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Abstract— This paper proposes an efficient fusion strategy
of monocular depth cue and other image features for natural
image segmentation and grouping. The main idea is to improve
the performance of image clustering via fusing depth cue,
color, spatial location, and edge confidence in six-dimensional
color-depth feature space. It integrates the monocular depth
cue estimation, mean shift filtering and graph cuts algorithm
together. Firstly, the dark channel prior based atmospheric
transmission estimation is employed to recover monocular
depth cue. Then the mean shift filtering in the weighted color-
depth space is proposed to obtain cluster regions with correct
boundaries. Finally, graph cuts algorithm is applied to achieve
the final regional grouping. Experimental results indicate the
proposed method has excellent performance in outdoor natural
environments.

I. INTRODUCTION

Natural image segmentation and grouping is a crucial task

of visual navigation for outdoor autonomous robot [1] and

driver assistance system [2]. Because of the complexity of

outdoor natural environments and the lack of scene geometry

information, 2D (two-dimensional) image segmentation and

grouping is still a challenging task.

Most early works are dedicated to find solutions from one

image character, such as color [3], feature [4], texture [5],

etc. G. DeSouza [1] and Z. Sun [2] had made excellent

overviews. Since it is difficult to depict outdoor natural

scenes with single image character, these methods are limited

to some specific scenes that are conformed to certain scene

model assumptions.

Many recent works focus on multiple image features

grouping and supervised/unsupervised classification learning

to solve the image segmentation and grouping problems in

ill-structured environments, such as obstacle detection, road

following [6], [7], [8]. Their main disadvantage is the lack of

guidance from scene geometry and all road models should

be learned in advance. Therefore, these algorithms are not

suitable for the first exploration or roving task in unknown

environments.

In order to overcome the disadvantages of visual methods,

many multi-sensor fusion based complementary algorithms

have been developed. Lidar range data are commonly used

to aid in lane detection and obstacle avoidance [9]. In the US
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Fig. 1. System Components.

Army’s DEMOIII project [10] and the DARPA Grand Chal-

lenge [11] / Urban Challenge [12] programs, these algorithms

had been widely used and successfully demonstrated their

effectiveness and performance. However, the joint calibration

and data fusion between different sensors are difficult, and

have great impact on the system performance.

In this paper, we make efforts to show how scene geometry

cues from a single image can be incorporated into image

segmentation and grouping. Although inferring the depth

information from a single image is still a longstanding

unsolved problem in computer vision [13], some monocular

depth cues have already been proposed, such as texture

variations and gradients, haze, defocus, etc. [14]. The depth

cue extracted from atmospheric haze will be employed here,

because it is a fundamental cue for human to perceive depth

[15]. The main motivation of this paper is to propose an

efficient monocular depth cue fusion strategy, and show its

effects in visual navigation.

There are three main stages in our methods, as shown in

Fig.1. Firstly, monocular depth cue is extracted based on dark

channel prior and atmospheric transmission estimation. Then

monocular depth cue, color, spatial location, and edge con-

fidence are combined together into a 6D (six-dimensional)

weighted color-depth feature space by mean shift filtering.

Finally, regional grouping can be achieved by modified graph

cuts.
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II. MONOCULAR DEPTH CUE ESTIMATION

As well known, it is an ill-posed problem to recover

3D structure from a single image. In imaging process,

fortunately, the appearance of haze resulted from atmospheric

light scattering can provide significant distant or depth cue.

Due to atmospheric absorption and scattering, only part of

the light reflected from distant objects reaches the camera.

Furthermore, this light is mixed with scattered ambient light

between the object and camera. Thus, distant objects in the

scene typically appear considerably lighter and featureless,

compared to nearby ones [13]. This phenomenon always

occurs in the natural images and causes different degrees

of haze, even if the photographs are taken in the clear-sky

conditions.

When the atmosphere is homogenous, the relationship

between observed image I, haze-free image J, and optical

distance di can be formulated as follows.

{

Ic
i = tiJ

c
i + (1 − ti) Ac, c ∈ {r, g, b}

ti = e−βdi
(1)

where Ic
i and Jc

i is a color channel of the pixel i in I and

J, respectively. Ac is a color channel of global atmospheric

light A. ti is atmospheric transmission, and β is the scattering

coefficient of the atmosphere.

Equation (1) is the standard image formation model. It

indicates that the observed image is a combination of two

components. One is exponentially attenuated scene radiance

with its optical distance. The other is scattered atmospheric

light towards the camera. Obviously, the transmission map t

(the vector composed of ti) needs to be estimated to obtain

the depth cue of each pixel.

Before taking further steps, we need to discuss the validity

of the image formation model in Equation (1) for visual nav-

igation. As pointed out by Kopf [13] and Narasimhan [16],

this model assumes single-scattering and a homogeneous at-

mosphere, and it is more suitable for short ranges of distance

and might fail to correctly approximate the attenuation of

scene points that are more than a few kilometers away. Since

the effective visual distance of an optical navigation camera

is usually 5 to 70 meters in front of the robot, we can infer

the assumption is satisfied in visual navigation. Fig.2 shows

some depth cue estimation results, and the original scene

images are selected from CMU/VASC image databases [17],

which are taken from various Navlabs.

In order to estimate transmission map t in Equation (1),

some prior knowledge must be required, because there is an

intrinsic ambiguity between local image features and depth

variations. Recently, many outstanding prior-knowledge-

based algorithms have been proposed for transmission es-

timation [15], [18], [19].

In this paper, we employ the method of K. He et al. [15],

because it is simple but effective. Their main contribution is

introducing the dark channel prior to estimate the transmis-

sion and the atmospheric light.

Dark channel prior is based on an observation that there is

at least one color component near zero in outdoor haze-free

Original images Transmission maps Depth cue maps

Fig. 2. Depth cue estimation results of some outdoor scene images
in CMU/VASC image databases, which are selected from CMU/VASC
image database: apr10-87-bright, jan25-91, jan31-91-down, july4-92-run6a,
respectively.

image. The dark channel of haze-free image J can be defined

as follows.

Jdark
i = min

c∈{r,g,b}

(

min
j∈Ωi

(Jc
i )

)

→ 0 (2)

where Ωi is a local window centered at pixel i.

Substituting Equation (2) into Equation (1) and solving the

minimization, we can obtain the transmission estimation.






t̃i = 1 − Îdark
i

Îdark
i = min

c∈{r,g,b}

(

min
j∈Ωi

(

Îc
i

)

)

, Îc
i =

Ic
i

Ac

(3)

where Îdark is the dark channel of normalized image Î.

To ensure neighboring pixels have similar transmission

values, a soft matting algorithm [20] is employed to refine

the estimation result.

With the estimated transmission map, we can extract the

monocular depth cue map d̂ according to Equation (1).

d̂i = −k ln t̃i (4)

where k is a constant scale factor, and its value is 255 in

this paper.
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(a) Original image frame (b) Dark channel

(c) Estimated transmission map (d) Monocular depth cue map

Fig. 3. Depth cue estimation result of a frame image in our experiments.

Fig.3 shows the monocular depth cue estimation result of

a frame image in our experiments. Fig.3(a) is the original

image frame, and Fig.3(b) to Fig.3(d) are its dark channel,

estimated transmission map and extracted depth cue map,

respectively. More results of our outdoor experiments are

shown in section V.

III. COLOR-DEPTH SPACE CLUSTERING

The key idea of our method is to fuse depth cue with

other image features. Mean Shift algorithm [21] is a robust

nonparametric clustering approach in high-dimensional fea-

ture space. It can deal with unknown number of clusters

effectively. In this paper, we construct a 6D weighted color-

depth feature space by adding monocular depth cue into the

conventional color-spatial space.

A. Weighted Color-depth Feature Space

Let x
s
i and x

c
i be the spatial coordinate vector (xi, yi) and

LUV color vector (li, ui, vi) of image pixel i, respectively.

Let xd
i be the depth cue of pixel i. The feature vector of

each pixel i can be defined by xi =
(

x
s
i , x

c
i , xd

i

)

. It is a

6D color-depth feature space. The physical meaning of this

6D feature space clustering is the pixels contained in a cluster

are not only similar in color and contiguous in the image,

but also continuous in depth cue.

To ensure the clustering stability and accuracy at the edge

pixels, edge confidence [22] is considered as weights in mean

shift filtering step to refine the delineated region boundaries.

Compared with most gradient based edge detectors, edge

confidence can detect the sharp edges with small magnitudes.

It constructs a hyperspace by gradient subspace and its

orthogonal complement. The gradient subspace is defined

by two differentiation masks with n×n windows. The edge

gradient magnitude ρ is the projection of actual edge a onto

the gradient subspace. The edge confidence η is the inner

product between a and the ideal edge template.

Thus, the weight of pixel i is defined as follows.

wi = 1 − (αi · ρi + (1 − αi) · ηi) (5)

where αi is a ratio. Since pixels close to an edge have small

weights, the discontinuity preserving property of the mean

shift filtering is further enhanced.

B. Mean Shift in Weighted Color-depth Space

To perform the mean shift clustering algorithm in the

weighted color-depth feature space, the mean shift vector

mh,K(x) should be redefined as follow.

mh,K (x) =

n
∑

i=1

xiwik
(

∥

∥

x−xi

h

∥

∥

2
)

n
∑

i=1

wik
(

∥

∥

x−xi

h

∥

∥

2
)

− x (6)

where xi and wi, i=1,. . . n, are vectors and their weights,

respectively. k(·) is the profile of the kernel, and x is the

center of the kernel (window).

In conventional mean shift algorithm, Euclidean metric is

used for color and spatial space. However, it is not suitable

for depth cue space, because the nature of the depth cue

is different from that of the color and spatial space. For

the joint color-depth domain, their different nature might

be compensated by proper normalization. For this reason,

the smooth constraint in the global stereo correspondence is

used for depth cue space, and a metric similar with the Potts

model is employed as follows.

∥

∥

∥

∥

xd − xd
i

hd

∥

∥

∥

∥

=

{

0, if
∣

∣xd − xd
i

∣

∣ < hd

T, otherwise
(7)

where T is some constant.

Thus, the multivariate kernel of color-depth domain is

defined as the product of three radial symmetric kernels.

Khs,c,d
(x) =

C

h2
sh

3
ch

1

d

k

(

∥

∥

∥

∥

x
s

hs

∥

∥

∥

∥

2
)

k

(

∥

∥

∥

∥

x
c

hc

∥

∥

∥

∥

2
)

k

(

∥

∥

∥

∥

xd

hd

∥

∥

∥

∥

2
)

(8)

where xs is the spatial part, xc is the color part and xd is

the depth cue part of a feature vector, hs, hc and hd are

kernel bandwidths, and C is the corresponding normalization

constant.

Due to limited space, we use the same input image as

that of Fig.3, and the comparison results of mean shift

clustering in different feature spaces are shown in Fig.4.

To be clear, white boundaries are overlayed on the corre-

sponding results. Fig.4(a) is the weight map computed by

edge confidence. Fig.4(b) to Fig.4(d) are the results of mean

shift in weighted color-spatial space, non-weighted color-

depth space, and weighted color-depth space, respectively.

Obviously, there are many over-segmented regions and some

inaccurate boundaries in Fig.4(b), and Fig.4(c) shows under-

segmentation regions with error boundaries. These typical

errors are marked by red circles. Comparatively, Fig.4(d) has

the best clustering result.
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(a) Weight map (b) Weighted color-spatial space

(c)Nonweighted color-depth space (d)Weighted color-depth space

Fig. 4. Results of mean shift clustering in different feature spaces with the
parameters hs=7, hc=6.5, hd=1.0, αi=0.3, and minimum region size=2000.

C. Parameters selection

In order to ensure high quality regional grouping, over-

segmentation with accurate region boundaries is necessary

in the color-depth space clustering. Of course, too many and

too small regions would also affect the performance of the

regional grouping.

There are five key parameters in our method controlling

the level of over-segmentation. They are the ratio (αi) in

Equation (5), three kernel bandwidths (hs, hc and hd) in

Equation (8), and the size of minimum region in the cluster

fusion process. In Fig.4, the parameters are hs=7, hc=6.5,

hd=1.0, αi=0.3, and the size of minimum region is 2000.

The ratio αi can improve the accuracy of region bound-

aries. The size of minimum region can avoid too small

regions. The color and space feature kernel bandwidths (hs

and hc) control the number of over-segmented regions. The

depth cue kernel bandwidth hd aims to reduce the region

number and refine the boundaries.

Fig.5 shows the clustering results with different param-

eters, using the same input image as the above examples.

Compared with Fig.4(b) and Fig.4(d), the first column results

are obtained with different hs (=3) and hc (=3.5), and the

second column results are obtained with different minimum

region size (=1000). Obviously, the smaller hs and hc

values or minimum region size are, the more over-segmented

regions are. Moreover, the function of monocular depth cue

in image clustering is demonstrated in Fig.5 very well. The

second row results have fewer regions and better boundaries

than those of the first row.

IV. MODIFIED GRAPH MODEL

Classification and grouping problem can be described as a

labeling process for each pixel in the image. In conventional

graph-based image classification and grouping methods, it

can be converted to a minimum cut problem of a pixel-based

graph model.

(a) Weighted color-spatial space with different parameters

(b) Weighted color-depth space with different parameters

Fig. 5. Results with different clustering parameters. The first column
results with the parameters hs=3, hc=3.5, hd=1.0, αi=0.3, minimum region
size=2000. The second column results with the parameters hs=7, hc=6.5,
hd=1.0, αi=0.3, and minimum region size=1000.

Let f=(f1,. . . ,fi,. . . ) is a binary vector. fi is the label

of pixel i, which can be annotated as either “object” or

“background”. The vector set f defines a partition. So it can

be formulated in terms of energy minimization in MAP-MRF

framework. The standard energy function can be formulated

into a data term and smoothness term, as shown in (9).

E (f) = λ ·
∑

i∈I

Ri (fi) +
∑

i,j∈N

Bi,j · δ (fi, fj) (9)

where δ (fi, fj) =

{

1 fi 6= fj

0 otherwise
, Ri represents the char-

acteristic of the region, and it is the cost for pixel i assigned

with either “object” or “background”. Bi,j represents the

characteristic of the boundary, it is the luminance or color

discrepancy degree between the pixels i and j, which is often

reduced to a distance function of pixels i and j. It is proved

Graph Cuts algorithm can solve these energy minimization

problems effectively [23].

However, this method has two defects. One is the al-

gorithm’s computing speed decreases exponentially and the

complexity increases exponentially with the size of image.

The other defect is there are many isolated small regions or

pixels on the segmented region boundary.

We proposed a modified graph model [24] to overcome

these two defects. The modified graph model is constructed

on the basis of accurate results of clustering. All pixels in

a region can be regarded as a whole, and the node set of

modified graph model is composed of these cluster regions.

Since the number of regions is mainly related with the scene

complexity rather than image size, it usually ranges from

20 to 50, which is much smaller than that of pixels. So the

modified graph model has much simpler construction, and

faster convergence speed in searching for optimal solution.

Followed the mean shift clustering, cluster regions based

modified graph model is constructed, then graph cuts algo-
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(a) 18th frame (b) 846th frame (c) 1269th frame (d) 1812th frame (e) 2128th frame (f) 2199th frame (g) 3777th frame

Original images of typical road types

Estimated atmospheric transmission maps

Extracted monocular depth cue maps

Clustering results in weighted color-spatial feature space

Final binary results based on the clustering results in the fourth row

Clustering results in weighted color-depth feature space

Final binary results based on the clustering results in the sixth row

Fig. 6. Comparison results of several road types.

rithm is used to obtain the final binary object / background

label image.

V. EXPERIMENTS

In outdoor road following experiments, a circular exper-

imental field, with a perimeter of about 2 kilometers, is

selected to test our proposed algorithm. This experimental

field contains four types of roads as follows: sandstone road,

concrete road, avenue, and off-road. Moreover, the road

regions and non-road regions often contain several color

models. The onboard camera (SONY XC-555P) sits at 2.05

meters of altitude. Totally, 5527 frame images are taken in

the experiments, and the image resolution is 320×240 pixels.

The parameters of mean shift clustering are hs=7, hc=6.5,

hd=1.0, αi=0.3, and the size of minimum region is 2000

pixels.

The typical frames of these road types are shown in

the first row of Fig.6. The second row is the estimated

transmission maps, and third row is the extracted monocular

depth cue maps from transmission maps. The clustering and

the final binary results of the proposed method are show in

the sixth and seventh rows, respectively. For comparison, the

corresponding results in weighted color-spatial feature space

are shown in the fourth and fifth rows. To be clear, white

boundaries are overlayed on the corresponding clustering
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results.

Apparently, the clustering performance is crucial in our

method. The correctness of region partition, especially the

precision of the boundary, will directly affect the perfor-

mance of road following. The comparison results indicate

the monocular depth cue derived from dark channel prior

can effectively guarantee both accuracy of region partition

and discontinuity preserving property.

VI. DISCUSSION AND CONCLUSION

This paper proposes a natural image segmentation and

grouping method based on an efficient fusion strategy of

monocular depth cue and other image features. The main

idea is fusing monocular depth cue, color, spatial and edge

information into a six-dimensional weighted feature space.

The experimental results demonstrate this method possesses

excellent performance in complicated environments.

During the extensive experiments, we find the charac-

teristics of monocular depth cue derived from atmospheric

transmission map are only partly equivalent to those of

depth range or disparity in traditional sense. In addition, it

also represents many attributes of atmospheric transmission,

scene radiance, surface material and reflection factor, etc.

The main reason maybe is the parameter k in Equation (4)

is treated as a constant. Fortunately, this does not seriously

affect the performance of our method. Future work will

further explore the character of monocular depth cue and

focus on integrating more cues such as texture together.

Since the main aim of this paper is to explore the effect

of monocular depth cue, no optimization strategy is adopted.

So we do not discuss the average computational time of the

proposed algorithm. Based on analytical result, the most time

consuming computation is the soft matting algorithm, and

the image pyramid scheme should be used to speed up the

algorithm. This is also the important task of future work for

the real time visual navigation.
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