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Abstract— This paper introduces a control method for a
powered planar biped without ankle actuation. The existence of
an ideal slope, on which the biped can walk without actuation,
is assumed. The proposed controller can realize stable walking,
as if the biped were on an ideal slope when the biped is
on a different slope. The proposed controller has no singular
points, whereas the control input diverges to infinity, unlike
conventional controllers for powered passive walkers. Selected
simulations were executed with a simple compass-like biped and
a four-link biped with a mass body to validate the effectiveness
of the proposed controller.

I. INTRODUCTION

Many researchers have been studying passive dynamic
walkers, which can walk down a shallow slope without
any actuation, after the pioneering work of McGeer [1].
The fundamental concept governing these walkers is that
the energy consumed by foot impact is recovered by the
gravitational potential. Some researchers have been trying
to extend this method to powered walking on level ground
[2], [3], [4], [5], because passive walkers are much more
efficient than conventional powered bipedal robots, even if
it is powered [5], [6], [7].

Goswami et al. [2] designed an energy feedback controller
to provide a robot with energy via actuation. They fed
back the current energy to track the desired energy. They
considered ankle drive to be an unrealistic assumption for the
modeling of a compass-like biped and instead applied their
algorithm to a biped with hip actuation only. It is difficult to
control walking velocity using this algorithm. As such, they
added a velocity compensation term into the desired energy
formula to facilitate better control of walking velocity [8].
The drawbacks of this control algorithm are that the control
input is divided by the relative velocity between the swing
and stance legs, and the input tends toward infinity as the
velocity approaches zero.

Spong [3] proposed a passivity-based controller with
gravity compensation to realize the walking dynamics that
would occur on the ideal slope, while on level ground. This
controller required multi-joint actuation, including the ankle
joint. Thus, it is difficult to apply this method to robots
without feet. Spong discussed the treatment of under-actuated
bipeds but it is an irregular treatment based on Goswami’s
work [2]. Spong [9] extended the two-dimensional passivity-
based controller to the three dimensional biped using the
concept of controlled symmetry. Asano et al. [4] proposed
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virtual gravity control for a fully actuated compass-like
biped. They compensated the horizontal potential energy to
realize ’virtual gravity’ on level ground. They used ankle
actuation because a lot of walking robots, which are based
on a zero moment point (ZMP), use this actuation scheme.
However, passive walkers use rocker functions [10] instead
of foot contact with the ground at a point. In this case, it is
difficult to model the robot as a biped with ankle actuation
[1], [11], [12], [13]. The ankle actuation also may require a
heavy foot or implausible torques due to ground contact.

For a biped without feet, Chevalleau et al. [14] designed a
walking controller based on hybrid zero dynamics and virtual
constraints to realize control of a bipedal walker without
taking ZMP into account. This method forces a robot to
follow a virtual constraint and seems to require more energy
than control methods based on passive walking dynamics.

This paper proposes a gravity compensation method for a
two dimensional biped without ankle actuation. This method
is based on virtual gravity concept (e.g., [3] [4]) to realize
stable walking on a shallow slope.

There are two advantages compared with the existing
powered biped with virtual gravity. First, this method can be
applied to bipeds with point feet, and the proposed controller
does not have any terms that are divided by the relative
velocity between the legs as in [2], [4] so that the control
input does not diverge to infinity at singular points. Second,
it is easy to execute the proposed controller, because it uses
only the Jacobian and the gravitational forces to calculate
the control input.

Section II describes the dynamics of the robot to account
for the constraint between the foot and the ground. Section
III proposes a control method to compensate the gravity
effect on an ideal slope. In section IV, some simulations
are executed to confirm the validity of the controller with a
simple compass-like biped and a four-link biped with a mass
body in a plane. Section V concludes this paper.

II. MODELING OF A WALKING BIPED

Fig. 1 shows a physical model of a biped in a plane. We
assume that this robot has no foot link, and the body is
modeled as a link, whose center of mass is at the hip joint.

Let x = (x, y)T ∈ R2 be the position of the upper body
with respect to the fixed coordinates on the ground. Let q =
(qT

1 , qT
2 )T ∈ RN1+N2 be the joint angle of both legs.

Then, the state of the system can be expressed as z =
(xT, qT)T ∈ RN , where N = 2 + N1 + N2. The contact
between the foot and the ground is at a point. The following
assumptions are made [15]; 1) friction between the foot and
the ground is large enough to prevent the foot from slipping,
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Fig. 1. A walking robot on a slope

2) the swing and stance legs can be changed instantaneously,
and 3) the collision between the ground and the foot is
perfectly inelastic. When the i th leg supports the body, the
constraint between the leg and the ground can be described
as follows:

fi(z) = 000. (1)

The time derivative of the constraint is calculated as

Ji(z)ż =

⎧⎨
⎩

(
IM Js1(q) 000

)
ż = 000 if i = 1,(

IM 000 Js2(q)
)

ż = 000 if i = 2.
(2)

Let H(z) be the inertia matrix of the robot and Ur(â, z) be
the potential energy generated by the acceleration vector â.
Then the equation of motion (EOM) of the robotic system
is described as follows (e.g., [16]):

H(z)z̈+
{

1
2
Ḣ(z) + S(z, ż) + C

}
ż + g(z)

− JT
i (z)λ = ATu,

(3)

where S(z, ż) is the skew-symmetric matrix, C is the
damping matrix, λ ∈ R2 is the ground reaction forces
at the stance heel, A is the coefficient matrix and u =
(u1, u2)T ∈ RN1+N2 is the controlled torque for both legs,
and the gravitational vector is defined as

g(z) =
∂Ur(ĝ, z)

∂z

T

, (4)

where ĝ is the gravity acceleration. There is no actuator for
controlling the upper body directly, therefore

A =
(
000 IN1+N2

) ∈ RN×(N1+N2). (5)

The key feature of this model is the lack of ankle joints. For
example, with this model the compass-like biped has two
control inputs on the hip, although the typical compass-like
biped has one hip and two ankle inputs [2].

Next the collision between the foot and the ground was
considered. The superscripts “−” and “+” express the state

just before and after the contact. The contact is inelastic,
thus,

Jj(z)ż+ = 000. (6)

The configuration was assumed to be unchanged during
ground contact. Momentum is preserved as follows:

H(z)ż− + JT
j (z)μ = H(z)ż+, (7)

where μ is the impulse of the contact forces at heel strike.
Then, from eqs. (6) and (7), the velocity after the collision
is given as follows:

ż+ =
{
IM+N − H−1JT

j [JjH
−1JT

j ]−1JT
j

}
ż−. (8)

We can express the next phase of walking using the EOM
(3) by changing the Jacobian matrix Ji, which implies the
exchange of the stance and swing legs by using the new state
z, ż+.

III. CONTROLLER DESIGN

In this section, we propose and explain the physical
meaning of a controller that performs gravity compensation
of a biped robot without ankle actuation, based on Spong’s
work [3].

Fig. 2 shows the image of the system. We assume that
there is an ideal slope on which a biped robot can walk
without any actuation. However, the current slope is not
ideal. We would like the biped to walk as if it were on the
ideal slope.

Let ĝdes be the gravitational acceleration vector when the
robot is on the ideal slope. Then, the ideal gravitational force
vector is given as follows:

gd(z) =
∂Ur(ĝdes, z)

∂z

T

, (9)

For example, let α be the angle of the current slope and β
be the angle of the desired level ground as shown in Fig. 2.
Then,

ĝdes = −gr

(− sin(β − α)
cos(β − α)

)
, (10)

where gr is the gravitational acceleration constant. ĝdes is not
limited to the form in Eq. (10), and we can use any ĝdes to
realize the stable slope walk. For example, see [4] as another
candidate.

Let gin be the controlled gravitational force to generate
the ideal gravitational force vector. Then,

gin = −gd + g. (11)

If the biped is full-actuated, then we can use u = A−Tgin,
and the closed dynamic becomes

H(z)z̈+
{

1
2
Ḣ(z) + S(z, ż) + C

}
ż + gd(z)

− JT
i (z)λ = 000.

(12)

This expresses the dynamics of the biped on the ideal slope.
However, it is impossible to use the above control input
because there is no control input to the upper body. Thus,
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Fig. 2. powered simple biped walking

we need to compensate the input in a different way. To do
this, gin is described as follows:

gin =

⎛
⎝gin

b

gin
1

gin
2

⎞
⎠ , (13)

where gin
b ∈ R2 is the gravitational force vector acted on

the upper body, and gin
i ∈ RNi(i = 1, 2) is the gravitational

force vector acted on the i th leg.
Here, we consider the roles of the swing and stance legs

separately. The main difference between the stance and the
swing legs is that the stance leg has to support the body.
Thus, we will use the stance leg to compensate gin

b . The
control input for the i th leg is defined as follows:

ui =

{
−JT

sig
in
b + gin

i if the i th leg supports the body.

gin
i if the i th leg is the swing leg.

(14)

where Jsi is the sub-matrix in the Jacobian matrix of Eq.
(2). The control input never diverges at singular points, as
shown in [2], [4], because it is not divided by a velocity
term. In addition, the control input does not include any ankle
actuation, as in [3], [4].

The following serves as an explanation of the meaning of
the control input. From Eq. (2), the upper body velocity ẋ
can be expressed as

ẋ = −Jsiq̇i. (15)

Then, the power provided to the biped is∑
j=1,2

q̇T
j uj = −q̇T

i JT
sig

in
b +

∑
j=1,2

q̇T
j gin

j

= ẋTgin
b +

∑
j=1,2

q̇T
j gin

j = żTgin.
(16)

This means that the power provided to the biped is equivalent
to the power provided by gravitational force gin. Thus, the
biped can walk as if it were on the ideal slope.

IV. SIMULATION

In this section we execute simulations using a planar
compass-like biped and a planar four-link biped with a mass
body.

A. In the case of the compass-like biped

We execute two simulations in this subsection: the un-
powered simple biped on the ideal slope and the powered
biped on level ground. The powered biped is controlled
with the proposed controller. We can confirm the validity
of our control method by comparing the results of these two
simulations.

The parameters of the biped used in this simulation are
shown in Table I. Fig. 3 (a) shows the phase graph of the
unpowered biped when it walks down on a slope, whose
angle is α = −0.03 (rad). The left graph shows the phase
graph of the hip joint in the transition, and the right graph
shows that in the steady states after 7.5 (s). The pink and
blue lines are the stance and swing legs in their initial
configurations, respectively. The circles in the graph are the
initial states. The upper and lower arcs show the swing and
stance phases, respectively. The sharp edges of the right and
left bottom in the figure are at the time of the foot contact
and foot off, respectively. We can see that the trajectories of
both legs are the same in steady state.

Fig. 3 (b) shows the phase graph of the powered biped
walking on level ground (α = 0.0 (rad)). The initial condi-
tions are given to be equivalent to the unpowered case, and
the ideal angle is designed as β = −0.03 (rad). The shapes
of Fig. 3 (b) is almost the same as in Fig. 3 (a). Thus, the
proposed method can realize the ideal gravitational force.

Fig. 4 shows the total energy of the unpowered biped. The
sudden change of energy is caused by the impact between the
foot and the ground. In the steady state, the energy provided
by gravity is balanced by the energy lost through impact. We
can see that the walking pattern becomes stable.

Fig. 5 (a) shows the control input of the powered biped.
The pink and the blue lines are the control inputs for the
first and second legs, respectively. The control inputs do
not show any divergence at the singular points. The control
input jumps from a small input (around +0.025 (Nm)) to
a large input (about -0.3 (Nm)) and vice versa. The large
input occurs during the stance phase and is used to support
the body. The small input occurs during the swing phase and
is used only to move the swing leg forward.

Fig. 5 (b) shows the consumed energy of the motors. The
red solid line is the absolute consumed energy. It is assumed
that the motors cannot regenerate energy using external work.
The blue dashed line is the energy. It is assumed that the
motors can regenerate the energy in this case. The two lines
are almost the same. From Fig. 4, the biped walks 20 steps
in 10 (s), and the average consumed energy is about 0.2 (J)
per step. The generated energy is about 4.0 (J) for 20 steps,
and it is almost equivalent to the provided energy in Fig. 4.
Thus, we can see that the control method is very efficient.

B. In the case of a four-link biped with a mass body

Fig. 6 shows the four-link planar biped with a mass body.
The center of mass of the upper body is at the hip joint. The
range of motion of the knee joints is limited to the range
between 0 and π (rad), where the knee angle is 0 when
the leg is straight. During the swing phase, the biped starts
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TABLE I

LINK PARAMETERS OF A SIMPLE BIPED.

parameter value (unit)

mH 2.000 (kg)
mL 0.125 (kg)
a 0.200 (m)
b 0.200 (m)

TABLE II

LINK PARAMETERS OF A FOUR-LINK BIPED WITH A MASS BODY.

parameter value (unit)

m0 2.000 (kg)
m1 0.300 (kg)
m2 0.200 (kg)
l1 0.200 (m)
l2 0.200 (m)
lg1 0.160 (m)
lg2 0.120 (m)
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Fig. 3. Phase diagram of unpowered and powered simple bipeds. (a) the
unpowered, (b) the powered. The left and the right figures show the transit
and steady state motions, respectively.

bending the knees. The biped keeps straightening the knees
after the knee reaches an outer bound of its range of motion.

In this section, we compared the unpowered biped and the
powered biped as shown in section IV-A. We also show a
simulation on an ideal slope which descends from 0 (rad) to
-0.045 (rad).

First, we consider the unpowered biped. Fig.7 (a) shows
the phase graph of the hip joint when the slope is α = −0.03
(rad). The left and the right graphs are the transition period
and the steady states, respectively. The circles in the figure
are the initial states. The upper and lower arcs are the swing
and stance phases, respectively. The sharp edge in the middle
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Fig. 4. The whole energy of the unpowered simple biped
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biped; (a) the control inputs of the hip joints, (b) the energy supplied by
the actuators.
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Fig. 6. four-link biped with a mass body

of the swing phase is caused by the collision of the knee. The
knee velocity becomes small and recovers instantaneously
because the shin is rotating in the opposite direction of the
thigh, but the translational motion of both the shin and the
thigh are in the same direction. Thus, the swing leg does not
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Fig. 7. Phase diagram of unpowered and powered four-link bipeds with a
mass body. (a) unpowered, (b) powered. The left and the right figures show
the transit and steady state motions, respectively.

lose much energy. In the steady state, the trajectories of both
legs are almost the same, and the walking pattern becomes
stable.

Fig. 7 (b) shows the phase graph of the powered biped,
where α = 0.00 (rad) and β = −0.03 (rad). The graph is
almost the same as the one in Fig. 7 (a), and the proposed
control method is also effective when the number of the joints
is increased.

Fig. 8 is the total energy of the unpowered biped. The
energy repeats the same pattern so that the stable walking of
the biped was confirmed. The loss of energy at about 9.80 (J)
and 9.85 (J) is due to the collisions of the knee and the foot,
respectively. Energy is recovered by the gravitational force.
Fig. 9 (a) and (b) show the hip and knee control inputs.
The hip input is almost the same as that of the compass-like
biped, and the knee joint is driven only during the swing
phase until the knee collision. The inputs do not diverge at
the singularities. Fig. 9 (c) shows the supplied energy of the
motors, where the red solid line is the absolute energy, and
the blue dashed line is the energy that is allowed to recover.
These two lines are almost the same.

From Fig. 8, the biped takes about 19 steps during 10 (s),
and the consumed energy is about 0.16(J) per step; thus, the
system uses about 3 (J) for 10 (s). As for the compass-like
biped, the consumed power of the motor is almost the same
as the consumed energy. Thus, the control method is very
efficient.

Finally, we investigate the behavior of the four-link biped
with a mass body on a slope that was changed continuously.
The controller-generated virtual gravity forces the robot to
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Fig. 8. The whole energy of the four-link powered biped with a mass body
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Fig. 9. The control input and the supplied energy of the four-link powered
biped with a mass body; (a) the control inputs of the hip joints, (b) the
control inputs of the knee joints, (c) the energy supplied by the actuators.

realize walking dynamics as if on the ideal constant slope.
Fig. 10 (a) and (b) show the control input of the hip and
knee joints. Fig. 10 (c) shows the energy consumption of
the motors, where the blue dashed and the red solid lines
are supplied and absolute supplied energy by the motors,
respectively. The angle of the slope coincides with the
desired one at 15 (s). The control inputs becomes smaller as
the slope approaches the ideal value and becomes larger as
deviations between the actual and the ideal slopes increase.
The shape of the control inputs are almost symmetric about
the point where the ideal and the actual slope angles are the
same.
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Fig. 10. The control input and the supplied energy of the four-link powered
biped with a mass body on a uneven ground. (a) the control inputs of the
hip joints, (b) the control inputs of the knee joints, (c) the energy supplied
by the actuators.

However, the shape of the consumed energy is not sym-
metric. The incline of the supplied energy becomes zero at
15 (s), but the supplied and the absolute supplied energies
diverge after 15 (s). This is because the consumed energy is
recovered when the actual slope is much larger than the ideal
one. On the other hand, the motors are used to suppress the
gravitational force when the motors cannot regenerate the
energy; thus, the energy efficiency is poor compared to the
case in which energy recovery is allowed.

V. CONCLUSION

In this paper, under the assumption that there is an ideal
slope on which unpowered bipeds can walk, we designed a
virtual gravity controller for a planar biped robot without
ankle actuation on various ground, as if it walks on the
ideal slope. The lack of ankle actuation makes it difficult
to compensate gravitational forces acted on the upper body.
However, the proposed controller for a stance leg was refined
to compensate these forces without no singular point where

the control input diverged, that was often appeared in under-
actuated biped controllers.

We demonstrated that the control is equivalent to the con-
trol input directly affected on the body. Selected simulations
were executed to validate the control method in the case of a
simple compass-like biped and a four-link biped with a mass
body. The performances of the powered bipeds were almost
the same with the unpowered bipeds on an ideal slope. We
also executed the simulations in the case that the ground
slope was varied over time to show the robustness to the
slope change. The proposed control method was effective in
this case as well.

Future studies will extend this method to more general
cases, such as a three dimensional case and a case where the
robot has a multi-link body and feet.
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