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Abstract— We propose a compact self-contained navigation 

system with Micro-Electro-Mechanical System (MEMS) inertial 

sensor and optical navigation sensor for 3-D pipeline mapping. 

Self-contained navigation system have advantages of robust 

against severe environmental conditions and also wide 

applications without external assist such as Global Positioning 

System (GPS) navigation or localization system based on a map. 

The goal of this study is to overcome the performance 

limitations of small, low-grade sensors by combining various 

sensors with complementary functions and, therefore, to achieve 

robust tracking performance against severe environmental 

conditions. The multi-rate EKF solves the frequent outage 

problem of the optical navigation sensors and the bias drift 

problem of the MEMS accelerometers. The vector matching 

algorithm with the gravity field vector solves the bias drift 

problem of the MEMS gyro except for the yaw in the reference 

axis. The geometry compensation algorithm minimizes position 

errors by combining the forward and backward estimation 

results geometrically. Experiments to verify performance are 

conducted by driving Radio-Controlled (RC) car equipped with 

the proposed navigation system on 3-D asphalt pavement. 

Experimental results show that the proposed navigation system 

has good performance and estimated position errors are less 

than one percent, in the range of 855 m. The proposed 

navigation system can contribute a compact size and robustness 

not only to 3-D pipeline mapping but also to small mobile 

robots. 

I. INTRODUCTION 

-D pipeline mapping is important for the inspection and 

repair of most pipelines. For pipelines buried under cities 

where incessant construction increases the confusion of 

pipeline positioning, the need for 3-D mapping significantly 

increases in order to prevent the damage of pipelines from 

works such as excavation and construction. Tap water 

pipelines have several difficulties using 3-D pipeline 

mapping with established methods such as a geometry pig 

used in gas/oil industries or ground penetrating radar (GPR). 

A geometry pig equipped with a precise inertial measurement 

unit and wheel type odometer is not suitable for most tap 

water pipelines because the diameter of most tap water 

pipelines is much smaller than that of gas/oil industries and 
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the pipe scales of tap water pipelines disturb the odometer. 

Complex underground conditions and obstacles, such as 

buildings and walls, disturb and confuse the GPR. 

The sensor system and tracking algorithm proposed in this 

study are designed to achieve acceptable performance, size 

reduction and robustness against severe environments by 

applying an adequate sensor fusion algorithm and 

constructing a sensor system that consists of sensors with 

complementary function, although the individual 

performance of sensors are low.  

The self-contained sensor system consists of a small, 

low-cost MEMS inertial sensor and an optical navigation 

sensor, which is recently substituted with an odometer in 

[1]-[4] but is fused with the MEMS IMU to overcome the 

weakness of the optical navigation sensor. A small, low-cost 

MEMS IMU is conventionally used with wheel-type 

odometers, GPS, or a vision system, due to the bias drift 

[5]-[9]. Optical navigation sensors typically used in mice 

measure displacement with a noncontact-type sensor by 

comparing surface images of the current and previous frame 

and, unlike wheel-type odometers, are free from slip. Optical 

navigation sensors sometimes fail to measure the 

displacement, but this failure should be distinguished from 

the slipping of the wheel-type odometers, since detecting the 

failure of the optical navigation sensors is much easier than 

slip error detection. 

The tracking algorithm consists of a multi-rate EKF to 

estimate the states of the nonlinear system with redundant 

sensors that have different sampling rates, a vector matching 

algorithm to guarantee bounded roll and pitch errors in 

reference axes and a geometry compensation method to 

minimize the position error of the estimated path by 

combining the two geometry curves obtained by forward and 

backward estimation. Multi-rate EKF fuses the inertial and 

optical navigation sensor measurements using multi-rate 

sampling that is necessary to treat asynchronous sensor data 

and irregularly occurring optical navigation sensor failures. 

The position error reduction method using the start and the 

end points in pipeline mapping was developed by backward 

smoothing filter in [6] and [10]. In this paper, the geometric 

approach is applied to address the same problem.  

II. COMPACT SELF-CONTAINED SENSOR SYSTEM 

A. Overview of Compact Sensor System 

The sensor system consists of a MEMS inertial sensor, a 

couple of optical navigation sensors, a central processing unit 

(CPU), and a secure digital (SD) card. The CPU module in 
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this study is comprised of an S3C2440 processor using an 

ARM920T core, 4MByte Nor Flash, 64MByte Nand Flash, 

and 64MByte SDRAM. The CPU module stored the SD card 

with the MEMS inertial sensor and optical navigation sensor 

measurements for the post-processing of the experimental 

data. The MEMS inertial sensor is interfaced with an RS-232 

and had a sampling period of 10 msec. The optical navigation 

sensor is interfaced with the serial peripheral interface (SPI) 

and provided a sampling period of 5 msec or less. The 

dimensions of the MEMS inertial sensor is 58x58x22 mm, 

and the optical navigation sensor is 55x55x31 mm. Figure 1 

shows the overview of the compact sensor system. 

B. MEMS Inertial Sensor 

An Xsens MTi, a small, low-cost MEMS inertial 

measurement unit (IMU), is used as an inertial sensor and 

have a sensing range of ±300°/sec (angular rate) and ±2g 

(acceleration). 

C. Optical Navigation Sensor 

An Avago Technologies ADNS6010 optical navigation 

sensor is usually applied to laser computer mice and is 

comprised of a 30x30 pixel image sensor and a digital signal 

processor (DSP) for image processing. An optical navigation 

sensor can be applied as an odometer and benefits from the 

fact that noncontact-type measurements do not experience the 

slip ambiguity that plagues wheel-type odometers. Although 

an optical navigation sensor occasionally fails to process the 

surface image, the outage from an optical navigation sensor 

can be clearly detected and treated more easily than the slip 

error from the estimation algorithm. For the laser mice, the 

optical system is comprised of a lens and a laser diode 

illumination source, and functions only when the optical 

navigation sensor is 2-3mm from the surface. Therefore, 

application for rough surface, a new optical system comprised 

of a micro lens and LEDs is designed so that an optical 

navigation sensor is usable even when the optical navigation 

sensor is located 20-80mm away from the surface. Figure 2 

shows the newly designed optical system. 

 

III. NAVIGATION ALGORITHM 

A. Multi-rate EKF Algorithm 

Despite several shortcomings, the EKF is the most popular 

recursive state estimator for a nonlinear system. The 

multi-rate sampling method was applied to EKF for an 

asynchronous sensor system consisting of sensors with 

different sampling rates in [5]. Multi-rate EKF is most 

suitable for the sensor system proposed in this paper because 

the MEMS IMU and optical navigation sensor have different 

sampling rates and the outage of the optical navigation sensor 

is irregular. Table 1 shows the process of a multi-rate EKF, 

consisting of the measurement, prediction and Kalman 

filtering steps. Where 
1k 

z , 
1k 

H and 
1k 

r  denote a 

measurement vector sampled at the k+1 step, a measurement 

model matrix, a diagonal vector of the measurement noise 

covariance matrix 
1k 

R  respectively, and 
k

x  denote a state 

vector at the k step. 
1k 

P , 
1k 

F , 
1k 

Q  and 
1k 

K  denote a 

covariance matrix of the state vector, a state propagation 

matrix, a covariance matrix of the process noise 
1k 

w  and a 

Kalman gain matrix, respectively.  

 

 
Fig. 1. Overview of the compact system. 

 
Fig. 2.  An optical navigation sensor and the new optical system. 
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During irregular and temporary outages of the optical 

navigation sensors, we estimated the velocity vector with 

only the MEMS accelerometers since the bias vector of the 

MEMS accelerometers changes sufficiently slowly, within a 

few seconds. As part of the EKF process, we assigned very 

small values to the process noise matrix corresponding to the 

state vector of the biases for the purpose of suppressing the 

state vector change. Figure 3 shows that we were able to 

estimate the velocity continuously and successfully during a 

short outage of the optical navigation sensor and that the bias 

changed slowly and very little during the short outage. 

B. Vector Matching Algorithm 

The vector matching algorithm is the attitude- 

determination algorithm based on the two non-collinear, 

non-zero vector measurements that present the magnetic field 

vector from the triad magnetometer and the gravity vector 

from the triad accelerometer in [11] and [12]. The vector 

matching algorithm guarantees bounded attitude errors with 

small, low-cost sensors since both the magnetic and gravity 

field vectors give absolute attitude information within the 

frame of the Earth. However, the triad magnetometer is not 

suitable for small mobile robots since the permanent magnets 

and varying currents within motors of the small mobile robot 

interrupt to find the magnetic field vector of the Earth. 

We modified the vector matching algorithm in order to 

determine attitude from the gravity field vector and the 

rate-gyro. The roll and pitch of the Earth frame are 

determined by the gravity field vector, and the yaw is 

determined by the triad rate gyro. In order to suppress the 

biases of small, low-cost gyros to disturb attitude estimations, 

biases were estimated during every stop state of the mobile 

robot. 

The attitude estimation was implemented as follows: 

1) Compute the estimated attitude 
1

ˆ
k 

q  by propagating 
k

q  

with the sampled rate gyros.  

2) Estimate the attitude error quaternion vector 
, 1e k 

q  

using the vector matching algorithm. Where 
e

q  is (1). 

 1 2 3

T

e e e e
q q qq              (1) 

3) Compute the true attitude quaternion 
1k 

q  using the 

following: 

1 1 , 1
ˆ

k k e k  
 q q q  

, 1 11
ˆ

e k kk   
 Q qq                 (2) 

1 3 2

, 1

2 3 1

1 0 0 0

1

1

0 0 0 1

e e e

e k

e e e

q q q

q q q


 

 


  
 
 
 

Q         (3) 

We modified 
, 1e k 
Q  to prevent 

, 1e k 
q  from disturbing the 

yaw by setting first and forth rows identities. 

4) Normalize the true attitude quaternion 
1k 

q  using the 

following: 

1

1

1

k

k

k








q

q
q

                (4) 

 

C. Geometry Compensation Algorithm 

The geometry compensation algorithm proposed in this 

paper represents a method to reduce error in the position 

estimation by combining the two curves obtained from the 

forward and backward estimations with a geometric 

approaching method. For the 3-D pipeline mapping, for 

which start and end points are given, the maximum position 

error of the method using both forward and backward 

estimations can be less than half of the method using only 

forward estimation or backward estimation because the 

position error of dead reckoning navigation increases 

exponentially over time and distance. 

The geometry compensation algorithm is implemented as 

follows. 

1) Obtain the geometric curve from the forward 

estimations. 

2) Obtain the geometric curve from the backward 

estimations. 

3) Find a couple of closest points on the two curves 

respectively and the middle point between the two points. 

4) Select p0, p1 and p2. p0 and p2 lies on the two estimation 

curve respectively and are adequate distant from the closest 

points. p1 is the middle point between the two closes points. 

5) Construct the quadratic Bezier curve with p0, p1 and p2 

using the following: 

       
2 2

0 1 2
1 2 1 ,  0,1

Bezier
t t t t t t     p p p p (5) 

6) Construct the geometric compensation curve as the 

following: 

 
Fig. 3. Results of the velocity and accelerometer bias estimations. 
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        (6) 

Figure 4 shows the illustration of the geometry 

compensation algorithm. 

 

D. Implementation of Navigation Algorithms 

The discrete model of states and measurements of this 

paper is given by (7)-(26) based on [5], [11] and [12]. 

 

  

IV. EXPERIMENTAL RESULTS 

A. Experimental Equipments and Reference Path 

The compact navigation system was tested with an RC car 

on the reference path measured with D-GPS. The RC car of 

which the size was 370x260x140 mm was a common 1/10th 

scale electric touring car and was equipped with tires of RC 

trucks. The sensor system was simply attached to the RC car 

as shown on figure 5 and was compact enough to be installed 

to the RC car without any bulky unbalance. 

The reference path was asphalt pavement in the Wabu 

filtration plant and was precisely measured with D-GPS 

before the experiment. The total distance of the reference path 

was 855.4m and the reference path had 3-dimensional shape 

with height variation of approximately 5.5 m. Figure 6 shows 

the measured reference path overlapped with the aerial 

photography of the Wabu filtration plant. 

We drove the RC car equipped with the sensor system at 

the speed of approximately 3 m/s along the reference path as 

coincidently as possible.  

 

 

 
Fig. 4. Illustration of geometry compensation (a) forward/backward 

estimation curves (b) geometry compensation procedure. 
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Fig.5.  Self-contained navigation system on an RC car. 

 
Fig. 6. Asphalt pavement measurements in the Wabu filtration plant. 

1491



  

B. Estimation Results 

Figures 7 (a) and (b) represent the position estimation 

results using the proposed navigation algorithms with both 

forward and backward directions. The position error 

increased rapidly for the yaw-directional component of the 

attitude estimation as the RC car passed through the corner 

approximately 500 m from the starting point. The other 

directional components such as roll, pitch and linear 

displacement showed little error.  

 

 

The result path of the geometry compensation algorithm 

shown on figure 8 is coincident with the reference path well. 

Figures 9 (a) and (b) shows the position error of the estimated 

path as a minimum distance between the reference points of 

the asphalt pavement and the estimated path. Position errors 

of both forward estimation and backward estimation have the 

same pattern that errors start increasing rapidly from the 

middle stage. The position error is proportional to the 

distance between forward estimation and backward 

estimation since the closest point locates on the straight 

region of the path. Therefore, the junction point on figure 9 (a) 

means the closest point of the geometry compensation 

algorithm. The maximum position error of the geometry 

compensation algorithm is less than 2.5 m with a total 

distance 855.4 m. 

Velocity estimation is successful although many 

intermittent outages of the optical navigation sensor happen 

during the test as shown on figure 10. Figures 11 (a) and (b) 

show proper estimating processes with the multi-rate EKF 

algorithm during outages of the optical navigation sensor 

clearly. If the algorithm detects the outage of the optical 

navigation sensor, then the algorithm excludes data of the 

optical navigation sensor and processes velocity estimation 

with estimated accelerations and biases. 

Figures 12 (a) and (b) show estimated states of velocity and 

quaternion. The q3-directional component in the attitude 

quaternion represents yawing motion and the q1-directional 

and q2-directional components represent the rolling and 

pitching motion. The rolling and pitching components keep 

stable states due to the vector matching algorithm. 

 

 
Fig. 7. Results of (a) forward estimation and (b) backward estimation. 

 
Fig. 8. Result path of the geometry compensation algorithm. 

 
Fig. 9. Position error of (a) forward/backward estimations and (b) the 

geometry compensation algorithm. 
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V. CONCLUSIONS AND FUTURE WORKS 

These experimental results have demonstrated that the 

self-contained navigation system, including the optical 

navigation sensor developed for this study, functions 

successfully and can successfully estimate the path of a RC 

car. In particular, the navigation algorithms have combined 

redundant and complementary measurements of the optical 

navigation sensor and the low cost MEMS inertial sensors, as 

well as successfully restoring the displacement of the optical 

navigation sensor measurements. Although only the gravity 

field vector was used, the modified vector matching 

algorithm functions successfully. 

Future research will aim to combine the self-contained 

navigation system with a simultaneous localization and 

mapping (SLAM) system. Fusion of the self-contained 

navigation and the SLAM system is expected to eliminate the 

weakness of the individual systems since the self-contained 

navigation system provides the SLAM system with both 

accurate and fast motion information and the SLAM system 

provides a self-contained navigation system with bounded- 

error pose information. 
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Fig. 10. Estimated velocity and optical navigation sensor. 

 
Fig. 11. Estimated velocity and optical navigation sensor at (a) 34-38 
sec and (b) 294-289 sec. 

 
Fig. 12. Estimated states of (a) velocity and (b) quaternion 
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