ax1
, ay1 , cx1

, cy1︸ ︷︷ ︸
ẑ1

· · · axn
, ayn , cxn

, cyn︸ ︷︷ ︸
ẑn

]T (2)

and its covariance, given by Σz, is a (4n× 4n) matrix
consisted of the uncertainties of the scan points:

Σz = blockdiag (Pa1 ,Pc1 · · ·Pan ,Pcn) (3)

being block diagonal since the scan points are assumed
to be uncorrelated. As a difference with laser scanners
or multi-beam sonar profilers, when using a rotating
mono-beam sonar head, the scan points become corre-
lated when represented in the scan I-frame. Neverthe-
less, for the sake of simplicity, those correlations have
been neglected in this work and their impact will be
part of our future research.

• x̂, be the unknown parameters vector corresponding to
the q̂min estimated by the the pIC.

x̂ = [x, y, θ]
T (4)

• f(z, x), be an scalar, continuous, non-negative function,
then (1) can be defined as:

f(z, x) =
1

2

n∑
i=1

(
eTi ·P−1

ei · ei
)

(5)

then, we can apply [26] in order to estimate Σx:

Σx =

(
∂g

∂x

)−1

· ∂g
∂z
·Σz ·

(
∂g

∂z

)T
·
(
∂g

∂x

)−1

(6)

where g (z, x) =
[
∂f(z,x)
∂x

]T
. To do this, it is necessary to

compute g (z, x), ∂g(z,x)
∂x and ∂g(z,x)

∂z . Let us begin rewriting
the function (1) as:

f (z, x) =
1

2
· RT ·W · R (7)

where R is the stacked vector of the measurement errors (of
dimension 2n× 1):

R =
[
eT1 · · · eTn

]T
(8)
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and W is the inverted block diagonal matrix of the measure-
ment errors covariances (of dimension 2n× 2n):

W = blockdiag (Pe1 · · ·Pen)
−1 (9)

Because W is the inverse of a covariance matrix, it
is positive-definite and hence a Cholesky decomposition
W = LT · L exists. Now, for simplicity and without lost
of generality, let us define:

R̂ = L · R (10)

W is block diagonal because the scan points are assumed to
be uncorrelated, so as is L:

L = blockdiag (Le1 · · ·Len) (11)

Now, equation (7) can be rewritten as:

f (z, x) =
1

2
· R̂

T
· R̂ (12)

and g(z, x) can be defined as the Jacobian of the cost
function, being a (1× 3) matrix;

g (z, x) =
∂f

∂x
= R̂

T
· Ĵx (13)

where Ĵx is the (2n×3) Jacobian matrix of error vector R̂ :

Ĵx =
∂R̂
∂x

=


∂(Le1

·e1)

∂x

∂(Le1
·e1)

∂y

∂(Le1
·e1)

∂θ
...

...
...

∂(Len ·en)
∂x

∂(Len ·en)
∂y

∂(Len ·en)
∂θ

 (14)

The ∂g(z,x)
∂x is the (3×3) Hessian of f (z, x) and is calculated

as follows:

∂g

∂x
= 2 · Ĵ

T

x · Ĵx + 2 · R̂
T ∂Ĵx

∂x
(15)

where ∂Ĵx
∂x is the (6n × 3) Hessian of R̂ which can be

computed in the following way:

∂Ĵx

∂x
=

∂

∂x

(
∂R̂
∂x

)
=

3∑
i=1

(
vec

(
∂Ĵx

∂xi

))
· rTi (16)

being ri a (3 × 1) vector, with all zeros except its ith row
which is equal to 1. To compute the second part of (15), the
(16) is multiplied by R̂

T
as follows:

R̂
T ∂Ĵx

∂x
=
(

R̂
T
⊗ I3

)
· ∂Ĵx

∂x
(17)

where ⊗ denotes Kronecker product of two matrices. Simi-
larly, the ∂g

∂z is a 3× 4n matrix, computed as:

∂g

∂z
= 2 · Ĵ

T

x · Ĵz + 2 · R̂
T ∂Ĵx

∂z
(18)

where Ĵz is the Jacobian of the error vector R̂, being a (2n×
4n) matrix:

Ĵz =
∂R̂
∂z

= blockdiag

(
∂R̂1

∂z
· · · ∂R̂n

∂z

)
(19)

where each ∂R̂(i)
∂z is a (2×4) matrix, and ∂Ĵx

∂z is the following
(6n× 4n) matrix:

∂Ĵx

∂z
=

4n∑
i=1

(
vec

(
∂Ĵx

∂zi

))
· rTi (20)

being this time ri a (4n × 1) vector of all zeros except its
ith row which is equal to 1. As previously, the second part
of (18) is given by:

R̂
T ∂

∂z

(
∂R̂
∂x

)
=
(

R̂
T
⊗ I3

)
· ∂Ĵx

∂z
(21)

The verification of the above formulation has been carried
out in [27] with extensive Monte Carlo testing and it also
compared against the numerical based implementation re-
ported in [25], being in agreement up to the fifth decimal
digit.

V. SLAM ALGORITHM

The proposed pose-based SLAM algorithm uses an
ASEKF for the scan poses estimation. In this implementation
of the stochastic map [28], the estimate of the positions of
the vehicle at the center of each full scan {x1 . . .x

B
n } at the

time step (k), are stored in the state vector x̂:

x̂Bk =
[
x̂Bnk

. . . x̂Bik . . . x̂B1k
]T

(22)

and the covariance matrix for this state is defined as:

PB
k = E([xBk − x̂Bk ][x

B
k − x̂Bk ]

T ) (23)

Note that, a full scan is defined as the final 360◦ polar range
image obtained after compounding, along the path, the robot
pose with the range and bearing data, which is the output
from the MSISpIC algorithm.

A. Map Initialization

All the elements on the state vector are represented in the
map reference frame B. Although this reference frame can
be defined arbitrarily, we have chosen to place its origin on
the initial position of the vehicle and orient it to the north,
so compass measurements can be easily integrated.

The pose state xi is represented as:

xBi =[x y ψ]
T (24)

where, x, y and ψ is the position and orientation vector of
the vehicle in the global frame B. The state and the map are
initialized from the first full scan obtained by the MSISpIC
algorithm.

B. Prediction

Let
• xBnk

≡ N(x̂Bnk
, PB

qk
) be the last robot pose and

• q̂Bn
n ≡ N(q̂Bn

n , PB
qn) be the robot displacement during

the last scan, estimated through dead reckoning
then the prediction / state augmentation equation is given by:

x̂Bk+1 = x̂Bk � q̂Bn
nk

= (25)

4408



[
x̂Bn−1k

� q̂Bn
nk
| x̂Bn−1k

. . . x̂Bik . . . x̂
B
1k

]T
(26)

where, given that B and Bn frames are both north aligned,
the operator � is defined as:

x� q =

 a
b
c

 �

 d
e
f

 =

 a+ d
b+ e
f


(27)

being J1� and J2� the corresponding linear transformation
matrices:

J1� =

[
I2x2 0
0 0

]
, J2� = I3x3

and being the predicted pose uncertainty PB+
k computed as:

PB
k+1 = FkP

B
k FTk + GkP

B
qiG

T
k (28)

where,

Fk =


J1� 03x3 . . . 03x3

03x3 I3x3 . . . 03x3

...
... . . .

...
03x3 03x3 . . . I3x3

 Gk =


J2�
03x3

...
03x3


C. Loop Closing Candidates

Each new pose of a scan is compared against the previous
scan poses that are in the nearby area defined by a threshold.
Whenever enough points are overlapping, a new scan match
puts a constraint between the poses updating the ASEKF.
These constraints close the loops correcting the whole tra-
jectory and bounding the drift.

Let
• xBnk

be the last scan pose and Snk
the corresponding

scan,
• Overlapk =

{
Sik /

∥∥x̂Bnk
− x̂Bik

∥∥ < threshold
}

the
set of overlapping scans and Ok = [S1k , S2k . . . Smk

]
the sequence of overlapping scans belonging to the
Overlapk set

then ∀ [Sik ,x
B
i ] ∈ Ok, perform a new scan matching

between the scan poses (xBnk
,xBik) with the corresponding

scans (Snk
, Sik) obtaining [q̂Iii ,R

Ii
qi ] the result of the scan

matching. RIi
qi is the corresponding uncertainty computed as

described in Section IV. Finally the scan matching result is
used to update the filter.

D. Scan Matching

In order to execute the modified pIC algorithm, given two
overlapping scans (Si, Sn) with related poses (xBi ,x

B
n ), an

initial guess of their relative displacement is necessary. This
initial guess [q̂Iii ,P

Ii
i ] can be easily extracted from the state

vector using the tail-to-tail transformation [28]:

q̂Iii = 	x̂Bi ⊕ x̂Bn (29)

Since the tail-to-tail transformation is actually a nonlinear
function of the state vector x̂Bk , the uncertainty of the initial
guess can be computed by means of the Jacobian of the non
linear function:

PIi
qi = HkP

B
k HT

k (30)

where

Hk =
∂ 	 x̂Bi ⊕ x̂Bn

∂ xBk

∣∣∣∣
(xB

k =x̂B
k )

(31)

Moreover, as shown in [28], the Jacobian for the tail-to-tail
transformation xac = 	xba ⊕ xbc , is:

∂ 	 xba ⊕ xbc
∂ (xbaxbc)

= [J1⊕J	 J2⊕] (32)

where the J1⊕,J2⊕ and J	 are the Jacobian matrices of the
compounding and inverse transformations respectively.

Being in our case x̂Bnk
and x̂Bik components of the full state

vector, the Jacobian of the measurement equation becomes:

Hk =
∂ 	x̂B

ik
⊕x̂B

nk

∂ xk
=

[J2⊕3x3 03x3(n−i−1) J1⊕J	3x3 03x3(i−1)]

Once the initial displacement guess is available, the pIC
algorithm can be used to produce an updated measurement
of this displacement.

E. State Update

When two overlapping scans (Si, Sn) with the correspond-
ing poses (xBi ,x

B
n ) are registered, their relative displacement

defines a constraint between both poses. This constraint can
be expressed by means of the measurement equation, which
again in our case becomes:

zk = 	x̂Bik ⊕ x̂Bnk
(33)

where x̂Bik is the scan pose which overlaps with the last
scan pose x̂Bnk

. Now, an update of the stochastic map
can be performed with the standard extended Kalman filter
equations.

VI. EXPERIMENTAL RESULTS

The method described in this paper has been tested with
a dataset obtained in an abandoned marina located in the
Catalan coast [29]. This dataset corresponds to structured
environment but our algorithm does not take into account any
structural information neither features and with the current
sensor suite, it can been used wherever there is enough
vertical information. The survey mission was carried out
using ICTINEUAUV [30] traveling along a 600 m path. The
MSIS was configured to scan a full 360◦ sector and it was
set to maximum range of 50 m with a 0.1 m resolution and
a 1.8◦ angular step. With those settings, the MSIS needed
around 14 secs to complete a full scan. Dead-reckoning
was computed using the velocity reading coming from the
DVL and the heading data obtained from the MRU sensor,
both merged using the described EKF. The whole dataset
was acquired in 53 mins and the off-line execution of the
algorithm implemented in MATLAB took around 14 mins in
a simple Pentium M @2,00 GHz laptop, which gives good
possibilities for real time implementation of the proposed
algorithm.

Fig. 4 shows the trajectory and the map estimated with
the proposed SLAM algorithm and in Fig. 6, the results are
projected on an ortophotomap of the real environment. As
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Fig. 4. SLAM Trajectory and map. In red is the dead reckoning (dash-dot), in solid green line the DGPS trajectory used as a ground truth and in blue
(dash) the trajectory estimated with the SLAM algorithm.

a) b) c)

Fig. 5. Error analysis for all the scan poses as the displacement estimated through the SLAM and the corresponding displacement estimated with the
DGPS. a) absolute error. b) Error in X vectors. c) Error in Y vectors. The solid line is the Gaussian fit to the histogram.

was expected, the dead-reckoning estimated trajectory suffers
from a significant drift which is drastically limited by the
SLAM algorithm. The maximum absolute error is 2.9 m
as shown in fig. 5 (a). The absolute error is computed as
the difference between the displacement estimated through
the SLAM algorithm and the corresponding displacement
estimated with the DGPS, assuming zero DGPS error. In
the (b) and (c) figures are the histograms of the errors for
the X and Y vectors. The solid line is the Gaussian fit to the
histogram.

The nominal accuracy of a DGPS is around 1 m and it
degrades at an approximate rate of 1 m for each 150 km
distance from the broadcast site [31]. In our experiment, we
were receiving differential corrections from a nearby base
station (<40 km), thus is reasonable to assume that the DGPS

drift was not more than 2 m.

VII. CONCLUSIONS

This paper proposes an extension to the MSISpIC algo-
rithm in the pose-based SLAM framework. To deal with
the motion induced distortion of the acoustic image, an
EKF is used to estimate the robot motion during the scan.
The filter uses a constant velocity model with acceleration
noise for motion prediction and velocity (DVL) and attitude
measurements (MRU) for updating the state. Through the
compounding of the relative robot position within the scan,
with the range and bearing measurements of the beams
gathered with the sonar, the acoustic image gets undistorted.
Assuming Gaussian noise, the algorithm is able to predict
the uncertainty of the sonar measurements with respect to
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Fig. 6. Trajectory and map estimated with the SLAM algorithm projected
on the orthophoto map.In red are the sonar map, in solid green line the
DGPS trajectory and in blue (dash) the trajectory estimated with the SLAM
algorithm.

a frame located at the position occupied by the robot at
the center of the scan. Each full scan pose is maintained
in a second filter, an augmented EKF, and is cross registered
with all the previous scan poses that are in a certain range
applying a modified pIC algorithm. A closed form method
of estimating the uncertainty of the minimization algorithm
is presented. The proposed method has been tested with a
real world dataset including DGPS for ground truth acquired
during a survey mission in an abandoned marina located in
the Girona coast. The results show substantial improvements
in trajectory correction and map reconstruction over the
MSISpIC results [8].
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