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Abstract— This paper presents new manipulability measures
to evaluate how much easily the robot manipulates the grasped
object, simultaneously taking how much magnitude of joint
torque we need to keep grasping into consideration. For the
purpose, we use operation range. The operation range is
for actuator attached to every joint of robot and provides
generable joint torque and velocity and their relation (between
generating torque/velocity and addable velocity/torque). While
we introduced a manipulability measure using the operation
range in our previous paper, it was for a limited class due to
large computational effort and we could not evaluate whole
space of object velocity and could not consider whole space
of external wrench. This paper proposes new manipulability
measures which can evaluate whole space of object velocity,
taking the effect of external wrench in whole space into
consideration.

I. INTRODUCTION

Manipulability is a well known concept to evaluate the

performance of robotic manipulator [1]. For a single-arm

manipulator, it is defined as the set of generable endeffector

velocity in the task space when the set of generable joint

velocity is given. When the given set of joint velocity is a

unit ball, the set of endeffector velocity becomes an ellipsoid.

The ellipsoid is called manipulability ellipsoid. The volume

of the ellipsoid can be regarded as a quality measure to

evaluate the performance in velocity domain. It is called

manipulability measure. Based on the manipulability, many

quality measures such as condition number are proposed [1].

This concept can be extended to the general constrain-

ing system such as a robotic hand [2]–[6]. In a general

constraining system, object velocity is evaluated instead of

endeffector velocity. For a dual-arm system, Chiacchio et

al. [2] discussed manipulability. Bicchi et al. [3] analyzed

manipulability for general grasping system including whole

arm manipulation system. After that, Bicchi et al. [4], Wen

et al. [5], and Park et al. [6] analyzed manipulability for

general constraining systems with underactuated joints.

In a grasping system, grasping itself is a key issue.

Therefore, if evaluating manipulability, we need to take

whether being able to keep grasping or not into consideration

simultaneously. However, the above researches did not take

it into consideration by assuming force closure grasp (force

closure is defined that any force and moment in any direction

can be applied to the object). As a consequence, we could

not take the effects of friction, object gravity, contact state,

and so on into consideration. For example, the evaluation
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when grasping a light object is the same as the evaluation

when grasping a heavy object. It can be said that the above

analyses were not for a grasping system but for closed-chain

manipulators/robots.

To cope with the issue, we presented a method to analyze

a manipulability in the previous paper [7]. However, the

obtained results were limited. In this paper, we present new

manipulability measures for grasping system. Here are the

main contributions of this paper (especially comparing with

the previous paper [7]).

1) Required external wrench set taking external wrench

in any direction into consideration: In order to take the

effect of external wrench exerted on the object (for example,

gravitational force) into consideration, we derive required

joint torque to balance the external wrench and keep stable

grasping. For the purpose, we introduce required external

wrench set (REWS) [8], [9], which is defined as a set of

external wrench required to be balanced. We suppose that

the grasp is stable if any arbitrary external wrench contained

in REWS can be balanced. In the previous paper, we used

REWS expressed as a convex polyhedron. However, there

are some cases when REWS cannot be expressed by a

convex polyhedron. Suppose the case, for example, when

external wrench in any arbitrary direction can be exerted

on the object. REWS should be expressed by an ellipsoid

or hypersphere. We can approximate the set by a convex

polyhedron, but it is difficult in a high dimensional space,

since a large number of vertices or faces are needed. This

paper presents a way to deal with REWS expressed by not

only a convex polyhedron but also an ellipsoid, and to derive

minimum required joint torques for the stable grasping.

2) Not-convex operation range: Based on the minimum

required joint torques for stable grasping, we derive max-

imum usable joint velocities. For the purpose, we use an

operation range (shown in Fig.1) of actuator attached to every

joint of robot (operation range is originally used for motor

selection). The operation range provides not only information

about how magnitudes of torque and velocity the actuator can

stably generate, but also the relationship between generating

velocity/torque and addable torque/velocity. The rigid line

in Fig.1 shows the operation range derived by supposing

to control the motor with nominal voltage. There are some

cases when we can get only the information about power,

maximum generable velocity and torques. In such a case,

we will derive the operation range by using the relationship;

power = torque × velocity (see the area surrounded by the

dot line in Fig.1). The derived operation range is not always

convex. The previous paper could deal with only convex
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Fig. 1. Operation range of torque and velocity (maxon DC motor Amax32
(20W) with gear (ratio: 23:1));Area of rigid line: supposing to control with
nominal voltage, Area of dot line: supposing the case when power and
maximum torque and velocity are only given and 70 % of the power and
90 % of the maximum torque and velocity are used.
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Fig. 2. Target System

operation range. In this paper, we present a way to deal with

a not-convex operation range.

3) Manipulability measure to evaluate the whole space

of object velocity: Using the derived maximum usable

joint velocity, we derive the generable object velocity. The

previous paper evaluated a limited class of object velocity

due to the high computational complexity. We needed to

deal with a lot of variables in a quite high dimensional

space. Therefore, its application fields were very limited.

For example, it is hard to apply the previous approach to

motion planning, especially on line. This paper presents

manipulability measures which can be more easily derived

and can evaluate the whole space of the object velocity. We

focus on the magnitude of the object velocity. We derive the

maximum object velocity available in any direction, and the

maximum generable object velocity and its direction. The

former one corresponds to the radius of the hypersphere

inscribed in the set of the generable object velocity while

the latter one corresponds to the radius of the hypersphere

circumscribed in the set of the generable object velocity.

II. PROBLEM DEFINITION

A. Target system

The target system is shown in Fig.2. In this paper, we

consider a general grasping system where an arbitrary shaped

rigid object is grasped by N fingers of a robotic hand. The

nomenclatures are listed at appendix. We define that the

contact state is any of the following two states: 1) F-point :

the contact point with friction, 2) N-point : the contact point

without friction. Translational force in any direction can be

applied to the object at F-point under the frictional condition

while only normal force can be applied to the object at N-

point.

We note that every contact position, every contact state,

and every frictional coefficient are all given. Note also

that the absolute magnitude of minimum generable joint

torque/velocity is equal to the absolute magnitude of maxi-

mum generable joint torque/velocity.

B. Problem Definition

Here, we give several definitions and define the problem

handled in this paper.

Joint Torque-velocity Pair Set (TVS): The set of generable

joint torque and velocity at each joint, given by the cor-

responding actuator and gear specifications, is named joint

torque-velocity pair set (TVS).

The specification for actuators (operation range) is usually

given with respect to the absolute values of torque and

velocity. We express generable maximum absolute values

of joint torque and velocity with |τijmax
| and |q̇ijmax

|.
Let |q̇ijUmax

|(≥ 0) be the usable maximum absolute value

of joint velocity, determined by currently generating joint

torque. Similarly, let |τijUmax
| (≥ 0) be the usable maxi-

mum absolute value of joint torque, determined by currently

generating joint velocity. We describe this relationship with

the following functions.

|q̇ijUmax
| = ξ

τ→q̇
ij (|τij |), (1)

|τijUmax
| = ξ

q̇→τ
ij (|q̇ij |) = (ξτ→q̇

ij )−1(|q̇ij |). (2)

This function ξ
τ→q̇
ij can be derived from the actuator and

gear specifications. For example, if using DC motor under the

constant nominal voltage, ξ
τ→q̇
ij can be derived by utilizing

maximum speed under the voltage, maximum torque, and

torque-speed constant. An example of TVS is the area

surrounded by the rigid lines in Fig.1, and ξ
τ→q̇
ij gives the

rigid line. In this case, the TVS is convex. If we can not get

the information about torque-speed constant, we use power.

Let ψij be the constant power for the evaluation. Then, ξ
τ→q̇
ij

can be expressed by

ξ
τ→q̇
ij =

{

ψij/|τij | ψij ≤ |τij ||q̇ijmax
|

|q̇ijmax
| otherwise

. (3)

An example of TVS derived by this way is the area sur-

rounded by the dot lines in Fig.1.

External wrench such as gravitational force is exerted on

the object. In order to preserve stable grasping, we need

to balance such kinds of external wrenches. To consider the

effect of such kinds of external wrenches, we define required

external wrench set:

Required External Wrench Set (REWS): The set of

object’s external wrench required to be balanced is named

required external wrench set (REWS). We suppose that the

grasp is stable if any arbitrary external wrench contained in

REWS can be balanced.

REWS is assumed to be given by convex polyhedron or

ellipsoid;

Spol
rew={wex|wex = Σnrew

i=1
λiwvi

,Σnrew

i=1
λi = 1, λi ≥ 0}, (4)

Selip
rew={wex|w

T
exM

T
wMwwex ≤ 1}. (5)
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Here, wex denotes external wrench, wvi
denotes ith vertex

of the convex polyhedron, nrew denotes the number of the

vertices, Mw denotes a weight matrix, for example, to take

the difference between the units of force and moment into

consideration, or to normalize the magnitude of the external

wrench. λi is a parameter to express the convex polyhedron.

Criterion: In this paper, we consider the following crite-

ria: αall
max: the maximum magnitude of the object velocity

available in any arbitrary direction; αmax: the maximum

magnitude of the generable object velocity.

αall
max expresses object velocity usable in any direction. It

is useful, for example, when designing controller or when

we do not know which direction of object velocity we will

need. We can regard it as the distance from a kind of singular

configuration where object velocity in a certain direction

is not available. On the other hand, αmax is to evaluate

which direction we can generate maximum object velocity

and its magnitude. αall
max/αmax can be used to evaluate how

uniformly we can generate the object velocity.

Then, we define the following problem:

Problem : Suppose that TVS and REWS are given. In

this case, find αall
max and αmax under the condition that any

external wrench contained in REWS can be balanced.

III. MANIPULABILITY MEASURES BASED ON TVS

First, we consider kinematics, statics, and frictional con-

straints. Then, we derive new manipulability measures.

A. Kinematics

With respect to contact point Cij , the relationship between

the velocities of pCFij
and qi, and the relationship between

the velocities of pCOij
and r are given by

ṗCFij
= J ij q̇i, ṗCOij

= GT
ij ṙ, (6)

where J ij∈ Rd×Mi denotes Jacobian matrix and GT
ij =

[

I −[(pCOij
− po)×]

]

∈ Rd×D. Here, I represents an

identity matrix, [a×] represents a skew symmetric matrix

equivalent to the cross product operation ([ a × ]b = a×b).

The relationship between ṗCFij
and ṗCOij

is written by

Hij(ṗCFij
− ṗCOij

) = o, Hij =

{

I for F-point

nT
ij for N-point

,

where o denotes a zero vector.

Then, using the following matrices: J ix = col
[

J ij

]

∈
RLid×Mi , Hi = diag [Hij ] ∈ RLci×Lid, Gi =
[

Gi1 Gi2 · · · GiLi

]

∈ RD×Lid, JHi = HiJ i ∈

RLci×Mi , GHi = GiH
T
i ∈ RD×Lci , we aggregate the re-

lationships with respect to every finger and get the following

contact velocity:

ṗCi = JHiq̇i = GT
Hiṙ. (7)

Using the following matrices: ṗC = col[ṗCi] ∈
RLc , JH = diag [JHi] ∈ RLc×M , GH =
[

GH1 GH2 · · · GHN

]

∈ RD×Lc , we aggregate the

relationships for all fingers and obtain

ṗC = JH q̇ = GT
H ṙ. (8)

B. Statics and frictional constraints

From (8) and the principle of virtual work, considering

gravitational term of robot, the following relation is obtained

[

τ

−w

]

=

[

JT
H

−GH

]

f +

[

gq

o

]

. (9)

where gq denotes the gravitational term of robot and gq=

∂
∑

i,j Uij
T
/∂q where Uij is the potential energy of the jth

link of the ith finger due to the gravity force.

Next, we consider frictional constraints. At Cij which is

F-point, it can be written by

Ffij = {f ij | |T ijf ij |≤µijnfij , nfij ≥0}. (10)

At Cij which is N-point, it can be written by

Fnij = {nfij |nfij ≥ 0}. (11)

Aggregating for all contact points, we obtain

F = {f |f ij ∈ Ffij ,
∀Cijwhich is F-point,

nfij ∈ Fnij ,
∀Cijwhich is N-point}. (12)

C. New manipulability measures

Here, we present new manipulability measures based on

TVS. In order to reduce the computational effort, we take 3

steps to derive the measures. First, we derive minimum joint

torques required to balance any external wrench contained

in REWS. Next, from the derived minimum required joint

torques and TVS, we derive usable maximum joint velocities.

Lastly, we derive generable object velocity from the usable

maximum joint velocities.

We approximate the frictional constraint (10) with a nfric-

side convex polyhedral cone circumscribed in the friction

cone [10]. Then, (12) becomes

Flin = {f |V f ≤ o} (13)

where V ∈ RLv×Lc .

Step 1: We derive minimum required joint torque, |τijmr
|,

to balance any external wrench contained in REWS. First,

we consider the case when REWS is given as a convex

polyhedron Spol
rew. From (4), (9), (13), we can get |τijmr

|
by solving the following linear programming problem.

argmin
|τijmr

|,fvι

Σi,j |τijmr
|

subject to |τijmr
| ≤ |τijmax

|(j = 1, · · · ,Mi, i = 1, · · · , N)

− τmr ≤ JT
Hfvι

+ gq ≤ τmr

V fvι
≤ o, GHfvι

= −wvι
(ι = 1, · · · , nrew) (14)

where τmr = col[|τijmr
|].

Next, we consider the case when REWS is given as a

ellipsoid Selip
rew . From (9) and (13), The conditions to balance
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a certain external wrench ŵex = Mwwex can be written by

Aw1ŵex +Aw2kw +Aw3τmr ≤ bw, (15)

Aw1 =





−JT
H(MwGH)+

JT
H(MwGH)+

−V (MwGH)+)



 ,

Aw2 =
[

(JT
HΞ)T (−JT

HΞ)T (V Ξ)T ,
]T

Aw3 =
[

−IT −IT OT
]T

, bw =
[

−gT
q gT

q oT
]T

,

where (MwGH)+ denotes the psedo-inverse matrix of

MwGH , Ξ denotes an orthogonal matrix whose columns

form bases of the null space of MwGH , and kw denotes an

arbitrary vector.

Now, we will consider the set (15) with respect to

[ŵT
ex τT

mr]
T . We transform the set (15) which is expressed

by H-representation [11] (intersection of half spaces) to its

V-representation (convex hull of points and directions).

{xw = ΣnAw

i=1
λixwvi, Σ

nAw

i=1
λi = 1, λi ≥ 0}

where xw =
[

ŵ
T
ex kT

w τT
mr

]T
, xwvi denotes the vertex

and nAw denotes the number of the vertices. We project

the set onto the space of [ŵT
ex τT

mr]
T by multiplying the

following matrix from the left side:

[

I O O

O O I

]

. After

that, we transform it to its H-representation.

Âw1ŵex + Âw3τmr ≤ b̂w (16)

Âw1, Âw3 and bw are matrices and vector resulted from the

transformation. Note that the above two transformations can

be done by cdd library [11].

Let Âw1 = col[âT
w1i

]. Here, we regard the set (16) as

the set for the ŵex space. Generally, the distance between

the origin and a hyperplan aTx = b in the space of x

(where a and b are constants) is given by b/|a|. Therefore,

to balance any arbitrary ŵex contained in REFS, namely

ŵex satisfying |ŵex| ≤ 1 (see (5)), τmr should hold the

following condition.

col[|âw1i |] + Âw3τmr ≤ b̂w.

Hence, we can get minimum required joint torque |τijmr
| by

solving the following linear programming problem.

argmin
|τijmr

|

∑

i,j

|τijmr
|

subject to |τijmr
| ≤ |τijmax

|(j = 1, · · · ,Mi, i = 1, · · · , N)

col[|âw1i |] + Âw3τmr ≤ b̂w (17)

If we cannot get the solution at (14) or (17), αall
max = αmax =

0. Otherwise, we continue the following steps.

Step 2: Using the derived |τijmr
| and (1), we derive

maximum usable joint velocity |q̇ijUmax
|.

Step 3: The usable joint velocity set for every joint is

expressed by

{q̇ij = −η1|q̇ijUmax
|+ η2|q̇ijUmax

|, Σ2
k=1ηk = 1, ηk ≥ 0}

where ηk is a parameter to express the convex polyhedron.

The usable joint velocity vector set for every finger is given

by the direct sum of the usable joint velocity sets for all

joints of the finger. It can be expressed by

{q̇i = Σ2
Mi

j=1ηj q̇ivj
, Σ2

Mi

j=1ηj = 1, ηj ≥ 0}

where q̇ivj
denotes the vertex of the set. From this set and

(7), the generable contact velocity set is given by

{ṗCi = Σ2
Mi

j=1ηjJHiq̇ivj
, Σ2

Mi

j=1ηj = 1, ηj ≥ 0}. (18)

We transform this into its V-representation.

ApiṗCi ≤ bpi. (19)

where Api and bpi are the matrix and the vector resulted

from this transformation. Aggregating the relationship with

respect to all fingers, utilizing (8), we get

Âr
˙̂r ≤ br, (20)

where ˙̂r = M rṙ, Âr = ArM
−1
r , Ar = col

[

ApiG
T
Hi

]

,

br = col [bpi] and M r is the weight matrix, for example, to

take the difference of units into consideration. This set is the

convex polyhedron expressing the generable object velocity

set. Let Âr = col[âT
ri] and br = col[bri]. As mentioned the

above, the distance between the origin and the ith face of the

convex polyhedron is given by bri/|âri|. Then, αall
max can be

obtained by solving the following problem.

αall
max = min

i
bri/|âri|. (21)

αmax can be obtained by solving the following convex

quadratic programming problem.

α2
max = max

˙̂r

˙̂rT ˙̂r subject to Âr
˙̂r ≤ br (22)

Note that the ˙̂r providing αmax expresses the direction which

provide the maximum generable object velocity.

The alternative way to get αmax is as follows. We trans-

form (20) to its V-representation.

{ ˙̂r = ΣnAr

i=1
ηi ˙̂rvi, Σ

nAr

i=1
ηi = 1, ηi ≥ 0} (23)

where ˙̂rvi denotes the vertex and nAr denotes the number

of the vertices. Then, we can get αmax by

αall
max = max

i
| ˙̂rvi|. (24)

If we know the (23), we can also get the volume of generable

object velocity set by, for example, qhull [12].

IV. NUMERICAL EXAMPLES

In order to verify our approach, we show some numerical

examples. Fig.3 shows the target system. ΣR was placed

at the contact point between the object and the base in the

configuration shown in Fig.3. ΣO was placed at geometric

center of the object. The object was a ball with radius of

0.1[m]. The robotic hand was composed of 4 fingers which

had all the same structures and have 4 joints. The length of

every link was set to 0.1[m]. For the simplicity, we ignored

the mass of the link. The actuators attached to all joints

were all the same. A gear with reduction ratio of 1/23 was

attached on every actuator. Supposing all actuators had the
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same TVS, we used the TVSs expressed by the rigid and

dot lines in Fig.1. The base positions of fingers were set to

[−0.1 − 0.05 0]T , [0.05 0.1 0]T , [0.05 0 0]T and [0.05 −
0.1 0]. We set nfric = 8 and µij = 0.3 for all F-points.

we considered the case shown in Fig.4 where the object

was moved in positive z direction by the robot hand. The

contact points on Fingers 1, 2 and 4 were set to be F-point.

The contact point on Finger 3 was set to be N-point.

The contact positions at the fingers at the initial state were

set to [−0.097 0 0.074]T , [0 0.097 0.13]T , [0.097 0 0.074]T ,

[0 −0.097 0.13]T . We used the following 2 kinds of REWSs.

Spol
rew = {wex|wex = [0 0 − 1 0 0 0]T }, (25)

Selip
rew = {wex|w

T
exM

T
wMwwex ≤ 1},Mw=[I3×3 O3×3].

Here, in the setting of Spol
rew, we supposed that gravitational

force with the magnitude of 1[N] was exerted on the object

in z negative direction, while in the setting of Selip
rew , we

supposed that gravitational force with the magnitude of 1[N]

could be exerted on the object in any direction resulted from

arm motion. We set M r to normalize ṙ as follows:

M r =

[

I3×3 O3×3

O3×3 0.1I3×3

]

.

We computed αall
max and αmax when the object moved

from the initial state to the final state shown in Fig.4. Fig.5

shows the result. The horizontal axis denotes the z coordinate

of ΣO, and the vertical axis denotes αall
max or αmax. The rigid

line expresses the result when using Selip
rew and TVS expressed

by the rigid line shown in Fig.1, the dashed line expresses

the result when using Spol
rew and TVS expressed by the rigid

line shown in Fig.1, and the dot dashed line expresses the

result when using Selip
rew and TVS expressed by the dot line

shown in Fig.1.

From Fig.5, it can be seen that as the object moved

in positive z direction, αall
max gradually decreased. Around

the initial state, every finger (especially Fingers 1 and 3)

was in the state where large contact velocity and force in

any direction can be generated. We believe it is the reason

why αall
max was large around the initial state. Around the

final state, the elbow (third joint) of every finger (especially

Fingers 2 and 4) was extended. In this configuration, finger

can generate large contact force in the specified direction and

cannot in the other directions. It is the same as for contact

velocity. This is considered to be the reason why αall
max

was small around the final state. On the other side, αmax

gradually increased. Extending the fingers, the generable

object velocity in the specified direction became very large.

If comparing the case when using Spol
rew with the case when

using Selip
rew , The criteria for Selip

rew were smaller. If dealing

with external wrenches in all directions, we need larger joint

torques for stable grasping. This is one of the reasons.

If comparing the case when using TVS expressed by the

rigid line shown in Fig.1 with the case when using TVS

expressed by the dot line shown in Fig.1, The criteria for

the rigid line were larger. This is considered to be the result

that we mainly used the area of TVS where generable joint

velocity for the rigid line is larger.

Finger2

Finger1 Finger4

Finger3

Fig. 3. Target system in numerical examples
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In order to see the effect of friction, we computed when

changing the frictional coefficient; µij = 0.01, 0.1, 0.3.

We used Selip
rew . Fig.6 shows the result. With the increase

of the frictional coefficient, we can get larger αall
max and

αmax. When the frictional coefficient increases, the range

of applicable contact forces becomes large. Therefore, we

can balance external wrench with smaller joint torques, and

then generable object velocity became large.

Lastly, we discuss about computational effort. We used

linear and quadratic programming problems, which can be

solved by polynomial time algorithms, but transformation

from V/H-representation to H/V-representation cannot be

solved by polynomial time algorithms. Therefore, we discuss

using the computational time here. In this paper, we used

matlab (mathworks) for computation. The CPU of the used

PC was Intel Core2 Duo P8800 (@2.66GHz). The CPU time

to compute both αall
max and αmax was from 0.19 to 1.2[s]

(average:0.62[s]) when using Selip
rew and TVS expressed by the

rigid line in Fig.1, from 0.094 to 0.36[s] (average:0.18[s])

when using Spol
rew and TVS expressed by the rigid line in

Fig.1, and from 0.16 to 1.0[s] (average:0.62[s]) when using

Selip
rew and TVS expressed by the dot line in Fig.1.

Note that in our previous method [7], we needed 129[s]

of CPU time to compute the simplifier case where the object

is grasped by 2 fingers. Therefore, we can say that we could

largely reduce the computational efforts.

V. CONCLUSION

This paper presented new manipulability measures which

can take joint torques required for grasping into consider-

ation. First, we presented a way to derive the minimum

required joint torque for stable grasp, using required external

wrench set (REWS) given as not only a convex polyhedron

but also an ellipsoid. Then, we can take external wrench

which can be exerted in any direction into consideration.

Next, from the derived minimum required joint torque and

the joint torque-velocity pair set which provides the relation-

ship between generable joint torque and velocity, we derived

usable maximum joint velocity. We presented a way to deal

with a non-convex joint torque-velocity pair set. Lastly, we
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Fig. 5. New manipulability measures (αall
max, αmax). The rigid line

expresses the result when using Selip
rew and TVS expressed by the rigid

line in Fig.1, the dashed line expresses the result when using Spol
rew and

TVS expressed by the rigid line in Fig.1, and the dot dashed line expresses

the result when using Selip
rew and TVS expressed by the dot line in Fig.1.
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Fig. 6. New manipulability measures (αall
max, αmax) when changing the

frictional coefficient

derived generable object velocity from the usable maximum

joint velocity. The presented way can take the whole space of

the generable object velocity into consideration. The validity

of our approach was shown by numerical examples, which

also showed the proposed measures can include the effect of

friction.

APPENDIX

col A column vector or matrix formed by the following elements.
diag A block diagonal matrix.
N Number of fingers.
Mi Number of joints of the ith finger (i = 1, 2, · · · , N ).
Li Number of contact points on the ith finger.
M Number of total joints (= ΣN

i=1
Mi).

L Number of total contact points (= ΣN
i=1

Li) .
D 3/6 in 2/3 dimensional space.
d 2/3 in 2/3 dimensional space.
ΣR Reference coordinate frame.
ΣO Object coordinate frame fixed at the object.
τij The jth joint torque of the ith finger (j = 1, · · · ,Mi, i =

1, · · · , N ).
qij The jth joint angle of the ith finger (j = 1, · · · ,Mi, i =

1, · · · , N ).
|τijmax

| (≥ 0) Generable maximum absolute value of τij .
|q̇ijmax

| (≥ 0) Generable maximum absolute value of q̇ij .
|τijUmax

|(≥ 0) Usable maximum absolute value of τij determined by
currently generating q̇ij .

|q̇ijUmax
|(≥ 0) Usable maximum absolute value of q̇ij determined by
currently generating τij .

Spol
rew REWS given as a convex polyhedron.

Selip
rew REWS given as an ellipsoid.

w Resultant wrench applied to the object (∈ RD).
wex External wrench (∈ RD).
αall
max Maximum magnitude of the object velocity available in any

arbitrary direction.
αmax Maximum magnitude of the generable object velocity.
Cij The jth contact point of the ith finger (j = 1, · · · , Li, i =

1, · · · , N ).
ΣCFij

Coordinate frame fixed at the contact point on the finger

(corresponding to Cij ).
ΣCOij

Coordinate frame fixed at the contact point on the object

(corresponding to Cij ).

p
Iij

Position of the origin of ΣIij (I ∈ {CF , CO}) (∈ Rd).

qi = [qi1 qi2 · · · qiMi
]T (∈ RMi ).

r Position and orientation of ΣO (∈ RD).
p

O
Position of the origin of ΣO (∈ Rd).

nij Unit normal vector (directing to the inward of the object) at
Cij .

Lfi Number of F-points of the ith finger.
Lni Number of N-points of the ith finger.
Lci = Lfid+ Lni.
ṗCi = col[Hij ṗCFij

] = col[Hij ṗCOij
].

Lc = ΣN
i=1

Lci.

ṗC = col[ṗCi](∈ RLc ).
q = col[qi] (∈ RM ).
τ = col[τij ] (∈ RM ).

f ij Contact force vector (∈ Rd).

f = col[Hijf ij ] ∈ RLc .

tkij
Unit tangential vector at Cij (k ∈ {1, 2}).

T ij = [t1ij t2ij ]
T (∈ Rd−1×d). [t1ij ]

T in 2 dimensional space.
µij Frictional coefficient at Cij .

nfij Normal force component of f ij (= nT
ijf ij ).

nfric Number of sides of frictional convex polyhedral cone.

Lv = nfricΣ
N
i=1

Lfi +ΣN
i=1

Lni.
|τijmr

| Absolute value of minimum required joint torque of jth joint
of ith finger for stable grasping.

τmr = col[|τijmr
|].
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