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Abstract— We present a system for real-time fundamental
frequency, i. e. pitch, extraction on a humanoid robot. The
system extracts pitch using an 8 channel microphone array
mounted on the Honda humanoid robot in a realistic Human-
Robot interaction scenario. The main building blocks of the
system are a multi-channel signal enhancement followed by
robust pitch extraction and tracking. The signal enhancement
is based on 8 channel Geometric Source Separation. For
the pitch extraction the signal is first transformed with a
Gammatone filter bank into the frequency domain. Next a
histogram of zero crossing distances is calculated from all filter
bank signals. During the calculation of the histogram spurious
side peaks resulting from harmonics and sub-harmonics of
the true fundamental frequency are inhibited. The resulting
histogram then serves as input to a grid based Bayesian tracker
which deploys Bayesian filtering in a forward step and Bayesian
smoothing in a backward step on a 100 ms time window. We
demonstrate the performance of the system in a scenario where
male and female speakers utter different phrases while standing
at a normal interaction distance to the robot. For the evaluation
we compare the pitch tracking results once obtained from a
clean headset signal and once from the signals obtained from
the robot. The results show that the tracking performance only
degrades to a small extent in the realistic interaction scenario
compared to the headset recordings.

I. INTRODUCTION

Robots able to operate in the real world and to interact

with humans require advanced capabilities to perceive their

acoustic environment. As many of the sounds surrounding

us are harmonic the fundamental frequency is an important

cue to describe them. In the psychophysical literature the

percept of fundamental frequency is called pitch. Especially

for speech the pitch has a high importance as it distinguishes

different intonation patterns, e. g. questions from statements,

and in tonal languages also different words.

In human robot interaction the acoustic environments are

in most cases very unfavorable. For a natural interaction the

microphones capturing the sound signals are mounted on the

robot and hence do not only capture the speech signal or

other desired sounds but also a lot of background noise.

This includes also the noise generated by the robot itself.

Additionally, due to the long distance between the speaker

and the robot, the influence of the room reverberations on

the speech signal is also considerable. As a consequence the

signals usually have low Signal to Noise Ratios (SNRs) and

the task of extracting the fundamental frequency in such an

environment is rather difficult.
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Motivated by the astonishing performance of humans in

such situations we took inspirations from models of pitch

perception in the design of our pitch extraction algorithm

[1]. In general the perceptual models fall into two categories

[2]: Rate and place models.

The term rate in the context of pitch is reminiscent of the

phase locking of the neurons in the auditory system. They

fire, i. e. they produce a spike, at the same position in each

cycle of the signal. Consequently they code the frequency of

the signal.

Place refers in this context to the way the basilar mem-

brane in the inner ear decomposes a signal into its frequency

components. The place of maximal excitation of the basilar

membrane moves from the basal end for very high frequen-

cies to the apical end for very low frequencies. Thereby the

frequency content of the signal is coded in the excitation

pattern of the basilar membrane.

In a rate model the periodic structure of a harmonic signal

is exploited. This can be done via application of an autocor-

relation directly on the time signal [3], [4]. An extension of

this idea is to perform the autocorrelation at the output of the

basilar membrane and to sum up all individual results after

some additional non-linearity [5]. The basilar membrane

is commonly modeled via a band pass filter bank with

bandwidths and center frequencies adapted to psychological

data (also referred to as Gammatone filter bank [6]). Place or

pattern matching models make use of equidistant lines in the

spectrum of purely harmonic signals. The most prominent

of these models is the one proposed in [7]. Here a comb

filter with teeth at the fundamental frequency hypothesis and

its harmonics is set up and applied to the spectrum. When

the spectral lines and the teeth of the comb filter match

the response is maximal. Nevertheless, experiments show

that neither of these two models can fully explain human

performance. Therefore, pitch perception models are still a

field of active research.

The algorithm we presented in [1] combines information

residing in the temporal and spectral representation and

additionally suppresses spurious side peaks at harmonics and

sub-harmonics as they occur in both rate and place models.

Here we extend this algorithm by a pitch tracking based

on grid based Bayesian tracking. We adapted the tracking

algorithm from the formant tracking algorithm we proposed

in [8]. Furthermore, in this paper we investigate how an addi-

tional multi channel preprocessing can be deployed to further

increase the robustness of the algorithm. This preprocessing

is based on a variant of blind source separation, namely

Geometric Source Separation (GSS) [9]. Geometric Source

Separation combines ideas from Blind Source Separation
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Fig. 1. System overview

and Beamforming to resolve common problems in Blind

Source Separation as scaling and permutation by introducing

geometric constraints on the microphone and sound source

locations [10].

In the system we propose first GSS is used to separate

the target signal from the interfering signals as background

noise and noise produced by the robot (compare Fig. 1). Next

the signal is transformed into the frequency domain with

a Gammatone filter bank. In the following steps the zero

crossings and based hereupon the zero crossing distances

for each band pass signal are calculated. A histogram of

these zero crossing distances is formed whereby side peaks

resulting from harmonics and sub-harmonics of the true

fundamental frequency are inhibited. Finally a grid based

Bayesian tracking consisting of the steps of Bayesian filtering

and subsequent Bayesian smoothing is applied.

In the following we will detail the building blocks of the

proposed system for pitch extraction. After this we will give

an overview on the human robot interaction scenario in which

we tested our algorithm and evaluate the performance of the

system based on a comparison of the tracking performance

obtained on a clean headset signal and the signals recorded

on the robot. We will conclude with a discussion of the

results and an outlook on future work.

II. GEOMETRIC SOURCE SEPARATION

We used an online version of Geometric Source Separation

(GSS) [9] for sound source separation. Since it allows easy

addition and removal of sources with a small calculation cost,

it is promising for mobile robots.

A spectrum vector of M sources and a spectrum vector of

signals captured by the N microphones at frequency ω are

denoted as s(ω) and r(ω), respectively. The spectrum vectors

are obtained by application of the Fast Fourier Transform

(FFT) on the time domain signals s(t) and r(t). The source

separation is then formulated as

y(ω) = W(ω)r(ω), (1)

where W(ω) is called a separation matrix. The separation

is defined as finding W(ω) which satisfies the condition that

output signal y(ω) is the same as s(ω). In order to estimate

W(ω), GSS introduces two cost functions, that is, separation

sharpness (JSS) and geometric constraints (JGC ) defined by

JSS(W) = ‖E[yyH − diag[yyH ]]‖2 (2)

JGC(W) = ‖diag[WD − I]‖2 (3)

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the

diagonal operator, E[·] represents the expectation operator

and H represents the conjugate transpose operator. D is a

transfer function matrix based on a direct sound path between

a sound source and each microphone. W at the current time

step t, Wt, is estimated in an updating manner to minimize
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Fig. 2. Signal resulting from the GSS after application of the Gammatone
filter bank. A male speaker is uttering the Japanese sentence “a r a y u r
u g e N j i ts u w o s u b e t e j i b u N n o h o u e n e j i m a g e t
a n o d a”. The sentence contains a high proportion of vowels and voiced
consonants and translates to “every fact was biased towards its preference”.
Pitch tracks for the clean and noisy signals are shown. Unvoiced regions
are marked in gray.

these cost functions as follows:

Wt+1 = Wt − µSSJ′

SS(Wt) + µGCJ′

GC(Wt).

J′

SS(Wt) = 2ESSWtrr
H

J′

GC(Wt) = EGCDH .

where J′(W) is an update direction of W derived from its

complex gradient [11]. µSS and µGC are step-size parame-

ters.

For further processing the source from the frontal direction

is chosen and transformed back into the time domain via

application of the Inverse Fast Fourier Transform (IFFT).

III. PITCH ESTIMATION

The algorithm we apply for pitch extraction relies on the

calculation of a histogram of zero crossing distances and a

subsequent inhibition of side peaks resulting form harmonics

and sub-harmonics of the true fundamental frequency [1].

The first step of the pitch extraction is the transformation of

the signal resulting from the GSS into the frequency domain

via a Gammatone filter bank (see Fig. 2).

A. Extracting Rate Information

In most rate based systems the rate information is extracted

via the autocorrelation function. However, the autocorrelation

is very time consuming and not supported by biological data

[12]. Therefore, we use in our system the zero crossing

distances (ZCD) in the signal. Let Ci = [ti,1, ti,2, . . . , ti,N ]
denote the ordered sequence of the time indices of all rising

zero crossings, i. e. from negative to positive, in the band

pass signals gi(n) in the i-th channel of the Gammatone

filter bank:

Ci(m) = ti,m with gi(ti,m−1) < 0∧gi(ti,m) ≥ 0, ∀m. (4)
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Fig. 3. Histogram of the zero crossing distances (ZCD) for a male utterance
captured by the microphone with the highest SNR (best mic). Unvoiced
regions are marked in gray.

Then the sequence of zero crossing distances is defined by

Di(m) = Ci(m + 1) − Ci(m). (5)

Based on this a signal di(t) is constructed which has in the

interval between two zero crossings as its value the zero

crossing distance. Hence di(t) = Di(m) where m is chosen

such that Ci(m) ≤ t < Ci(m + 1). This distance between

adjacent zero crossings, more precisely its inverse, codes the

frequency of the signal.

B. Zero Crossing Distance Histogram

When signals stem from the same fundamental frequency

they have zero crossings in common. How many zero cros-

sings they share depends directly on their harmonic order

relative to the fundamental frequency. For example the first

order harmonic shares each second zero crossing with the

fundamental. Hence the distance between two zero crossings

of the fundamental occurs again as the distance between three

zero crossings of the first harmonic and so forth. We want to

refer to these distances between multiple zero crossings as

higher order zero crossing distances. Due to the frequency

and articulation dependent phase delay introduced by the

vocal tract not the absolute occurrence of the zero crossings

is identical between harmonics of the same fundamental but

rather their distance.

As a consequence of the reoccurrence of zero crossing

distances of the fundamental in the harmonics a histogram

of all distances shows a peak at the fundamental frequency.

In Fig. 3 such a histogram is shown for the same utterance

as depicted in Fig. 2. When interpreting the zero crossings as

spikes of the neurons in the auditory system this histogram

is very similar to a so called all order interspike histogram

where a histogram of the phase locked firing of the neurons

in the auditory system is calculated [13]. As not only the

distances corresponding to the fundamental frequency but

also those of the harmonics reoccur, the histogram shows

many spurious side peaks corresponding to the harmonics

and sub-harmonics of the true fundamental frequency. Sub-

harmonics also occur because for instance the second order

ZCD of the true fundamental frequency is also the first order

distance of the first sub-harmonic (1

2
f0). This problem is not

restricted to the histogram of the distances but does also

occur when using the autocorrelation (compare [1]).

C. Extracting Place Information

The activity in the individual channels of the Gammatone

filter bank codes the spectral information needed for place

or pattern matching based pitch models. To implement a

pattern matching algorithm we set up a comb filter for all

possible fundamental frequencies with teeth at the harmonics

1 . . . 15. The range of possible fundamental frequencies is

defined by the resolution of the zero crossing distances and

hence by the sampling rate. At a sampling rate of 16 kHz a

fundamental frequency of 80 Hz corresponds to 200 samples.

The next possible fundamental frequency corresponds to

199 samples, 80.402 Hz respectively. In a scan through all

possible fundamental frequencies from the lowest to the

highest the corresponding comb filters are set up. For each of

these comb filters the allocation of the teeth with harmonics

of the current fundamental can be checked at each instant in

time. The “filter response” of the comb filter is calculated

based on the found allocation pattern. The better the found

pattern matches the expected pattern the higher the response.

D. Combining rate and place information

One common way to determine the allocation of the teeth

in the comb filter with harmonics is to use the energy in the

band underlying the respective tooth. However, we propose

to deploy the zero crossing distances previously calculated.

The Gammatone filter bank has a limited frequency resoluti-

on due to a necessary trade off between filter bandwidth and

settling time. A decrease in bandwidth and hence an increase

in resolution comes at the cost of higher settling time which

makes it impossible to analyze transient signals as speech.

The ZCDs measure the instantaneous frequency in the time

domain and hence are subject to this limitation to a lesser

extent.

For each tooth of the comb filter the ZCD with the order

corresponding to the harmonic order of the tooth is compared

to the ZCD expected for the current fundamental frequency

hypothesis. If the deviation between the expected and the

measured distance is smaller than a predefined threshold t∆
the tooth is said to be allocated by the expected harmonic.

In the experiments reported later t∆ = 4%. A modification

of this method is not to check against the expected distance

ZCDf0 but against the median of all distances found in the

teeth. This yields slightly better results as the cross talk

of the harmonics to adjacent filter bands delivers additional

information.

E. Inhibition of Side Peaks

The creation of an allocation table for the comb filters

allows to check the found allocation against expected ones.

In Fig. 4 the allocation patterns are shown for the case where

the hypothesis f ′

0 matches the true fundamental f0, its first

harmonic f ′

0 = 2f0, or its first sub-harmonic f ′

0 = 1

2
f0.

These are the most important cases which produce spurious

side peaks in the histogram. In order to distinguish the
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Fig. 4. Prototypical allocation patterns for the comb filters. In (a) the
allocation is shown when the current hypothesis f ′

0
matches the true

fundamental frequency f0. In this case all teeth are set. The case where f ′

0
=

2f0, hence the current hypothesis is in fact the first harmonic, is depicted
in (b). Then only the teeth corresponding to the impair harmonic orders are
set. When the current hypothesis f ′

0
= 1

2
f0, i. e. the first sub-harmonic, all

teeth are set but additionally also the teeth at 1

2
f ′

0
, (1+ 1

2
)f ′

0
, (2+ 1

2
)f ′

0
, . . .

are set. In order to capture this behavior the comb has to be extended by the
sub-harmonics (l + 1

2
)f ′

0
(compare (c) ). Plot (d) shows the case when the

current hypothesis matches the true fundamental frequency for this extended
comb filter.
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Fig. 5. Histogram of the zero crossing distances (ZCD) for a male utterance
captured by the microphone with the highest SNR (best mic) after inhibition
of side peaks.

case where the current hypothesis is the first sub-harmonic

of the true fundamental frequency from that where the

hypothesis is correct, additionally teeth at the sub-harmonics

are included in the comb filter. By comparing the found

allocation pattern to those producing most of the errors it

is possible to inhibit the ones causing the errors. In the

current implementation this is done by assigning a weight

to each tooth such that the result is 1 if all and only the

correct teeth are set and 0 if the found allocation pattern

corresponds to the first harmonic or the first or second sub-

harmonic (f ′

0 = 2f0∨
1

2
f0∨

1

3
f0). The ZCD histogram is then

only calculated for the fundamental frequency hypotheses.

The weight with which they are entered in the histogram is

determined by the response of the comb filter. This results

in a canceling of the defined harmonics/sub-harmonics. In

principle it is possible to extend this to more harmonics/sub-

harmonics but the experimental results showed that this is not

necessary. When comparing Figs. 3 and 5 one can see that

this inhibition step makes the true fundamental frequency

much better visible.

IV. PITCH TRACKING

On the histogram of zero crossing distances we apply

a tracking algorithm based on Bayesian filtering [8]. We

originally developed this algorithm for formant tracking and

adapt it in [14] to pitch tracking.

Bayesian filters represent the state at time t by random

variables xt, whereas uncertainty is introduced by a pro-

babilistic distribution over xt, called the belief Bel(xt) =
p(xt|z1, . . . , zt). These filters sequentially estimate the be-

liefs over the state space conditioned on all information

contained in the sensor data zt [15].

Let Bel−(xt) denote the predicted belief at time t which

can be obtained via the application of the pitchs’ underlying

dynamics p(xt|xt−1). Then the belief at time t is calculated

by correcting the predicted belief according to the observa-

tion from the pitch histogram p(zt|xt) and a normalization

factor α. Thus, the standard Bayesian filter recursion can be

written as follows:

Bel−(xt) =

∫
p(xt|xt−1) · Bel(xt−1) dxt−1 (6)

Bel(xt) = α · p(zt|xt) · Bel−(xt) (7)

Since we want to estimate pitch locations on a discrete

grid defined by the evaluated zero crossing distance values,

a grid-based approximation of the belief is chosen. Thus,

assuming that N distances are evaluated, the state space at

time t can be written as Xt = {x1,t, x2,t, . . . , xN,t} which

leads to the following Bayesian filter recursion:

Bel−(xk,t) =

N∑

l=1

p(xk,t|xl,t−1)Bel(xl,t−1) (8)

Bel(xk,t) =
p(zt|xk,t)Bel−(xk,t)∑N

l=1
p(zt|xl,t)Bel−(xl,t)

(9)

When operating in noisy conditions a subsequent back-

ward pass on the already obtained filtering distributions

Bel(xk,t) is recommended since it significantly enhances

the noise robustness of the algorithm. Bayesian smoothing

provides such a mechanism. It aims to recursively estimate a

smoothed version B̂el(xk,t) of the belief, thereby depending

on both past and future observations [16]:

B̂el(xk,t) = p(xk,t|z1, z2, . . . , zt, . . . , zT−1, zT ) (10)

B̂el
−

(xk,t) =

N∑

l=1

B̂el(xl,t+1) · p(xl,t+1|xk,t) (11)

B̂el(xk,t) =
Bel(xk,t) · B̂el

−

(xk,t)
∑N

l=1
Bel(xl,t) · B̂el

−

(xl,t)
(12)

The final calculation of exact pitch values P (t) can easily

be done by picking the peaks of the smoothed beliefs:

F (t) = arg max
xk,t

[
B̂el(xk,t)

]
(13)

The result of the Bayesian tracking are overlaid on the

spectrogram in Fig. 2 in blue (the two other curves result

from the two other setups explained in detail in the following

section).

We model the a priori distribution p(xk,0) and the pitch
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Fig. 6. 8 ch circular-type microphone array

dynamics p(xk,t|xl,t−1) with normal distributions.

V. EVALUATION

The application scenario of our algorithm is the natural

human robot interaction. This interaction will rely to a large

extent on speech. One prerequisite for a natural interaction

is in our opinion an interaction without the need for a

headset. In our evaluation setting different people spoke to

the Honda humanoid robot at a natural interaction distance

of 1.5 m in a 4 m × 7 m room with RT20 = 300 ms1. 2

female and 6 male speakers were uttering a total of 90

utterances with 10-16 utterances per speaker. To enable a

mutli-channel preprocessing the robot is equipped with an 8

channel microphone array (compare Fig. 6).

We compared the performance of our algorithm to a

publicly available and commonly used pitch tracking fra-

meworks get f0 from ESPS in the implementation of the

WaveSurfer toolkit [17]. This framework is based on an

autocorrelation calculated from the full-band signal. It also

includes a voicing detection and outputs pitch only for voiced

segments. Because the voicing detection is rather unreliable

for noisy speech we changed the parameterization such that

the whole segment was classified as voiced and hence pitch

was continuously calculated.

For the evaluation we also simultaneously recorded the

speech signals with a headset. This headset signal was used

to calculate the ground truth information for the fundamental

frequency. The following results are given as deterioration of

the tracking results relative to this assumed ground truth. The

validity of the these results hence also partially depends on

the correctness of the pitch extracted from the headset signal.

However, visual inspection of the extracted pitch showed

that the pitch is extracted very accurately from the headset

signal. As pitch is only present in voiced regions of speech

an additional voiced/unvoiced detection is necessary for the

performance evaluation. To detect voiced regions we use the

voicing detection algorithm described in [17]. The rationale

behind this voicing detection is to decide that a segment is

voiced if the normalized cross correlation qNCCF(t), given

by

qNCCF(t, κ) =
1

N

t+N∑
j=t

r(j)r(j + κ)

√
e(t)e(t + κ)

, (14)

1RT20 is better suited for measurements in noisy environments. It gives
the decay measured at 20 dB extrapolated to 60 dB decay

where r(n) is the signal at time t and e(t) its corresponding

energy, is larger than a given threshold tv:

qNCCF(t, κ) > Tv. (15)

In order to increase the robustness of the detection we

additionally rejected segments with very low energy (≈ 0.5%
of the mean energy). We applied this algorithm on the

headset signal and used this information also for the noisy

signals recorded on the robot. Consequently pitch tracking

results were only evaluated in regions where voicing was

detected in the headset signal.

After application of the GSS signals were downsampled

to 16 kHz. In the implementation of the pitch tracking we

used a 100 channel Gammatone filter bank with frequencies

in the range from 80-5000 Hz . The implementation of the

Gammatone filter bank is according to [18]. The range of

possible fundamental frequencies was set to 80-500 Hz . We

calculated zero crossing distances up to the order 7 and used

a comb filter with 15 teeth. The Bayesian smoothing operated

on a 100 ms time window.

To differentiate the impact of the multi-channel signal en-

hancement from the pitch extraction and tracking algorithm

we compared two different setups. In the first setup we use

the microphone signal with the highest SNR. As all speakers

were speaking approximately from the front to the robot

the SNR was always highest for the microphone mounted

on the front (referred to in the following as best mic). A

typical SNR value for this setup is ≈ 15 dB (compare to

≈ 35 dB for the headset)2 In the second setup we evaluate

the pitch tracking after the application of the GSS algorithm.

The GSS improved the SNR ≈ 4 dB compared to the best

mic condition.

In Table I the tracking errors relative to the headset signal

are shown. The tracking performance of both algorithms

in the noisy conditions is evaluated against the headset

condition extracted by the same algorithm. Tracking errors

are ceiled to 100%, i. e. errors larger than 100% are set to

100%.

TABLE I

MEAN PITCH TRACKING ERRORS RELATIVE TO HEADSET SIGNAL IN %.

best mic GSS GSS+Post Filter

get f0 2.6 7.1 7.2

proposed 2.1 1.5 2.2

Additionally, we also evaluated the so called Gross Pitch

Error (GPE) [19]. It measures how much of the pitch track

deviates more than et from the true pitch. In our case we set

et = 20%. The corresponding values are given in Table II.

The results show that the tracking errors already for the

best mic configuration are very good for both algorithms.

The GSS preprocessing notably reduces the errors for our

algorithm. However, the results for get f0 were deteriorated

2We calculated the SNR as the ratio of the energy of the segments
containing only speech to those containing only noise. Signal distortions
due to reverberations are hereby not taken into account.
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TABLE II

GROSS PITCH ERRORS ( > 20%) RELATIVE TO HEADSET SIGNAL IN %.

best mic GSS GSS+Post Filter

get f0 1.8 2.7 2.9

proposed 0.7 0.3 1.0

by the GSS. When using the GSS as preprocessing combined

with our algorithm the errors are very small and only very

little gross pitch errors occur.

The GSS based signal enhancement proposed in [9] also

includes a multi-channel post filtering step. The post filter

is applied after the GSS and has as its purpose to reduce

the noise still present after the GSS step. In addition to the

stationary components of the noise it also estimates non-

stationary components and subtracts them from the signal.

We investigated a setup where we included the post filter

as described in [9]. When comparing Table I and II one

can see that the post filtering is not beneficial for the pitch

tracking for all algorithms.

VI. SUMMARY & DISCUSSION

We developed a system which is able to extract the

fundamental frequency of a speaker in natural human robot

interaction, i. e. without the use of a headset. The main

building blocks of the system are a multi-channel prepro-

cessing based on Geometric Source Separation (GSS), pitch

extraction based on a zero crossing distance histogram, and

pitch tracking using a grid based Bayesian tracker.

We evaluated the system for 8 different speakers each

uttering 10-16 sentences. The results showed that the pitch

extraction and tracking already yields good results without

the preprocessing but that the results could further be im-

proved with the GSS. The application of an additional post

filter decreased performance. We attribute this to the fact

that on one hand the pitch extraction does not depend on the

amplitude of the signals and hence the possibly beneficial

effects of the post filtering can not be exploited by the pitch

extraction. On the other hand the distortions following from

the post filtering, e. g. musical tones resulting from incorrect

estimation of either noise or signal energy, impair the pitch

extraction.

The comparison of our algorithm to get f0 from the Snack

toolkit showed that our algorithm performs significantly. In

the best case, i. e. using our algorithm followed by the GSS

but without post filtering, we obtain relative errors averaged

over all speakers below 2% and gross pitch errors of only

0.3%. From this we conclude that the system we propose

robustly extracts the fundamental frequency and hence lays

the foundation for a prosodic analysis of the speech signal.

The results show that the GSS is beneficial for the pitch

extraction in Human-Robot interaction. Up to now we only

performed both algorithms in a sequence. In the future we

will investigate how a tighter integration can be obtained,

e. g. by replacing the FFT and IFFT step in the GSS by a

Gammatone filter bank which will avoid repeated transfor-

mations from the time domain in the frequency domain as

in the current system.
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