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Abstract— This paper addresses the effect of internal vibra-
tion modes on the stability boundary for haptic rendering. A
linear model that includes two vibration modes has been used to
characterize one degree-of-freedom of the PHANToM 1.0 haptic
interface, and predict the maximum achievable impedances
for haptic rendering. The theoretical and experimental results
show that the vibration modes of the mechanical interface
significantly limit the Z-width of the haptic system.

Index Terms— Haptic systems, Stability, Vibration modes

I. INTRODUCTION

Haptic interfaces are becoming very popular as simulation

tools in surgery [1], [2], industry [3], and education [4],

among many other fields. Implementing a good haptic con-

troller enables the user to obtain a proper tactile interaction

with a virtual environment. However, a number of hardware

and software limitations have yet to be solved to provide a

high degree of realism.

Impedance-based haptic systems usually model a virtual

body by means of a virtual spring. To simulate rigid contacts,

the virtual stiffness K is set as high as possible. Several

studies [5], [6], [7] have found the dependence of passivity

and stability limits on factors such as the sampling period,

the viscous damping, and time delays. It has been proven

that the addition of a virtual damper in parallel with the

virtual spring allows the implementation of higher stiffness

coefficients before leading to system instability [8], [9],

[10], [11], [12]. This beneficial effect is also achieved by

increasing the physical damping of the interface [13], [14],

[15], [16].

In a haptic interaction with a virtual impedance that

consists of a spring K and damping B, the region containing

the stable values of these parameters is called the Z-width

of the haptic system [17]. The size and shape of this region

can be used to compare the performance of different haptic

devices. Therefore, a number of control strategies have been

developed with the aim of increasing the Z-width of haptic

systems, that is, the set of impedances that they can simulate

[18], [19], [20], [21], [22]. The boundary of this stability

region has been found experimentally in [12], [13]. Further-

more, it is interesting to note that some experimental studies

[17], [18], [22] show that it is not possible to implement

relatively high virtual damping coefficients. From a certain
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Fig. 1. PHANToM 1.0 haptic interface without stylus and φ-axis definition.

value of virtual damping B, the critical value of the virtual

stiffness K decreases drastically.

This paper shows that the vibration modes of the device

are responsible for the limitation of the Z-width. The stable

boundary is found by using a theoretical model of the system

that includes the vibration modes. This study exhibits that

the critical frequency of the system presents a discontinuity

as the virtual damping increases, jumping to values above

the resonance frequencies of the modes. Experiments that

support the theoretical findings are also presented. To extend

the validity of this analysis, several time delays have been

introduced in both the theoretical models as in the experi-

mental setup.

The well-known PHANToM Premium 1.0 haptic interface

(Fig. 1) was used to analyze the influence of the vibration

modes on the Z-width of the system. To compute the

theoretical stability boundaries, a linear model for the me-

chanical interface—including the most significant vibration

modes—is estimated in Section II. Next, the shapes of the

theoretical stability regions are analyzed in Section III, while

the experimental regions are shown in Section IV. Finally,

some conclusions and future work are reported in the last

section.

II. DEVICE MODEL IDENTIFICATION

This section proposes a linear model for the mechanical

interface including its most significant vibration modes.

The study is limited to the first degree-of-freedom of the

PHANToM (φ-axis in Fig. 1). Only the motor that acts on
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Locking bolts

Fig. 2. Four locking bolts are placed on both sides of the non-active motors
of the PHANToM to avoid undesired reconfigurations of the device during
the experiments.
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Fig. 3. Experimental (blue line) and theoretical (black line) Bode diagrams
for the PHANToM.

this axis is active. To avoid undesired reconfigurations of

the rest of the device, the other motors are mechanically

locked (Fig. 2). Moreover, the stylus of the PHANToM has

been removed to avoid the influence of mobile parts on the

device.

The transfer function that characterizes the interface was

estimated from the frequency response of the device to

a white noise input signal [23]. This type of actuation

allows the excitation of a wide range of frequencies and the

identification of the first vibration modes of the system.

The white noise signal was generated by a Simulink R©

m1
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X

F
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X3
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Fig. 4. Mechanical model for the device with two vibration modes.

block and commanded to the active motor by a dSPACE

DS1104 board running at 1 kHz. This board also read the

encoder information. The white noise signal successfully

excited the system from 0.7 Hz up to 300 Hz over thirty

seconds. The lower frequency was set near the limit imposed

by the length of the window used in the data analysis (4096

sampling points that allow a smooth frequency response),

while the upper limit was set bellow the Nyquist frequency

and the bandwidth of the actuators.

Fig. 3 shows the frequency response of the PHANToM to

the white noise signal. Several vibration modes (at least four)

arise below 300 Hz. To manage a relatively simple model,

only the first two vibration modes were modeled. The first

one (at approximately 80 Hz) is a structural mode of the

mechanism, while the second one (close to 200 Hz) is due

to the transmission cable. The suggested transfer function for

the interface is

G(s) =
1

ms2+bs

ω2
1(s2+d1s+v2

1)
v2
1(s2+c1s+ω2

1)︸ ︷︷ ︸
first mode

ω2
2(s2+d2s+v2

2)
v2
2(s2+c2s+ω2

2)︸ ︷︷ ︸
second mode

(1)

From this, ten parameters are necessary to model the

interface with two vibration modes. Following an approach

similar to the one presented in [23], these parameters could

be related to the ten parameters depicted in Fig. 4 for a phys-

ical interpretation. Using that nomenclature, it is possible to

see that m1 exactly corresponds to the inertia of the rotor,

which is the place where motor’s force F actuates and where

the encoder measures the device’s position X . Coefficients

k12 and b12 model the transmission cable, and k23 and b23

model a structural mode of the mechanism. However, the

ten parameters presented in (1) are more convenient for the

identification process.

Parameters of G(s) can be fit manually or by using least-

square iterative methods to match the experimental data.

Table I reports the obtained parameters, and Fig. 3 depicts

the discrete-time Bode diagram for G(s) together with the

experimental response. Although only two vibration modes

have been modeled, it is clear that the theoretical transfer

function properly models the dynamics of the device.

III. THEORETICAL STABILITY BOUNDARIES

The system model proposed in the previous section was

used to obtain the theoretical stability boundaries of the

haptic interaction. A block diagram of the haptic device

colliding with a virtual wall is shown in Fig. 5.

Transfer function G(s) is the theoretical model for the

device with two vibration modes (1). To be consistent with
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TABLE I

PHYSICAL PARAMETERS OF THE PHANTOM

Parameter Variable Value
Inertia m 1.168 gm2

Damping b 0.00584 Nms/rad
Natural frequency ω1 479.166 rad/s

Damping coefficient c1 83 rad/s
Natural frequency v1 417.612 rad/s

Damping coefficient d1 80 rad/s
Natural frequency ω2 1159.31 rad/s

Damping coefficient c2 352 rad/s
Natural frequency v2 546.626 rad/s

Damping coefficient d2 90 rad/s
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Fig. 5. Block diagram of the impedance haptic rendering.

the acquisition rate of the control board, the sampling period

T was set to 1 ms. The impedance of the virtual contact

consisted of a virtual stiffness K and a virtual damping B.

Before the zero-order holder H(s), a discrete time delay

z−d was included to obtain several stability regions with

the same device, as it was performed in [24]. Furthermore,

the presence of time delay makes the model more complete,

since actual haptic systems always suffer from a certain

inherent delay due to computation or amplification processes.

The characteristic equation of the system is

1 + z−d

(
K + B

1 − z−1

T

)
Z[H(s)G(s)] = 0, (2)

1 + K
Z[H(s)G(s)]

zd + B 1−z−1

T Z[H(s)G(s)]
= 0, (3)

where Z[.] is the Z-transform of the transfer function

within brackets. The critical stiffness KCR—as a function

of the virtual damping and the time delay—can be found by

calculating

KCR = Gm

{
Z[H(s)G(s)]

zd + B 1−z−1

T Z[H(s)G(s)]

}
, (4)

where Gm{.} is the gain margin of the transfer function.

Stability regions can be found for different time delay

conditions by computing (4) over a range of virtual damping

values. The results for three different time delays (td = 2, 4
and 8 ms) are shown in Fig. 6. As an example, the Matlab R©
code to obtain the stability boundary of the PHANToM for

a delay of 2 ms is reported in Appendix I.

Notice in Fig. 6 that two different parts can be clearly

distinguished for each delay. For small values of virtual

damping (part I), the critical stiffness increases with B up to

a maximum value Kmax
CR for Bt. However, for virtual damp-

ing coefficients higher than Bt (part II), the critical stiffness
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Fig. 6. Critical stiffness (top) and ultimate frequencies (bottom) depending
on virtual damping for different time delays.

decreases with B. Therefore, the well known assertion that

the virtual damping positively contributes to the stability of

the system [8], [10] is true, but limited to a specific range

of values.

The critical frequencies of the system for each delay are

also reported at the bottom of Fig. 6. The abrupt truncation

of the stability region after transition point Bt (part II) occurs

when the critical oscillation frequencies jump to higher

values. The critical frequency (called “ultimate frequency”

from here on) corresponds to the phase crossover frequency

of the Bode diagram of transfer function within brackets in

(4), which varies with the virtual damping and time delay.

It is interesting to note that the stability region does not

always decrease with the delay in the loop. In theory, as

stated in [12], the stability region becomes smaller if the

time delay increases. However, the stability region with a
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Fig. 7. Critical stiffness using the model with vibration modes (solid line)
and without any vibration mode (dashed line) for the same delay of 2 ms.

time delay of 4 ms is larger than the stability region with

2 ms (Fig. 6 top). This unexpected result will be corroborated

experimentally in Section IV. The explanation of this behav-

ior cannot be, among others, neither the saturation of the

actuator nor the sensor quantization, because the theoretical

linear model does not include those limitations. Although the

actual reason is not investigated in this study, it seems to be

related with the fact that the transition point Bt sometimes

reaches a frequency level above the first vibration mode (with

time delays of 2 and 8 ms), and other times above the second

vibration mode (time delay of 4 ms).

Related work [17], [18], [22] has previously found experi-

mentally that for large values of virtual damping, the critical

stiffness of the system decays abruptly. The haptic model

proposed in this paper has included two vibration modes in

order to find the theoretical explanation for this phenomenon

and depict the stable region much more accurately. Fig. 7

shows the stability regions obtained using the theoretical

model with and without vibration modes. In both cases,

the delay was set to 2 ms. The vibration modes of the

interface impose an important restriction in the Z-width of

the PHANToM. Notice that the influence of the vibration

modes also affected part I of the boundary: in this case, the

critical stiffness was higher when the vibration modes were

included.

IV. EXPERIMENTAL STABILITY BOUNDARY

The critical values for the virtual stiffness of the PHAN-

ToM were experimentally obtained to validate the theoretical

boundaries shown in the previous section. The critical limits

were found by using the relay method [10], [25], [26]. This

method consists of a relay feedback—an on-off controller—

that makes the system oscillate around a reference position.

In steady state, the relay force is a square wave, the out-

put position is similar to a sinusoid wave, and they have
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Fig. 8. Recorded input and output signals during a relay experiment with
time delay td = 8 ms and virtual damping B = 0.08 Nms/rad.

opposite phases (Fig. 8). It can be demonstrated [25] that

the ultimate frequency ωCR is the oscillation frequency of

both signals, and the critical gain is the quotient of the

amplitudes of the first harmonic of the square wave and

the output position. The oscillation frequency is found by

determining the maximum peak of the average power spectral

density of both signals in steady state. The gain margin

is obtained by evaluating the empirical transfer function

(tfestimate Matlab R© function using input-output signals) at

the oscillation frequency.

The testbed description and kinematic configuration are

the same as in Section II. The reference for the relay force

transition was placed approximately at the middle of the

available workspace. Input force was applied to the active

motor, and the position of the device was measured. In each

relay experiment, all signals were measured for more than
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TABLE II

CRITICAL OSCILLATIONS FOR THE PHANTOM

td B KCR ωCR td B KCR ωCR

(ms) (Nms/rad) (Nm/rad) (Hz) (ms) (Nms/rad) (Nm/rad) (Hz)

2 0 7.21 13.61 4 0 1.97 6.79
2 0.03 17.06 20.38 4 0.05 13.55 17.99
2 0.05 24.23 24.38 4 0.05 18.92 21.59
2 0.08 33.81 28.54 4 0.5 21.95 23.59
2 0.1 40 30.54 4 0.15 28.25 27.59
2 0.11 3.29 188 4 0.18 31.77 29.59
2 0.12 3.07 187 4 0.2 34.09 31.19
8 0 1.01 4.7 4 0.23 37.71 32.79
8 0.05 6.37 13.2 4 0.25 39.09 32.79
8 0.08 7.88 15.97 4 0.254 40.23 33.19
8 0.1 9.78 17.9 4 0.264 23.81 266
8 0.13 10.32 20.6 4 0.27 23.19 266
8 0.14 3.24 177 4 0.3 15 266

15 seconds (in steady state).

To obtain the critical values for different damping coef-

ficients and delays, the relay force was not directly com-

manded to the device. The viscous force due to the virtual

damping was added to the relay force, and then both of them

were delayed (Fig. 9 bottom). This way, the relay method

obtained the critical gain (4).

As in previous section, time delay was artificially set to

2, 4 and 8 ms. Without any delay in the loop, it is not pos-

sible to obtain the complete stability region experimentally

because the actuator becomes saturated. Table II and Fig. 10

present the oscillation frequencies and gain margins of the

26 experiments performed. Fig. 10 shows that the theoretical

results depicted in Fig. 6 fit quite well with the experimental

data. This data allows the two parts of the stability region to

be identified and shows the truncation of the boundary at a

certain damping value.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the basis for a better understanding

of the influence of the vibration modes on the Z-width of

a haptic system, that is, the set of stable parameters that

can be simulated—usually a (K, B) pair. The theoretical and

experimental results confirm that the vibration modes of the

mechanical interface drastically decrease the Z-width of the

system, and impose an upper limit on the virtual damping

coefficient B that can be implemented.

The existence of this limit was already known experimen-

tally in the field of haptics. Several authors [17], [18], [22]

had found the stability regions of different haptic devices,
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Fig. 10. Critical stiffness (top) and ultimate frequencies (bottom) as a
function of the virtual damping for different time delays.

showing the abrupt truncation of the Z-width of the system

at a certain damping point. However, none of them could pre-

dict the shape of the boundary a priori. Although this paper

does not provide a theoretical expression for the maximum

achievable damping coefficient B, it has demonstrated the

possibility of numerically determining the stability bound-

aries for one degree-of-freedom of the PHANToM 1.0 haptic

interface. To obtain this result, a linear transfer function with

two vibration modes was identified.

Future work will more deeply investigate the effect of time

delays in the Z-width limitation due to vibration modes, and

more specifically why the system changes its ultimate vibra-

tion frequency with delays will be analyzed. The theoretical

analysis and results will also be extended to other devices

and kinematic configurations.
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APPENDIX I

Matlab R© code used to depict the stability region (Fig. 6)

of the PHANToM with 2 ms of delay:

G0=tf(856,[1 5 0]);
G1=tf(2296*[1 80 174400],1744*[1 83 229600]);
G2=tf(13440*[1 90 298800],2988*[1 352 1344000]);
G=G0*G1*G2;
T=0.001;
z=tf([1 0],1,T);
Gz=c2d(G,T);
vector=0:0.001:0.099;
K2ms=vector*0;
W2ms=vector*0;
n=0;
for B=vector,

n=n+1;
[Q,F,WQ,WF]=margin(T/(((T*z*z)/Gz)+B*(z-1)/z));
K2ms(n)=Q;
W2ms(n)=WQ/(2*pi);

end
B=vector;
plot(B,K2ms);
figure;
plot(B,W2ms);
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