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Abstract— This paper describes a probabilistic online map
merging system for a single mobile robot. It performs intermit-
tent exploration by fusing laser scan matching and omnidirec-
tional vision. Moreover, it can also be adapted to a multi-robot
system for large scale environments. Map merging is achieved
by means of a probabilistic Haar-based place recognition system
using omnidirectional images and is capable of discriminating
new and previously visited locations in the current or previously
collected maps. This dramatically reduces the search space for
laser scan matching. The combination of laser range finding
and omnidirectional vision is very attractive because they
reinforce one another when there is sufficient structure and
visual information in the environment. In other cases, they
complement one another, leading to improved robustness of the
system. This is the first system to combine a probabilistic Haar-
based place recognition system using omnidirectional images
with laser range finding to merge maps. The proposed system
is also algorithmically simple, efficient and does not require
any offline processing. Experimental results of the approach
clearly illustrate that the proposed system can perform both
online map merging and exploration robustly using a single
robot configuration in a real indoor lab environment.

I. INTRODUCTION

The problem of map merging is an important but difficult
problem in mobile robotics. It addresses the issue of merging
independent maps collected by a team of mobile robots
or merging partial maps collected by a single robot on
different runs into a globally consistent map. The multi-robot
system is more suitable for tackling large-scale environments
since multiple robots can cooperate to explore the same
environment. However, the same result can be achieved by
using a single robot which performs intermittent explorations
at different times. This eliminates the complexity of a multi
robot system but with the tradeoff that exploration and map-
ping will take more time to complete. There are numerous
applications ranging from autonomous home vacuum clean-
ers, lawn mowers, scout robots, search and rescue robots.
Nonetheless, this problem has not been receiving as much
attention as the SLAM problem.

The introduction of probabilistic frameworks and specifi-
cally laser-based probabilistic SLAM systems have achieved
tremendous success in solving the SLAM problem. It is not
surprising that many map merging systems in the literature
are based on laser scan matching techniques [17], [18], [25].
This is because map merging systems are normally required
to be capable of performing SLAM. Of course, the current
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state of the art is not only restricted to laser-based SLAM
systems. The availability of cheap computing power and
potential of vision systems have made the realisation of
a visual SLAM approach practical. A popular approach is
to identify and track distinctive landmarks/features in the
environment. Unfortunately, there are no complete geometric
map merging systems using vision as its primary sensor.
In [14], two mobile robots each equipped with trinocular
stereovision can localise themselves relative to each other
at different times by detecting corresponding landmarks
between the two maps. However, the maps are not merged
into a global map. Another system described in [10] proposes
multi-robot map building by taking visual measurements
(with landmarks detected using SIFT [19]) from multiple
robots and building a common global map for all the
robots simultaneously instead of performing map merging.
Nevertheless, this approach is only suitable if the relative
starting positions of the robots are approximately known in
advance.

As for laser-based map merging systems, there are many
interesting approaches such as the virtual robot approach
described in [1] which treats local laser scans from multiple
robots as range measurements to the virtual robot and derives
its odometry by registering similar structures in local maps.
In another work described in [24], a hierarchical Bayesian
approach is proposed to capture the structure of the environ-
ment (built using laser scans) using a hidden Markov process
that represents transitions between views of the environment.
The proposed system learns this structural model via an
offline learning process and is able to predict what a typical
view will look like if the robot moves out of a previously
explored environment. This subsequently allows the system
to estimate the probability of the robot being in a new or
previously visited location. As the robot moves into a new
location, the learnt model will be adapted and refined.

Unfortunately, these methods may fail because they rely
heavily on distinct geometric laser scan feature descriptors
for place recognition such as corners and edges which
may not always be unique. As there are many geometri-
cally/structurally similar places with different colour texture
and/or visual features in typical man-made environments
(e.g. supermarket), it is common to find laser range measure-
ments being fused with visual data in order to improve the ro-
bustness of current SLAM systems. Of course, the difficulty
which requires additional sensing modes to complement laser
range finding arises mostly from the very limited sensing
range of the employed laser range finder. If a SICK or longer
range Hokuyo were used, the need for these other sensing
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Fig. 1. The ActivMedia Pioneer P3-DX with two Hokuyo laser range
finders and an omnidirectional vision system.

modes may be drastically reduced (also depends on the scale
of the environment). For the case where the sensing range
of the laser range finder is sufficient, our proposed system is
able to reduce the time required to perform scan matching. In
other cases, the proposed system, which combines laser scan
matching and omnidirectional vision, can further improve
its robustness in environments where laser scan matching is
ambiguous.

It is also common to find that loop closing techniques in
SLAM can also be easily adapted to solve the map merging
problem since these problems overlap to a certain extent.
Both problems attempt to identify whether the robot is at
a previously visited location with the additional extension
to merge corresponding maps into a globally consistent one
for the map merging problem. This paper shares the same
idea with the work by Ho and Newman [12], in the sense
that both visual and laser range information is required for a
robust place recognition system which can be used to solve
both the loop closing and map merging problems. One of the
main limitations of the visual loop closure detection system
is the lack of a probabilistic framework to allow the system
to degrade gracefully when uncertainty becomes prevalent.
However, this limitation has been resolved by Cummins
and Newman [6] by proposing a generalised probabilistic
framework for an appearance-based localisation and mapping
system. Unfortunately, the proposed method requires a one-
off learning process to build its visual dictionary for the
bag-of-words paradigm which may take hours to perform.
Nevertheless, this method still performs well (suboptimal)
when a standard dictionary is used instead.

To the best of our knowledge, this is the first work
which combines a probabilistic Haar-based place recognition
system using omnidirectional vision with a SLAM system
based on laser scan matching for map merging. Instead of the
pan-tilt camera system used in [12], [6], an omnidirectional
vision system is used to alleviate the windowing problem
with perspective cameras and the time required to produce
an image with 360o FOV is significantly reduced although
the effective resolution of the image is lower. Furthermore,
the proposed approach is algorithmically simple, efficient and
does not require any offline processing, and hence the whole
process of map merging can be executed in real time.

Since the proposed system is tested on a single robot
configuration, one or more previously collected maps can
be loaded into the system. Subsequently, the robot performs

SLAM by associating consecutive laser scans via an EKF
framework. These laser scans or local maps will also be
associated with an omnidirectional image which describes
the appearance of the location. At the same time, exploration
is performed autonomously using the Voronoi Loop Explo-
ration strategy described in [27]. This is found to be highly
beneficial for this map merging system due to the usage
of Voronoi graphs which ensures that the robot traverses
close to the previous path, such that loop closing and map
merging opportunities will not be missed (will be thoroughly
discussed in Section III-B). The system will proceed with
map merging via scan matching only if the place recognition
system detects a previously explored environment. Finally,
the maps are merged if scan matching succeeds.

The rest of the paper is organised as follows: A brief
description of the research platform is provided in Section II.
This is then followed by the introduction of the SLAM and
probabilistic Haar-based place recognition system in Section
III and IV respectively and how these are integrated to tackle
the map merging problem in Section V. This approach is then
validated by the experimental results in Section VI followed
by discussion and possible future extensions in Section VII.
Finally, conclusions are presented in Section VIII.

II. SYSTEM OVERVIEW

Our main research platform is the two wheeled differential
drive ActivMedia Pioneer P3-DX [22] illustrated in Fig. 1. It
is equipped with two Hokuyo URG-04LX laser range finders,
each with a maximum range of 4m, mounted on the front and
rear of the robot covering a full 360o of the plane. In addition,
an omnidirectional vision system made up of a PixeLink
camera looking upwards to an equiangular mirror designed
by Chahl and Srinivasan [5] is mounted onto the centre of
the robot.

III. AUTONOMOUS EXPLORATION AND SCAN
MATCHING SLAM

The SLAM and exploration algorithm are based on a
previous work described in [27], except that the Advanced
Sonar sensors [16] have been replaced with the omnidirec-
tional vision system for the purpose of place recognition. The
Advanced Sonar sensors were previously used for producing
range and bearing measurements to small corner cube type
targets naturally occurring in doorjambs and other corridor
wall features not resolvable by the laser. These measurements
were used to assist the scan matching in localising the robot
in corridor environments. For this reason, in this work, the
environment is assumed not to be made up of relatively
long corridors in which the localisation of the robot can
be compromised by the unavailability of advanced sonar
sensors. Of course, the need of advanced sonar sensing in
[27] also arises from the limited range and resolution of
the employed laser range finder. However, in environments
where even the sensing range of current laser range finder
is not sufficient, these additional sensing modes will become
invaluable. It is also important to note that in this work, the
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SLAM implementation is based on laser only and that the vi-
sion is only used to recognise previously visited locations for
map merging. This issue will be further discussed in Section
VII. In addition, the inclusion of the autonomous exploration
algorithm is to allow a fully autonomous operation for SLAM
and online map merging.

A. SLAM

The SLAM algorithm is implemented using the EKF (Ex-
tended Kalman Filter) framework described by A. Davison
[7] where all map features are included in the SLAM state
vector and updated on each observation step. The prediction
model based on odometry is derived as in [15], where the
error model assumes error sources are additive white noise
on the wheel separation as well as the left and right wheel
distance measurements.

As in [26], landmarks are defined by a template of the two
raw laser measurements which are collected approximately
every 0.7 metre of robot travel and observed by a process
of scan matching. There are many available approaches for
scan matching. However in this paper, Polar Scan Matching
(PSM) [8] has been chosen because of its fast convergence.
It operates in the laser scanner’s polar coordinate system and
therefore eliminates the need to search for correspondence
by simply matching the points by their bearing.

The augmented state vector containing both the state of
the robot (θv, xv, yv) and the state of landmark locations is
defined as follows,

X = [θv, xv, yv, L1, L2, ..., Ln] (1)

where the landmarks detected by the lasers are represented by
the pose of the centroid of the reference scans in the global
coordinate frame, Li = (xLi, yLi, θLi). The observation
model for the pose of a landmark coordinate frame with
respect to the robot is calculated as follows,

HL(t) =

xhi(t)yhi(t)
φhi(t)

 =

[
(xLi(t)− xv(t))cos(θv(t)) + (yLi(t)− yv(t))sin(θv(t))
−(xLi(t)− xv(t))sin(θv(t)) + (yLi(t)− yv(t))cos(θv(t))

φLi(t)− θv(t)

]
(2)

A heuristic error estimation approach as described in [26]
has been used for correctly providing the error covariance of
the scan matching to the EKF in corridor environments.

B. Autonomous Exploration

As described in [27], the exploration algorithm takes
advantage of the characteristic of the Voronoi Graph to
enable the robot to strategically explore the environment
in both a loop closing fashion and safe manner. It is safe,
because the line segments in the Voronoi Graph are always
equidistant from nearby obstacles in the environment and
hence it naturally makes the robot to travel in the path
with maximum clearance from obstacles. For gaps that are
too small for traversal, the perpendicular distance from line

segments of the Voronoi Graph to the nearest obstacle which
is smaller than the radius of the robot is removed. Moreover,
the Voronoi Graph also exhibits loop-paths that can help in
guiding the robot to close loops during exploration in order
to maintain the SLAM consistency.

Fortune’s plane sweep algorithm [9], which provides a
simple O(nlogn) solution, has been used to generate the
Voronoi Graph. The Voronoi Graph is converted into an
undirected-weighted graph structure to allow it to be used
for path planning and exploration.

The exploration algorithm works by periodically extracting
loop-paths using the loop-path extraction algorithm [27] and
subsequently executing these loop-paths in order of size
(small to large) until all loop-paths have been executed. Then,
a graph-based exploration technique is used to fully map
the environment. This strategy ensures a stable partial map
creation before the robot travels further to explore the rest
of the environment.

The usage of the Voronoi Graph for exploration also
ensures that the robot is close to the previous track when it
revisits an explored part of the environment. This is beneficial
for loop closing, place recognition and map merging tech-
niques based on the visual appearance of the location because
visual information will be significantly different when the
robot is too far off track. This is because a new location
will not match previous locations and thus resulting in lost
opportunities for loop closing. Of course, this is not possible
if new obstacles are present.

IV. PROBABILISTIC HAAR-BASED PLACE
RECOGNITION

A. Place Recognition using Haar Wavelets

The place recognition system is based on the image
retrieval system described in [11] and is originally proposed
by Jacobs et al. [13]. Ho and Jarvis [11] have successfully
adapted this algorithmically simple, efficient and yet robust
framework for mobile robot localisation and illustrated its
robustness against lighting variation and occlusion. In the
original system [13], RGB images are converted into YIQ
color space, decomposed using the standard 2D Haar de-
composition technique, and the top 60 coefficients (quantised
magnitudes and locations) are retained as the image signa-
ture. Subsequently, whenever a query image is presented
to the system, it will be decomposed, quantised and a
weighted score (depending on the location of the coefficient)
is calculated.

Ho and Jarvis [11] customised this to work with panoramic
images by downsampling the original unwarped image to
a size of 512 x 128 and retaining the coefficients within
a bounding box of size 64 x 16 originating from the (0,0)
coordinate of the decomposed image. The magnitude of these
coefficients are quantised and conveniently stored into a bit
array, which significantly reduces the memory footprint for
each image signature (location of coefficient is not required).
Since the Haar wavelets vary rotationally, the unwarped
panoramic image is column-wise shifted every 10 degrees
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Fig. 2. (Left) Average of top 60 coefficients within bounding box of size
m by n and (Right) average top 1% matches using bounding box size m by
n.

equivalent in pixels and decomposed, quantised and stored
in the database.

In Fig. 2 (Left), a total of 335 panoramic images were
used to find the average number of top 60 coefficients within
the bounding box of size m by n and Fig. 2 (Right) shows
the effect of matching accuracy with different bounding box
sizes using 57 query images for a database with 2052 image
signatures.With these quantitative results, an image signature
of size 56 x 14 was chosen instead which contains an average
of 82.8% of the top 60 coefficients and performing at an
average of 98.2% to rank the correct image signature in
the database in the top 1% of all returned matches for the
57 query images. An independent evaluation using the Haar
wavelet for place recognition can be found in [20].

B. Bayesian Place Recognition System
The proposed system is based on the probabilistic, in-

cremental and online loop closing detection framework
described in [2] which employs the discrete Bayes filter.
However, several modifications were made due to some
significant differences in system characteristics. Firstly, only
a single image from the omnidirectional vision system is
associated with the corresponding laser scan in our system
instead of using a continuous stream of video images. Then,
Haar coefficients of the omnidirectional images are used to
discriminate between the images instead of the bag-of-words
approach using perspective cameras. Since each image is
associated with a particular laser scan, we maintain the topo-
logical relationship between these images in a bidirectional
graph structure.

Problem Definition: Given a set of nodes, p = 1, 2, ..., t,
(previously collected, current or combination of both) each
associated with an omnidirectional image in the sequence
I1, I2, ...It, compute the probability of the robot being in a
previously explored node and the probability of it being in an
unmapped location. The variable St is then used to describe
the hypothesis that at time t, the robot is at a previously
visited node if St = j, where j denotes an existing node’s
index, or a new location if j=-1. In a Bayesian framework,
this is equivalent to searching for the past image Ik where
the index k is derived by using the following expression,

k = argmax
j=−1,...,t−e

p
(
St = j|It

)
(3)

where It = I1, ...It. Subsequently, by using Bayes rule and
the Markov assumption, the full posterior is decomposed
into,

p
(
St|It

)
= ηp (It|St) p

(
St|It−1

)
(4)

where η is the normalisation factor and p (It|St) is the
likelihood L (St|It) of St given image It. By marginalising
the belief distribution, p

(
St|It−1

)
, it can then be written as,

p
(
St|It−1

)
=

t−e∑
k=−1

p (St|St−1 = k)︸ ︷︷ ︸
state transition

p
(
St−1 = k|It−1

)︸ ︷︷ ︸
prior posterior

(5)

where e is the number of most recently visited nodes to
be excluded (set to 1 in our experiments) and the prior
initialized to p(St−1 = −1|It−1) = 1. This decomposition is
simply elegant because the state transition model can be used
to maintain temporal coherency and reduce transient errors
due to perceptual aliasing and the prior posterior is readily
available. The following will describe how the state transition
is modeled and the likelihood L (St|It) is computed.

C. State Transition Model

The state transition probabilities are modeled according
to our system characteristics. Given that e ≥ t and e = 0 if
e < t, the state transition probabilities can be described as
follows,
• p(St = −1|St−1 = −1) = 2.0

t−e+1.0 if the system be-
lieves it was at a new location in the previous time
step (SI = −1) or 1.5

t−e+0.5 otherwise: describes the
probability that the robot is at a new location at time t
given that it was previously at a new location at time
t-1.

• p(St = j|St−1 = −1) = 1−p(St=−1|St−1=−1)
t−e , j ∈

(0, t − e): describes the probability that the robot is
currently at node j given that the robot was previously
at a new location at time t-1.

• p(St = −1|St−1 = k) = 1 − Nk+1
Nk+2 if the system be-

lieves it was at a new location in the previous time step
(SI = −1) or 0.2 otherwise, k ∈ (0, t−e): describes the
probability that the robot is currently at a new location
given that the robot was previously at node k at time
t-1.

• p(St = j|St−1 = k), where j ∈ (0, t−e) and k ∈ (0, t−
e): describes the probability of the robot currently at
node j given that the robot was previously at node k at
time t-1 and can be expressed as,

1.6
Nk+2.0 : SI > −1, j = k (6)
2Nk+2.0

(Nk+2.0)2 : SI = −1, j = k (7)
0.8− 1.6

Nk+2.0

Nk
: SI > −1, j ∈ neighbours of k (8)

0.8− 2Nk+2.0
(Nk+2.0)2

Nk
: SI = −1, j ∈ neighbours of k (9)

where Nk represents the total number of neighbours of
node k (can be found using the graph which maintains the
topological relationship between the images) and SI is the
selected index (largest probability) from the prior posterior,
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p
(
St−1 = k|It−1

)
, which represents the actual state of the

system being at an unexplored location if SI = −1 or
previously visited location if SI > −1 in the previous time
step.

D. Likelihood Voting Scheme

The likelihood is computed by finding a subset Ht ⊆
It−e of images whose score, Di (i ∈ (−1, t − e)), is
smaller than the threshold computed using the mean of all
scores, µa, minus its standard deviation, σ (more negative
Haar scores being a better match). At the same time, the
mean of all inliers, µin, which represents the average score
of those which is larger than the threshold, is computed.
Subsequently, L (St|It) is expressed as,

L (St|It) =

{
(Di−µin)A+µin

µin
: Di ≤ µa − σ

1.00 : otherwise
(10)

where A can be normally expressed as,

A =
log10(15/p (St = j|St−1 = −1))

log10(15)
(11)

For the case when i = −1 and SI > −1, A is expressed as,

A =
log10(15/p (St = j|St−1 = −1))

log10(15)
− 0.3 (12)

In [2], a virtual image, I−1, is created and maintained
such that it is statistically more likely for this virtual image
to match the incoming query image if the robot is currently
at an unexplored location. However, for our system, the
score of this virtual image is calculated by subtracting the
mean, µa, with 2 times the standard deviation, σ. As such,
L (St = −1|It) is expressed as,

L (St = −1|It) = µa − 2.0σ (13)

Finally, the full posterior, p (St|It), is computed and
subsequently normalised.

V. MAP MERGING

The probabilistic Haar-based place recognition system
decides whether the current location of the robot already
exists in the current and/or the previously built maps. When
the system returns a match, one of the nodes in the current
or previously built maps will have a larger probability than
the others. This matching node is then utilized to find the
associated laser reference scan. Since Haar wavelets vary
rotationally, the system can also provide the approximate rel-
ative orientation of the current robot’s position with respect
to the reference image/laser scan up to a resolution of 10o.
This is because any unwarped panoramic image to be stored
into the database is column-wise shifted every 10o equivalent
in pixels. This relative orientation is used in scan matching
to improve the convergence time and success rate.

Since each match returned by the place recognition system
is validated by laser scan matching, the overall robustness of

Fig. 3. Flowchart of the online map merging algorithm.

the system improves. Scan matching is performed by firstly
transforming the coordinate frame of the current reference
scan to the matching reference scan and then PSM is per-
formed with the suggested orientation from the probabilistic
place recognition system by iteratively minimising the sum
of square range residual. The output of scan matching is
the relative pose of the current reference scan with respect
to the previous matching reference scan. Once the match is
validated by scan matching, it can mean either loop closing
in the current map or map merging with previously built
maps. This is decided based on the index value returned by
the place recognition system. It is loop closing if the returned
index value refers to a node which exists in the current map
or map merging if the returned index refers to a node which
exists in the previously built maps.

For the case of loop closing, the current map is updated
with the scan matching result, using the standard EKF update
equation [7]. Since loop closure is detected, there is no need
to append any new reference scan features into the SLAM
state vector. In contrast, for the case of map merging, the
relative pose resulting from the scan matching is used to find
the relative transformation matrix of the current map with the
previously built map. The transformation matrix is then used
to transform the entire current reference scan to the previous
map reference frame. However, it does not end here, since
the two maps are yet to be correlated and combined into one
state vector. Subsequently, in order to maintain the correct
correlation between the maps, each of the pose is appended
into the SLAM state vector one by one as in [7] using the
following equations,

Xnew = [xv, L1, ..., Ln, L
new
i ] (14)

Pnew =
Pxvxv PxvL1 . . . PxvLn Pxvxv(DL)T

PL1xv PL1L1 . . . PL1Ln PL1xv(DL)T

.

.

.

.

.

.
. . .

.

.

.

.

.

.
PLnxv PLnL1 . . . PLnLn PLnxv(DL)T

DLPxvxv DLPxvL1 . . . DLPxvLn PLnew
i

Lnew
i

 (15)
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where

DL = (
∂Lnewi

∂xv
) (16)

PLnew
i Lnew

i
= DLPxvxv(DL)T + (

∂Lnewi

∂H
)R(

∂Lnewi

∂H
)T (17)

Lnewi is the ith pose of the reference scan from the previous
map, xv is the current pose of the robot, H is the mea-
surement of the new landmark Lnewi and R is the estimated
covariance of H . In addition, the graphs which maintain the
topological structure of these maps for the place recognition
system are merged accordingly.

The overall operation of the autonomous exploration and
SLAM with online map merging is summarised in the
flowchart of Fig. 3.

VI. EXPERIMENTAL RESULTS

Experiments were conducted in indoor lab environments
at Monash University. In these experiments, the mobile
robot creates a partial map of the environment before it
is moved to a random location. The system can either be
turned off/reset (with the partial map preloaded into the
system prior to execution) or remain switched on while it
is being moved from one location to the other. However, in
these experiments, the former case is illustrated in order to
simulate a typical indoor mobile robot which is more likely
to be switched on and off at different times and days for
exploration and mapping rather than a one off continuous
process.

The omnidirectional vision system is capable of producing
images at resolutions of 1280 x 1024. However, in these
experiments, we are only using images at resolutions of
640 x 512. The robot performs autonomous exploration
and SLAM, and creates unique reference laser scans at
intervals of approximately 0.7m which are associated with
the corresponding omnidirectional images that describe the
appearance of the locations. In the first experiment, the
mobile robot creates a partial map of lab G15 (Fig. 4 (Left)).
It is then restarted in a random location and preloaded with
the previously collected partial map and heads towards the
opposite direction for exploration (Fig. 4 (Right)). Subse-
quently, the robot detects that it is at a location in the
previously collected partial map and performs map merging
in Fig. 5. The robot continues to traverse the environment and
Fig. 5(b) shows the locations where loop closing and false
negatives were detected by the place recognition system. No
false positives were reported by the system. A video of this
experiment can be found at
http://www.youtube.com/watch?v=LymgfkVpwLs

For the second experiment, we test the robustness of the
algorithm by introducing a more challenging environment to
the system. In this experiment, the robot initially explores
and maps the entire lab G15 (Fig. 6 (Left)). Then, it is
restarted and randomly placed in lab G10 (neighbour lab
to G15) preloaded with the map of lab G15 (Fig. 6 (Right)).

Then, the robot revisits some nodes in lab G10 before it
heads out to the path which leads to lab G15. Subsequently,
the robot detects that it is at a location in the preloaded
map of lab G15 and performs map merging in Fig. 7. The
robot continues to traverse the environment and Fig. 7(b)
shows the locations where loop closing and false negatives
were detected before and after map merging is performed.
Similarly, no false positives were reported by the system in
this experiment. A video of this experiment can be found at
http://www.youtube.com/watch?v=dQemNJX3kAY

The third experiment is similar to the second experiment
except that the robot is required to explore a larger environ-
ment and perform 3 map merging instead of 1. The robot
is preloaded with 4 non-overlapping maps as shown in Fig.
8. Then, it is placed at a random location in lab G10 and
autonomously explores the environment. It is not possible
to merge with the map of the High Voltage lab (Fig. 8(c))
since the robot has been deliberately denied access to it.
Nevertheless, this map is still loaded into the system to create
more ambiguitiy. Experimental results are shown in Fig. 9-
11. Fig. 11 shows the locations where loop closing, false
negatives and positives were detected before and after map
merging is performed. The two false negatives were rejected
using laser scan matching and a video of this experiment can
be found at http://www.youtube.com/watch?v=GXlWLdit5TM

The indices of the full posterior probability shown in
Fig. 5(c) and Fig. 7(c) still correspond to the indices of
the reference laser scans as shown in Fig. 5(b) and Fig.
7(b). However, in the videos, when false negatives or map
merging occurs, it can be observed that these indices do
not correspond anymore. Nonetheless, these relationships are
properly maintained internally in the system.

VII. DISCUSSION

From the experimental results, it is clearly shown that the
system can robustly perform map merging in challenging
environments such as geometrically similar corners and
junctions. The process of detecting loop closure and online
map merging is also made more efficient since the search
area for scan matching is significantly reduced when the
place recognition system provides it with the matching node
and an approximate relative orientation with respect to its
reference. Fig. 12 compares the time required to perform
an exhaustive scan matching as opposed to image querying
on a laptop with a 1.6GHz AMD processor and 1Gb RAM.

Fig. 4. (Left) Partial map of Lab G15 and (Right) Mobile robot loads the
partial map (red) and starts at an unknown location in Lab G15. Grid size
is 1x1m.
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Fig. 5. (a) Map merging detected at this location. (b) Merged map.
The probabilistic place recognition system detects accurate loop closures
at locations of yellow circles and false negatives at locations of blue circles
after map merging is performed. (c) Posterior probability at the merging
pose. (d) Examples of unwarped omnidirectional images of the environment.
Grid size is 1x1m.

Fig. 6. (Left) Map of Lab G15 and (Right) Mobile robot loads the
previously collected map (not shown here) and starts at an unknown location
in Lab G10. Grid size is 1x1m.

Furthermore, image querying can be further optimised by
replacing the current image querying technique described in
[13] with a kd-tree implementation.

As illustrated in the videos, the system builds up its
belief that it is indeed in a previously explored environment
(depending on how discriminative the image matching scores
are) and dampens the effect of perceptual aliasing which
may lead to false positives by utilizing the state transition
model (described in Section IV-C). Of course, there are
instances when this belief builds up rather quickly if the
scores are highly discriminative and this is not surprising
since discriminative image matching scores provide a strong
indication that this is indeed a good match. Nevertheless, the
overall adaptation of the probabilistic framework proposed
by Angeli et al. [2] has been successful although there
are many differences in terms of system characteristics that
makes the original model being unusable if it were to be
directly applied into our system. It is also more risky to
decide a place has been visited when it has not (false
positive) than to wrongly decide it has not been visited when
it has (false negative). Although this issue has been partly
addressed in the current framework but this can be further
improved and extended by incorporating the likelihood ratio
test (min. Bayes risk) [23] such that less risk is taken when
loop closing/map merging is decided.

However, further extension of the current system will be
required to tackle the extreme case of a perfect corridor
environment (long and straight corridors without any geo-

Fig. 7. (a) Map merging detected at this location. (b) Merged map.
The probabilistic place recognition system detects accurate loop closures
at locations of yellow circles and false negatives at locations of blue circles
before and after map merging is performed. (c) Posterior probability at the
merging pose. (d) Examples of unwarped omnidirectional images of the
environment. Grid size is 1x1m.

Fig. 8. Partial maps created for the third experiment. (a) Map of Lab G10
(rearranged), (b) Map of Lab G15, (c) Map of High Voltage Lab and (d)
Map of Room G13. Grid size is 1x1m.

Fig. 9. The first merging in the third experiment. (Left) Map merging
detected at this location. (Right) Merged map. Grid size is 1x1m.

Fig. 10. The second merging in the third experiment. (Left) Map merging
detected at this location. (Right) Merged map. Grid size is 1x1m.
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Fig. 11. The third merging in the third experiment. (Left) Map merging
detected at this location. (Right) Merged map. The probabilistic place
recognition system detects accurate loop closures at locations of yellow
circles, false negatives at locations of blue circles and false positives at
locations of magenta circles before and after map merging is performed.
Grid size is 1x1m.

Fig. 12. Comparison of image querying and scan matching processing
times (exhaustive search through all reference scans/nodes).

metrical differences which is briefly mentioned in Section
III). With the current system, the place recognition system
is able to detect that map merging should take place even
when it is in a long corridor. However, scan matching will
fail in such situations because of these perfectly straight and
aligned corridors. To resolve this issue, we intend to extend
this system by calibrating the omnidirectional vision system
using the proposed calibration method in [21] in order to
compute the 3D location of distinctive SURF features [3] in
the unwarped panoramic images. With these landmarks, map
merging is possible even when scan matching fails.

VIII. CONCLUSIONS

This is the first system to combine a probabilistic Haar-
based place recognition system using omnidirectional images
with laser ranging to perform map merging. By using an om-
nidirectional vision system instead of a pan-tilt camera unit,
it alleviates the windowing problem commonly encountered
with perspective cameras and the time required to produce an
image with 360o FOV is significantly reduced. In conclusion,
we have experimentally validated the proposed system is able
to perform online map merging more robustly and efficiently.
With the intention to extend the system to track the 3D
location of reliable visual landmarks, we strongly believe that
we are one step closer to solving the map merging problem.
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