
  

  

Abstract—Self-localization is important for mobile robots in 
order to move accurately, and many works use an 
omnidirectional camera for self-localization. However, it is 
difficult to realize fast and accurate self-localization by using 
only one omnidirectional camera without any calibration. For 
its realization, we use “tracked scale and rotation invariant 
feature points” that are regarded as landmarks. These 
landmarks can be tracked and do not change for a “long” time. 
In a landmark selection phase, robots detect the feature points 
by using both a fast tracking method and a slow “Speed Up 
Robust Features (SURF)” method. After detection, robots select 
landmarks from among detected feature points by using 
Support Vector Machine (SVM) trained by feature vectors 
based on observation positions. In a self-localization phase, 
robots detect landmarks while switching detection methods 
dynamically based on a tracking error criterion that is 
calculated easily even in the uncalibrated omnidirectional image. 
We performed experiments in an approximately 10 [m] x 10 [m] 
mock supermarket by using a navigation robot ApriTauTM that 
had an omnidirectional camera on its top. The results showed 
that ApriTauTM could localize 2.9 times faster and 4.2 times 
more accurately by using the developed method than by using 
only the SURF method. The results also showed that ApriTauTM 
could arrive at a goal within a 3 [cm] error from various initial 
positions at the mock supermarket. 

I. INTRODUCTION 
At airports or big supermarkets, robots are expected to 

navigate people or convey baggage. For navigation, it is 
important for robots to localize their own position. Many 
works deal with self-localization problems. Recently, most of 
them use a laser range finder (LRF). They realize 
self-localization, matching a map to data measured using the 
LRF [1]. Self-localization methods based on the LRF data can 
be performed fast and accurately. However, when robots 
using the methods do not know their initial position at all, 
errors occur at airports or big supermarkets. The errors occur 
because there are many similarly shaped objects such as poles 
and shelves. 

On the other hand, many works use an omnidirectional 
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camera. The omnidirectional camera can get not only shape 
information but also texture information in a wide area 
around a robot. Therefore, even if there are many similarly 
shaped objects and a robot does not know its initial position at 
all, the self-localization succeeds by using the 
omnidirectional camera.  

Some works based on the omnidirectional camera calibrate 
its mirror parameters [2]. After changing omnidirectional 
images to non-distorted images, the works apply traditional 
methods based on general cameras that do not have a wide 
field of view. These works have an advantage in that they can 
use many traditional methods. However, it is troublesome to 
calibrate mirror parameters. Some works [3] use scale and 
rotation invariant (Local Invariant: LI) feature points like 
SIFT [4] or SURF [5] without calibrating mirror parameters. 
Even if the robot moves and omnidirectional images change, 
using LI feature points enables the robot to localize its 
position. However, it performs more slowly and some feature 
points cannot always be used in the omnidirectional image. 
Some works dealing with SLAM [6][7] use tracking methods 
[8] or select feature points that have small errors while 
making a map [9] in order to perform fast. However, few 
works related to SLAM focus on feature points that can be 
tracked for a long time. Therefore, in the case of the previous 
works, there are many feature points that are not detected 
from various positions in an area where the robot moves. 

We deal with two problems. The first is the fast 
self-localization of a robot using an uncalibrated 
omnidirectional camera. The second is selecting landmarks 
that are detected easily from various positions. Our aim is to 
have a robot arrive at goals accurately from various positions 
at a supermarket that has many similarly shaped objects. 
Additionally, we confirm that the developed method can 
enhance the traditional method based on the LRF. 

In order to solve the problems, we focus on the existence of 
many LI feature points that can be tracked and do not change 
their feature vectors for a long time. We regard the tracked LI 
feature points as candidates of new landmarks. In a landmark 
selection phase, we select landmarks from among the tracked 
LI feature points by using Support Vector Machine (SVM). 
In a self-localization phase, our robot detects landmarks, 
switching detection methods dynamically based on a tracking 
error criterion. The criterion is calculated easily by directions 
of detected tracked LI feature points even in the uncalibrated 
omnidirectional image. Because the tracked LI feature points 
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can be tracked for a long time and do not change their feature 
vectors very much, our robot can detect them from various 
positions. Moreover, our robot can continue to detect them 
fast and localize its position even if it does not know their 
initial position at all. 

Section II defines tracked LI feature points and describes 
how the points are selected. Section III describes how our 
robot localizes its position by using tracked LI feature points. 
In Section IV, we confirm the ability of our self-localization 
method at the mock supermarket. Section V concludes this 
paper. 

II. LANDMARK SELECTION FROM AMONG TRACKED SCALE 
AND ROTATION INVARIANT FEATURE POINTS 

A. Detection of Tracked LI Feature Points 
The SURF method is used for detecting LI feature points. 

The SURF method performs faster than the SIFT method 
does. However, not all points detected by the SURF method 
can be tracked. For example, the SURF method can detect 
feature points at the center of wall and floor. The tracking 
method is not good at tracking such points. Moreover, some 
LI feature points change their feature vectors in the 
uncalibrated distorted omnidirectional image. 

In order to avoid using LI feature points that are not 
tracked easily and change their feature vectors much, our 
robot moves along whole paths in the landmark selection 
phase. Our robot can move under ideal environments before 
supermarkets open. That is, we can assume our robot has 
enough time, knows the initial position, localizes its position 
using LRF and there are no people. While moving, our robot 
detects tracked LI feature points while capturing continuous 
images. The top K LI feature points satisfying (1) and (2) for a 
long time are regarded as the tracked LI feature points.  

 
(1) 

 
(2) 

 
Here, g denotes one LI feature point. The robot started to 

move at time 0, G denotes one LI feature point detected at 
time t, and g’ denotes a point obtained by tracking g until t. 
Fi

(t) denotes a feature vector calculated by a SURF 
64-dimensional feature vector of a point i at t. The members 
of the feature vector Fi

(t) are normalized. A 2-dimensional 
vector xi

(t) denotes the position of a point i at t on image 
coordinates. An origin of image coordinates is defined as a 
center of the image. TF and Tx are constant thresholds. 
Equation (1) enables the robot to detect an LI feature point 
that does not change the SURF feature vector very much 
while moving. Equation (2) enables the robot to detect the LI 
feature point close to a point obtained by tracking. When the 
tracking succeeds, the position of G is close to the position of 
g’ in image coordinates. Therefore, it is easy to track g that 
satisfies both (1) and (2) for a long time and to detect it from 

various positions. The feature vectors of g do not change very 
much even in the distorted images. 

B. Landmark Selection Based on Observation Positions 
Tracked LI feature points detected by (1) and (2) are 

candidates of the landmark. Our robot regards tracked LI 
feature points whose positions on world coordinates are 
measured correctly as landmarks. Here, measuring correctly 
means that a distance between a measured position and 
correct position is less than a threshold Td. 

In order to measure a position (Xm, Ym) of one tracked LI 
feature point m on world coordinates, m is measured from 
various positions. The robot can memorize an observation 
position (XA1, YA1) and a posture θA1 on world coordinates 
because the robot can localize its position under ideal 
environments in the landmark selection phase. From one 
position by using only one omnidirectional camera, the robot 
cannot measure (Xm, Ym), but can measure a direction θI1 from 
the robot to m. When m cannot be tracked at t and similar 
tracked LI feature point m’ is detected after t, (1) is used in 
order to judge whether those two points are the same or not. 

In order to measure (Xm, Ym), a straight line LA1 passing 
through (Xm, Ym) and (XA1, YA1) is calculated by (XA1, YA1), θA1 
and θI1. When m is observed from various observation 
positions (XA2, YA2), (XA3, YA3), …, (XAn, YAn), the lines LA2, LA3, 
…, LAn are also calculated. The point m is at the intersection 
of lines. However, not all lines intersect because observations 
often include errors. When the robot observes m from (XA1, 
YA1), (XA2, YA2), …, (XAn, YAn), the intersection is calculated by 
the least square error method as shown by (3). Here, M+ 
denotes a para-inverse matrix of matrix M. 

 
 

(3) 
 
 
An example of a measured landmark is shown in Fig. 1. Fig. 

1 shows 4 omnidirectional images taken from 4 observation 
positions. The landmark is the center point of a dotted line 
circle in each image. The same place is detected as the 
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Fig. 1.  A landmark from various observation positions captured by an 
omnidirectional camera. 

5203



  

landmark from various observation positions.  
(Xm, Ym) is calculated accurately by the least square method 

when the same landmark is detected accurately from various 
observation positions as seen in Fig. 1. However, the 
calculation sometimes fails. For example, when there are 
many similar things and the robot regards different objects as 
the same, the robot cannot calculate the position of the 
intersection. Additionally, when observations do not fail but 
the observation positions are close to each other, the 
intersection cannot be calculated.  

Considering a relationship between observation positions 
and the accuracy of the landmark measurement, tracked LI 
feature points that may fail to be measured are deleted. 
Tracked LI feature points that can be measured correctly are 
regarded as landmarks. Here, we use SVM in order to classify 
the points as landmarks or not. 

6-dimensional vector is used as a feature vector for SVM. 
The feature vector consists of 6 feature quantities as follows: 

1. the number of observations 
2. the least square error of the measurement [rad2] 
3. the average distance from the robot to the points in the 

image [pixel] 
4. the distribution of the observation positions’ 

x-coordinate [m2] 
5. the distribution of the observation positions’ 

y-coordinate [m2] 
6. the distribution of the directions from the robot to the 

points [rad2] 
These 6 feature quantities relate to the observation 

positions and postures. At the end of the landmark selection 
phase, the feature vectors of all tracked LI feature points are 
calculated. The vectors are calculated by the result of the 
measurements and the information of the observation 
positions. SVM that has already been trained by training data 
classifies the points as landmarks or not. In order to make the 
training data, we first make the robot move to another place 
and obtain N landmark candidates. Next, we manually label 
the candidates as landmarks or not by comparing measured 
positions with correct positions of landmarks. This manual 
step can be omitted once SVM has been trained. 

 

III. SELF-LOCALIZATION BASED ON TRACKED SCALE AND 
ROTATION INVARIANT FEATURE POINTS 

A. A Tracking Error Criterion 
While the robot moves, it localizes its position while taking 

an omnidirectional image continuously. The landmark is 
detected from the continuous images. The position and 
posture of the robot can be calculated by detecting more than 
3 landmarks. In order to realize the fast self-localization, once 
the robot detects landmarks by using the SURF method that 
performs slowly, the landmarks are tracked fast continuously. 
It is easy to track the landmarks for a long time because the 
landmarks are tracked LI feature points. However, tracking 

landmarks will certainly fail. For example, when people 
move between the robot and the landmarks, targets of the 
tracking method change. As long as the robot does not know 
that the targets change, self-localization fails and the robot 
continues to track different targets. 

We propose a tracking error criterion calculated by the 
directions to the tracked landmarks in the uncalibrated 
omnidirectional image. Our robot stops to track the 
landmarks that have a high tracking error criterion. Stopping 
tracking minimizes the self-localization error. 

The tracking error criterion E is defined as (4), (5) and (6). 
Here, (xi, yi) and (xi’, yi’) denote the position on world 
coordinates and image coordinates of landmark i, 
respectively. (X, Y, Θ) denotes the robot’s position and 
posture on world coordinates estimated by using more than 3 
landmarks. 

 
(4) 

 
(5) 

 
 

(6) 
 
αi’ denotes the direction to the landmark i that can be 

measured by an omnidirectional image. βi denotes the 
direction to the landmark i that can be calculated on world 
coordinates. Fig. 2 shows a relationship between αi’ and βi. 
As shown in Fig. 2, when both self-localization and detecting 
landmarks succeed, αi’ is equal to βi. When αi’ is equal to βi, 
the tracking error criterion E is equal to 0 which is the 
smallest value. 

On the other hand, when either self-localization or 
detecting landmarks fails, E increases. For example, when the 
tracked target changes from the landmark to the person who 
walks between the robot and the tracked landmark, αi’ differs 
from βi gradually. 
 

B. Self-localization System Switching between the SURF 
Method and the Tracking Method  
Our self-localization system is shown in Fig. 3. “Sub 

Flow” in Fig. 3 denotes a process path that is passed in the 
case that the tracking error criterion E is high. In “Sub Flow”, 
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landmarks are detected slowly by the SURF method.  “Main 
Flow” denotes a process path that is usually passed. In “Main 
Flow”, landmarks are detected fast by the tracking method. 
The number of passing “Main Flow” is more than that of 
“Sub Flow”. Once our system detects landmarks through 
“Sub Flow” and our robot localizes its position, our robot 
localizes its position by using the tracking method through 
“Main Flow”. Our robot also removes the landmark that has 
the high E while moving. When the number of landmarks is 
less than a threshold, our robot detects landmarks again by 
using the SURF method. Details of the self-localization steps 
are as follows: 

1. The robot captures an omnidirectional image. 
2. Self-localization is performed through “Sub Flow”. 
3. The tracking error criteria E of all landmarks are 

calculated. 
4. The landmark whose E is higher than a threshold Tp is 

removed. 
5. If more than Tn landmarks exist in step 4, 

self-localization is performed through “Main Flow” 
after the next omnidirectional image is captured. 
Otherwise, self-localization is performed through “Sub 
Flow”. 

6. The robot repeats the process from step 3 to step 5. 
 

IV. EVALUATION OF A SELF-LOCALIZATION ABILITY 

A. Navigation Robot: ApriTauTM 
Our self-localization system was implemented on our robot 

called ApriTauTM[10] as shown in Fig. 4. ApriTauTM is used 
for evaluations of self-localization and movement ability. It is 
120 [cm] tall and 65 [cm] wide. An omnidirectional camera is 
mounted on the top of its head and does not move with the 
head motion, because the camera is fixed on the inside frames. 
ApriTauTM takes images whose size is 320x240 [pixels] 
continuously at 15 [fps]. The size is small because we focus 
on the computational time rather than the accuracy of the 
self-localization. It can move 1.0 [m/s] using its vehicle. In 

the landmark selection phase, ApriTauTM can localize its 
position by using odometry data and LRF data. 

We performed experiments at a mock supermarket as 
shown in Fig. 5. The size of the mock supermarket is 10 [m] 
by 10 [m]. There are some shelves, a refrigerator and a 
self-checkout machine at the mock supermarket.  

In these experiments, the thresholds TF, Tx and the 
parameter K as shown in section 2.1 are 40, 1.5 and 9, 
respectively. The threshold Td

 as shown in section 2.2 is 60 
[cm]. The SVM is trained by 100 tracked LI feature points. 
The thresholds Tp and Tn are 5 [deg] and 5 points respectively. 
These thresholds and parameters are decided experimentally, 
considering the resolution of the image and the size of the 
mock supermarket. 
 

B. Accuracy and Computational Time Evaluation of 
Self-Localization System 

1) Setting:  
In order to confirm the effectiveness of the tracked LI 

feature points, we compare two methods. One is our 
developed method that switches between the SURF method 
and the tracking method. The other is a simple method that 
uses only the SURF method. The experimental steps are as 

Fig. 3 The developed self-localization system 
Fig. 4 Navigation robot ApriTauTM 

 
Fig. 5 An experimental room for a supermarket 
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follows: 
1. ApriTauTM moves along whole paths at the experimental 

room and selects landmarks. 
2. ApriTauTM moves along a fixed route for evaluation. In 

this case, we use a 4 [m] line by a wall for simplicity. 
ApriTauTM takes continuous omnidirectional images 
while moving. 

3. Both our method and the simple method estimate the 
positions of ApriTauTM at each time and measure the 
computational time of processing one omnidirectional 
image. 

4. We use the Euclidean distance between the estimated 
positions and the route at each time as the error. For 
evaluation, we use an average (avg.) and a standard 
deviation (SD) of the error calculated by each method. 
We also use an avg. and a SD of the computational time. 
We compare our method with the simple method based 
on these 4 values. 

 
2) Results and Discussions: 

Fig. 6 shows the estimated position of both our method and 
the simple method. A line by the y-coordinate 2 [m] shows 
the route of ApriTauTM. Squares and triangles denote the 
estimated positions of our method and the simple method, 
respectively.  

Table 1 shows the avg. and SD of the error and the avg. and 
SD of the computational time calculated by both methods. As 
shown in Table 1, the error of our method is 4.2 times less 
than that of the simple method. The computational time of our 
method is also 2.9 times faster than that of the simple method.  

The computational time of our method is much shorter than 
that of the simple method, which is confirmed by t-test. 
However, the computational time SD of our method is longer 
than that of the simple method. We think the SD is long 
because the computational time of “Sub Flow” is much longer 
than that of “Main Flow”. In a real supermarket, there are 
many people. Therefore, we think our system often switches 
between the SURF method and the tracking method, and our 
method performs slowly. In future work, we have to confirm 
around how many people our method can perform fast. 

Our method is more accurate, because the robot uses 
tracked LI feature points that can be detected at various 
positions and have salient feature vectors. However, as 
shown in Fig. 6, our method cannot work accurately from 1.0 
[m] to 1.5[m] on x-coordinate. This error occurs because a 
white wall without landmarks exists on an x-coordinate 0 [m] 
line. If the robot uses only a general camera that has a narrow 
field of view, it cannot localize its position at all in front of the 
white wall. On the other hand, ApriTauTM can localize fast 
with about 60 [cm] errors even in this case, which is an 
advantage. For example, if the self-localization method using 
LRFs uses the output of our method as an initial position, the 
robot can localize its position very accurately. 
 

C. Mobility Evaluation Based on the Self-localization 
1) Setting: 

In order to confirm that the output of our method enhances 
the self-localization method using LRFs, we make ApriTauTM 
move to the fixed goal from various initial positions. 
ApriTauTM is activated without knowing its position. First, it 
localizes its position by using our method. Next, it localizes 
its position more accurately by using the LRF method based 
on the result of our system. In this experiment, we use ICP 
[11] as the LRF method. When ApriTauTM used only the LRF 
method, it could not localize itself accurately because there 
are many similar shelves at the mock supermarket. For 
evaluation of the robot movement ability, we use the distance 
from the fixed goal position to the position where ApriTauTM 
can arrive. ApriTauTM moves to the goal position (5.55 [m], 
3.11 [m]) on world coordinates from various initial positions. 
The correct positions of the robot can be measured by outside 
measurement systems. There are no people around the robot 
at the mock supermarket. ApriTauTM has already selected 
landmarks.  
 

2) Results and Discussions: 
The output route and the distance between the goal and the 

position where ApriTauTM arrived are shown in Fig. 7 and 
Table 2, respectively.  

As shown in Fig. 7, the outputs of our method in Trial 1 
and 2 were modified and finally ApriTauTM arrived at the 
circle that indicated the goal. The average of distance errors is 
3 [cm]. We think the error is small enough for mobile robots 
to move at a supermarket.  

This result shows that using the LRF method with our 

Fig. 6 Localization results of the developed method and the 
simple method 

Table 1 Comparing our method with the simple method 
for localization errors and computational time 

 
Method Error 

Avg. 
Error 
SD 

Time 
Avg. 

Time 
SD 

Develope
d 

0.38 
[m] 

0.21 
[m] 

16.4  
[ms] 

4.65 
[ms] 

Simple 1.61 
[m] 

1.36 
[m] 

46.8 
[ms] 

1.81 
[ms] 
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method is effective, when the robot moves at a place such as a 
supermarket that has many rectilinear shaped objects with 
different textures. In this case, the ICP works well especially, 
even if the robot only knows its approximate position.  

ApriTauTM selects signs that show what kinds of goods the 
shelves have as landmarks. The signs are effective because 
robot can detect signs from various positions and they are 
easy to identify. Other landmarks such as a pole or a watch 
can be also detected from various positions. This experiment 
shows that the landmarks based on the tracked LI feature 
points can be taken from various positions and enhance the 
robot movement ability. 

V. CONCLUSION 
We deal with two problems. The first is the fast 

self-localization of a robot using an uncalibrated 
omnidirectional camera. The second is selecting landmarks 
that are detected easily from various positions. In order to 
solve these problems, we developed the method whereby the 
robot selected landmarks based on the tracked LI feature 
points. The tracked LI feature points are defined as the feature 
points that can be detected by both the slow SURF method 
and the fast tracking method. The robot selects landmarks 
from among the tracked LI feature points that can be 
measured accurately. SVM judges whether the position of 
points can be measured accurately or not based on the 
observation positions. Moreover, in the self-localization 
phase, we developed the fast self-localization method that 
switched between the SURF method and the tracking method 
based on a new criterion. The criterion is called the tracking 

error criterion. The criterion is calculated by the direction of 
landmarks that can be calculated even in the uncalibrated 
omnidirectional image. 

In order to confirm the ability of the developed 
self-localization method, we implemented the method into the 
navigation robot ApriTauTM and performed two experiments. 
The first experiment showed that ApriTauTM could localize 
2.9 times faster and 4.2 times more accurately by using our 
method than by using only the SURF method. The second 
experiment showed that ApriTauTM could arrive at a goal 
within a 3 [cm] error from various initial positions at the 
mock supermarket. ApriTauTM could not localize its position 
by using only the LRF self-localization method at the mock 
supermarket. In future work, we intend to confirm the 
effectiveness of our method in a crowded place such as a real 
supermarket. 
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Fig. 7 Routes from various initial positions to the goal 

 
Table 2 Distances between the goal and arrival positions 

 
Trial Number 1 2 3 4 
X-coordinate [m] 5.54 5.51 5.60 5.56
Y-coordinate [m] 3.11 3.14 3.15 3.11
Distance [m] 0.01 0.04 0.06 0.01
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