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Abstract— This paper describes a topological SLAM system
using a purely vision-based approach. This robot utilizes a
GPU-based omnidirectional catadioptric stereovision system to
perceive and plan its path in the environment. Subsequently,
the omnidirectional images generated are used to incrementally
build a database of image signatures based on the standard
2D Haar Wavelet decomposition. In order to maintain a
globally consistent topological map, a relaxation algorithm,
which requires local metric information between nodes, is
employed each time the appearance-based localization system
revisits an existing node in the topological map. The relative
transformation of the current position of the robot with respect
to the actual position of the matched node is recovered by using
a least squares estimation of the transformation parameters of
two 3D point patterns generated by the stereovision system.
In addition, local metric information is obtained by using
the proposed visual odometry system which combines distance
measurements calculated by using optical flow techniques
which estimates the movement of a web camera relative to
the ground being observed and bearing estimates from the
omnidirectional catadioptric vision system. Experiments were
conducted in a variety of environments ranging from indoor to
outdoor environments which demonstrate the feasibility of this
approach.

I. INTRODUCTION

The rapid growth and declining costs of computers and
cameras in recent years have made vision-based robots more
practical and affordable. In addition, the introduction of
the Nvidia CUDA libraries [24] (which allow the Graphics
Processing Unit (GPU) on a computer to be used for general
purposes), facilitate the implementation of more sophisti-
cated and parallelizable computer vision algorithms to satisfy
the real time constraint in robotics. Since humans primarily
rely on visual information to perform day to day tasks and
are capable of using this information to explore and navigate
unknown environments at ease, vision systems on mobile
robots have become a norm in an attempt to develop more
intelligent and robust systems.

Generally, robots without a priori knowledge of the en-
vironment will be required to explore, build and maintain
a globally consistent map by identifying and tracking dis-
tinctive features or landmarks in the environment or by
comparing the similarities between the current and reference
sensor data (scan matching, appearance-based). On the other
hand, maps built by the robot can either be in the form of
metric maps which represent spatial geometry data in fixed
or dynamic resolutions, topological maps which represent
the explored environment in terms of a linked collection of
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waypoints based on some distinctive abstract feature or a
combination of both.

For landmark/feature dependent vision systems, distinctive
edges such as Harris corners or distinctive landmarks such
as SURF [3] or SIFT features [20], [28] are identified and
tracked. As for appearance-based vision systems, a database
of image signatures is created from the original images
based on the principal components of the image [18], image
histograms [30], Haar wavelet coefficients [10], [27] or
Fourier coefficients [33]. Recently, a new paradigm known
as the bag-of-visual words [2], [6] has become an increas-
ingly popular technique for appearance-based vision systems.
This paradigm normally uses a combination of visual cues
extracted from the image and builds a visual dictionary. Of
course, for a complete localization and mapping system, the
abovementioned techniques will normally be coupled with
wheel odometry, visual odometry or GPS information and
serve as inputs to a probabilistic framework.

Appearance-based localization systems using image his-
tograms [30] have the advantage of being rotation invariant
while linear PCA [18], [12] is rotation, scale and translation
invariant. However, both of these techniques are sensitive to
lighting variations and will not operate robustly in a semi-
outdoor or outdoor environment. On the other hand, the
use of Haar wavelet coefficients [10], Fourier coefficients
[33] or the bags-of-visual words paradigm [2], [6] were
experimentally proven to be much more robust to lighting
variations and occlusions as compared to PCA or image
histograms.

In this paper, an incremental appearance-based localization
system based on the standard Haar wavelet decomposition is
proposed. It was chosen over other methods due to it being
algorithmically simple, efficient, scalable and yet robust.
Although the underlying techniques used to create the image
signature is similar to that described in [10], additional
insight concerning the effects of image signature size with
respect to matching accuracy is provided and the appearance-
based system is tested in indoor, semi-outdoor and outdoor
environments extensively. In addition, the system described
in [10] is provided with a priori knowledge of the environ-
ment (extensive 3D model built using a laser scanner) and the
database of image signatures was generated using synthetic
images produced by using this 3D model, whereas the system
described in this paper requires the robot to explore the
environment and incrementally build and maintain the image
database. Since a topological map structure is highly suitable
for an appearance-based localization system, a relaxation
algorithm proposed by Duckett et al. [7] is employed to
maintain a globally consistent topological map. However, it
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will require local metric information between nodes to be
available and the ability of the system to calculate the relative
transformation of the current location of the robot with
respect to the location of the matched node in the topological
map. The matched node is provided by the appearance-
based localization system when the robot revisits a previously
explored location and the relative transformation is required
since it is highly unlikely that the robot will be precisely
at the originally observed position of the reference/matched
node.

Topological SLAM, specifically the combination of an
image retrieval/place recognition system and topological
mapping with metric information, is a well studied area [2],
[23], [11]. Nevertheless, there are major differences between
the underlying methods used in the proposed system to
perform topological SLAM. For example, Haar wavelet is
used for the image retrieval system as compared to the bag-
of-visual words in [2] and radial features in [23], [11], an
innovative visual odometry system is used instead of wheel
odometry in [2] and data from an omndirectional stereovision
system is used to recover the relative position between views
via a least squares estimation technique instead of the 1D
trifocal tensor in [23], [11]. There are also major differences
in the localization framework and in the overall algorithm of
the topological SLAM system.

The rest of this paper is organized as follows: In Section
II, an overview of the system is provided. This is then
followed by the description of the innovative visual odometry
technique in Section III which provides the local metric
information between nodes required to build a consistent
topological map. Subsequently, the appearance-based lo-
calization and mapping system is detailed in Section IV
which includes the exploration strategy and description of
the technique used to calculate the relative transformation of
the current location of the robot with respect to the location
of the matched node using 3D information returned by the
omnidirectional stereovision system. Experimental results are
presented in Section V followed by a brief discussion in
Section VI. Finally, conclusions are presented in Section VII.

II. SYSTEM OVERVIEW

The components of the robot are as shown in Fig. 1. A
differential drive wheelchair motor/gear set is used to power
the main research platform. It is equipped with a variable
multibaseline omnidirectional catadioptric (mirror and cam-
era combination) stereovision system whereby each individ-
ual catadioptric system is made up of a Canon Powershot
S3 IS camera looking vertically upwards to an equiangular
mirror designed by Chahl and Srinivasan [5]. The camera is
capable of producing still images at 6MP resolution and a
live video stream at 30Hz with a resolution of 320 x 240.
Unfortunately, the epipolar geometry could not be derived for
this mirror and camera combination since it does not possess
the attractive single effective viewpoint property in central
catadioptric systems. However, by vertically stacking of two
catadioptric systems on top of one another as illustrated in
Fig. 1, the search for the corresponding epipolar line becomes

Fig. 1. The Eye Full Tower

a trivial task. Of course, a multi-camera rig such as [16]
provides the flexibility in sensor placement and the stronger
localization constraints provided by omnidirectional sensors.
However, it is harder to setup (e.g. synchronization and
calibration), may result in too much or no overlap between
camera views and multiple optical centers although it has a
much higher effective image resolution. On the other hand,
fixed omndirectional multi-camera rigs such as the Pointgrey
Ladybug alleviates this problem but generally comes with a
heftier price tag.

This system was described in a previous work which can
be found in [21], [22], which includes detailed explanation
on the techniques used to establish stereo correspondences
from a single stereo pair using local area-based matching
techniques and extract 3D information using the proposed
camera calibration technique specifically for equiangular
mirrors on a GPU. In addition, it includes description of
the multibaseline stereovision system and the technique to
the automatic selection of baseline(s). Last but not least,
the robot is equipped with a Bumbleebee [25] stereovision
system for real time reactive obstacle avoidance and a
Logitech web camera estimating its motion by observing the
ground surface.

III. VISUAL ODOMETRY

Visual odometry can be achieved in many ways. In litera-
ture, it can be achieved by means of Structure-from-Motion
(SfM) techniques [29], optical flow techniques [8], [17], [4],
or by combining any of those with a GPS [1] for more
robust tracking of the current position of the robot in outdoor
environments. Generally, this involves the initialization of
certain feature points in the image and tracking it through
successive frames of the image sequence whilst detecting
new points of interest as it progresses.

Our system performs real time visual odometry by com-
bining the estimated distance calculated by using a pseudo
optical flow algorithm described in [8] with bearing esti-
mates obtained by using an appearance-based method for

3785



Fig. 2. FOV Utilized for Appearance-based Bearing Estimate Technique

omnidirectional vision systems described in [19]. A standard
Logitech web camera is mounted on the rear of the robot
such that its field of view (FOV) covers mostly the ground
surface with its image plane parallel to the ground plane
in order to provide distance travelled estimates. Although
bearing estimates can be calculated as well, it is not as
robust compared to the bearing estimates provided by the
appearance-based method. Since it is very important to obtain
accurate bearing estimates to reduce accumulated errors in
visual odometry, the bearing estimates from the appearance-
based method are used instead. Although the proposed visual
odometry algorithm is based on the combination of [8] and
[19], a number of modifications are made.

The following lists the main modifications made to the
algorithm.
For distance travelled estimates,

• KLT good features to track are used instead of calcula-
tion of Sum of Absolute Differences (SAD) over local
regions.

For bearing estimates,
• The front 180o FOV of the robot in the omnidirectional

image is used instead of the combined 60o FOV of the
front and back of the robot. This modification is made
due to prolonged periods of my presence in that region
while monitoring the robot.

• SAD instead of Euclidean distance is used to reduce
computational requirements.

• Tracking of (c1x,c1y) and (c2x,c2y) is used to compen-
sate for movements of the omnidirectional system due
to vibration while robot is moving.

The final algorithm is summarized in Algorithm 1. A video
demo of the modified bearing estimate technique in an
outdoor environment can be found at
http://www.youtube.com/watch?v=k6Qu98TrKQI

IV. APPEARANCE-BASED LOCALIZATION AND MAPPING

A. Image Retrieval using Haar Wavelets

The image retrieval system is based on [10] and is
originally proposed by Jacobs et al. [13]. Although the
Haar wavelet has been successfully applied in many dif-
ferent applications, it has not been used extensively for
the localization of mobile robots. Ho and Jarvis [10] have
adapted this algorithmically simple, efficient and yet robust
framework into mobile robot localization and illustrated its
robustness against lighting variation and occlusion in a semi-
outdoor environment. In the original system [13], RGB

Algorithm 1 Visual Odometry - Fusion of Optical Flow and
Appearance based Techniques
Distance Travelled Estimates
Input: Features initialized and tracked by Kanade-Lucas-

Tomasi (KLT) feature tracker available in OpenCV.
1: for every two image point pairs returned by KLT do
2: Calculate the translation motion vector using pseudo

optical flow algorithm in [8]
3: Filter and exclude vectors that are not achievable by

the robot (i.e. amount of translation per frame)
4: end for
5: Average the resultant translation motion vectors

Bearing Estimates
Input: Coordinates of mirror centre (mcx,mcy), mirror rim

(mrx,mry) and centre of the two crosses (c1x,c1y) and
(c2x,c2y) in the omnidirectional image shown in Fig. 2
(manually initialized)

Parameters: TA - Normalized amplitude threshold
Require: Reference image Iref = It=0 (image at time = 0)

1: for t=1 to ∞ do
2: Track and update(c1x,c1y) and (c2x,c2y) using KLT

and average the differences between the current and
previous coordinates in the x and y directions

3: Use average differences to update (mcx,mcy) and
(mrx,mry)

4: Unwarp Iref and It using the coordinates (mcx,mcy)
and (mrx,mry)

5: for i=0 to width of It do
6: Column-wise shift the unwarped image of It
7: Compute SAD (for the front 180o FOV of the robot)

between unwarped It with unwarped Iref and store
score into array

8: end for
9: Find minimum score using interpolation/extrapolation

10: Calculate normalized amplitude, An, described in [19]
11: if An < TA then
12: Iref = It
13: end if
14: end for
Finally combine distance and bearing estimates to track the
position of the robot

images are converted into YIQ color space, decomposed
using the standard 2D Haar decomposition technique, and
the top 60 coefficients (quantized magnitudes and locations)
are retained as the image signature. Subsequently, whenever
a query image is presented to the system, it will be decom-
posed, quantized and a weighted score (depending on the
location of the coefficient) is calculated.

Ho and Jarvis [10] adapted this for panoramic images by
downsampling the original unwarped image to a size of 512
x 128 and retaining the coefficients within a bounding box
of size 64 x 16 originating from the (0,0) coordinate of the
decomposed image. The magnitude of these coefficients are
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Fig. 3. Average of top 60 coefficients within bounding box of size m by n

Fig. 4. Average top 1% matches using bounding box size m by n

quantized and conveniently stored into a bit array, which
significantly reduces the memory footprint for each image
signature (location of coefficient is not required). Since the
Haar wavelets are rotation variant, the unwarped panoramic
image are column-wise shifted every 10 degrees equivalent in
pixels and decomposed, quantized and stored in the database.
In Fig. 3, a total of 335 panoramic images were used to
find the average number of top 60 coefficients within the
bounding box of size m by n and Fig. 4 shows the effect of
matching accuracy with different bounding box sizes using
57 query images for a database with 2052 image signatures.
With these quantitative results, an image signature of size 56
x 14 was chosen instead which contains an average of 82.8%
of the top 60 coefficients and performing at an average of
98.2% to rank the correct image signature in the database in
the top 1% of all returned matches for the 57 query images.

B. Exploration Strategy

The robot has no a priori information of the environment
and each node in the evolving topological map contains infor-
mation of its global 2D location, heading and an estimation
variance (initialized with variance of previous node plus 6%
of distance travelled). As such, the initial position of the
robot is assumed to be the origin of the global coordinate
system with the current heading of the robot initialized as 0o

and with a variance of 0. A pair of still images is taken using
the omnidirectional stereovision system at this initial position
and the system returns 3D coordinates of all correspondences
established with successive images taken at TD intervals
(tracked by visual odometry). The 3D point clouds are then
voxelized and clipped before being compressed into a 2D
local grid map. Regions of the 2D local grid map are then

Fig. 5. Local 2d grid maps with Frontier regions and centres and segmented
regions with Distance Transform path

segmented into visible, non-visible or obstacle regions by ray
tracing from the centre of the robot in all directions. As long
as this ray is not blocked by an obstacle, all grids traversed
by this ray will be labeled as being visible to robot. Once it
is terminated by an obstacle, any other grid location that lies
on the same direction of this ray, which will eventually be
located radially further away from this obstacle, is labeled
non-visible to the robot or remain as being an obstacle if it
is originally labeled as an obstacle.

Similar to frontier region detection [32] which detects
regions between explored and unexplored areas, our system
detect frontier regions between visible and non-visible areas
and finds the centre of these detected regions. Obstacles will
then be dilated to create a safety margin between the per-
ceived obstacles and the robot. Assuming that these frontiers
are starting positions for a 2D Distance Transform (DT) [15]
algorithm, the position of the robot being the goal position,
DT paths are planned (planned paths will be reversed once a
path has been decided). In fact, the DT map can be calculated
just by knowing the goal position (current position of the
robot). Subsequently, with the starting positions initialized,
the DT paths are traced and the selected path is reversed
(in effect making the current goal position as the starting
position and the starting position as the goal position). The
reason for this is due to it being algorithmically simpler to
have a single goal position with multiple starting positions.

Based on the topological map built so far, the robot will
then decide which frontier region has not been explored.
Since there might be more than one possible frontier for
exploration and the robot can only go to one at a time, the
robot will store this information into the current node of
the topological map so that it can return to this node and
explore if required. If all regions for the current position of
the robot have been explored, the robot will use a nodal
propagation technique described in [14] to return to the
closest node which have been registered to have unexplored
regions. Otherwise, it will return to its initial position.
Fig. 5 illustrates the planned DT path, frontier regions and
segmented regions.

C. Loop Closure Detection

The key to maintaining a globally consistent topological
map using the relaxation algorithm in [29] is to detect
loop closure/previously visited nodes. The current method
to detect this is to discriminate the matches based on the
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Fig. 6. Recovering relative heading and distance using SURF correspon-
dence during loop closure

returned weighted score and the current position of the robot.
The top S matches that are smaller than a threshold TR

and located within the boundaries of a circle centred on the
current position of the robot with a radius defined by the
current variance are considered as possible candidates. For
each candidate, there are a pair of omnidirectional stereo
images registered with it. As such, 3D information can be
retrieved from these images. SURF correspondences will
then be established between the bottom image of the current
omnidirectional stereo pair with the bottom image of the
omnidirectional stereo pair registered to the candidate. These
correspondences will be associated to the 3D information
obtained from the stereo images. Using a RANSAC [9]
procedure and a least squares estimation of transformation
parameters for two 3D point patterns proposed by Umeyama
[31], the best transformation matrix is obtained. Relative
translation vectors from the current position of the robot with
respect to the position of the matched node is recovered using
this procedure and relative bearing can be robustly recovered
using the average difference between the horizontal position
of the SURF correspondences in the unwarped panoramic
image. The main reason for not using the returned trans-
formation matrix to obtain relative bearing information is
that, even when stereo data is noisy, the system can still
recover accurate relative bearing information and will be
able to drive the robot in the correct direction . The final
algorithm is summarized in Algorithm 2 and Fig. 6 shows
SURF correspondences established between the unwarped
panoramic images.

Algorithm 2 Loop Closure Detection
Input:

Current stereo pair Ib and It
Top S weighted scores w[i0...iS]

Define:
Stereo() - function that takes a stereo pair and returns
3D coordinates using stereovision techniques
TMatrix() - function that takes two 3D point patterns
and returns the transformation matrix

Parameters:
TR - weighted score threshold
S - number of top matches to consider
maxIter - max iterations for RANSAC procedure
TD - Euclidean distance error threshold

1: C1 = Stereo(Ib, It)
2: for i=0 to S do
3: if w[i] < TR then
4: Load the reference stereo pair Ri

b and Ri
t

5: C2 = Stereo(Ri
b, Ri

t)
6: Establish SURF correspondences between Ib and Ri

b

7: Associate SURF correspondences with 3D points in
C1 and C2 and store in S1 and S2

8: Calculate relative rotation θ using horizontal posi-
tions of SURF correspondences

9: for j=0 to maxIter do
10: Randomly select two corresponding 3D point

patterns from S1 and S2 and store in P1 and P2
11: h = TMatrix(P1,P2)
12: S1

′
= h × S1

13: Find number of points in S1
′

that fits its corre-
sponding point in S2 within defined error thresh-
old TD

14: Keep the best transformation matrix in M[i]
15: end for
16: end if
17: end for
18: Find Euclidean distance using translation vectors of the

best transformation matrices in M
19: Select the node within shortest range
20: return Euclidean distance from selected node and

relative bearing θ

V. EXPERIMENTAL RESULTS

The appearance-based localization system was tested ex-
tensively in a semi-outdoor and outdoor environment. A
weighting scheme similar to the one described in [13] is used
and weights are trained using logistic regression on a set of
training images independent of the following experimental
data. Fig. 7 and 8 show the locations and some sample
query and database images that were manually collected
(approximately 1.2m apart for neighboring locations) on
different days and times. Since Haar wavelets are rotation
variant, the unwarped panoramic images are column-wise
shifted for every 10 degrees equivalent in pixels and a total
of 36 images used to represent any single location if it were
to be included into the database. For the outdoor experiment,
a total of 202 images were collected for each query and
database set. Since each location will generate 36 images,
the database will consist of 7272 images in total. For the
semi-outdoor environment, query and database images for 61
locations were collected. To find out whether the system will
still work if an offset is introduced since it is highly unlikely
for the robot to return to the exact location of the nodes in
the database, another set of 202 and 61 query images for
the outdoor and semi-outdoor environment with an offset
of 0.6m from its original location had been collected on
different days and time. Table I summarizes the results (Top
1%, 3 and 5 refers to the correct image being ranked in the
top 1%, 3 and 5 of all images in the database).

The proposed visual odometry system has also been
extensively tested in an indoor lab environment covered
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Fig. 7. Semi-outdoor environment where images are taken with sample
query and database images

Fig. 8. Outdoor locations where images are taken with sample query and
database images (red dots are locations where the system consistently fails)

with carpet and semi-outdoor environment with concrete
slab paving. The robot was manually driven around the
indoor lab environment for a total of 59 times and ground
truth measured accurately by strategically placing markers
which are picked up by the Logitech web camera. Similarly,
the robot was driven in the semi-outdoor environment for
22 times and ground truth measured accurately by picking
up the intersections of the concrete slab paving. In both
environments, the robot was driven in a loop fashion from
location L1 to L18 and then closing the loop at L19. The
average drift (average distance traveled was 16.95m) for
the indoor experiments before loop closing was 5.58% and
dropped to 3.34% after loop closing with an average distance
estimate error of 0.044 ± 0.06m and an average heading
error of 0.713 ± 4o. For the semi-outdoor experiments, the
average drift (average distance travelled was 20.17m) before

TABLE I
IMAGE RETRIEVAL MATCHING ACCURACY

Dataset Query Size DB Size Top 1% Top 3 Top 5
Out 202 7272 100 96.037 -

Semi 61 2196 100 100 -
Both 263 9468 100 96.958 -

Out(Off) 202 9468 100 89.552 95.532
Semi(Off) 202 9468 100 100 100

loop before loop closing was 5.64% and dropped to 4.2%
after loop closing with an average distance estimate error of
0.0147 ± 0.097m and an average heading error of 0.913 ±
4.9o. For more details, please refer to Fig. 9-15.

Image sequences from the vision systems required to
perform visual odometry were saved on disk and 10 runs
from each environment were compiled into the following
videos,

Indoor - http://www.youtube.com/watch?v=r8JKCSc5__g

Semi-Out. - http://www.youtube.com/watch?v=Y_rXRWD7eOI

A video demo showing the robot autonomously per-
forming topological SLAM in an indoor lab environment
using the proposed visual odometry and appearance-based
localization and mapping system combination is available at
http://www.youtube.com/watch?v=z077PZpPjnI .The robot stops
at intervals of 1m to capture digital still images from the
omnidirectional stereovision system, performs path planning
and builds a topological map associated to a database of
image signatures. As the robot executes its planned path,
it performs real time visual odometry using the system
described in Section III and turns on the reactive obstacle
avoidance system which performs a naive analysis of the
disparity maps returned from the Bumblebee. The final
topological map is illustrated in Fig. 16.

Fig. 9. Heading estimate error

Fig. 10. Average standard deviation of heading errors
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Fig. 11. Distance estimate error

Fig. 12. Average standard deviation of distance errors

Fig. 13. Average Drift

(a) Indoor Loop (b) Semi Outdoor
Loop

Fig. 14. Distance between nodes for visual odometry tests

(a) Test 1 (b) Test 2 (c) Test 3

Fig. 15. Semi Outdoor Tests for Visual Odometry - Ground Truth (White
Nodes), Robot’s estimated trajectory (Red Nodes)

(a) Indoor Lab (b) Indoor Topo-
logical Map

Fig. 16. Indoor Experiment

VI. DISCUSSION

From the experimental results, it can be seen that the
image retrieval system is very robust with respect to lighting
variation and occlusion as illustrated in the sample outdoor
images where lighting variation is severe and objects such
as cars, which are previously present, can be replaced by a
different car or not be present in that space anymore. The
experiment with the offset image dataset further reveals that
the system can reliably localize itself even if it is offset by
a certain distance from its original location (0.6m in this
case) and yet being able to accurately differentiate between
two locations separated by 1.2m. The effect on matching
accuracy for different image signature sizes with respect to
the percentage of top 60 coefficients within this bounding
box has also been illustrated. In addition, although weights
are trained using a totally independent dataset, it was reliably
used to produce high matching accuracy for the semi-outdoor
and outdoor datasets.

The proposed visual odometry system which combines
optical flow and appearance based techniques, also yielded
satisfactory results and was shown to work reliably in indoor
and semi-outdoor environments. Although not tested in an
outdoor environment, it is expected that this system will
still work as long as the optical flows are not corrupted by
moving shadows due to movement of trees, bushes or humans
and when lighting conditions are not in either extremes (too
dark or too bright) over a prolonged period of time. This
is also assuming that perceptual aliasing is not too severe
to affect the appearance-based bearing estimate technique
and it is a fair assumption to make in general that, outdoor
environments will have less problems with aliasing and more
features and texture will be present relative to indoor and
semi-outdoor environments.

The video demo showing the robot autonomously explor-
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ing and mapping an indoor environment also shows that the
exploration strategy is capable of directing the robot to unex-
plored environments using 3D information obtained from the
omnidirectional stereovision system and autonomously rec-
ognize a previously visited node using the appearance-based
localization system. Although the omnidirectional stereovi-
sion system can combine multiple stereo pairs together and
is also equipped with an automatic baseline selection system,
the baseline is fixed for these experiments due to it being in
an indoor environment. However, for a larger semi-outdoor
or outdoor environment, a loop closing mechanism must be
included into the exploration strategy such that the robot
can keep the errors bounded by closing the loop once the
robot has traveled for a considerable amount of distance
without revisiting nodes with low variances. In addition, a
probabilistic framework suitable for the appearance-based
localization system will be implemented in future based
on the occurrences and scores of the matches which will
subsequently lead to research in map-merging problems for
large scale environments by combining structural information
of the various individual topological maps.

VII. CONCLUSIONS
Visual odometry is performed by combining distance

information using optical flow techniques with bearing in-
formation from an appearance-based technique in order to
overcome the shortcomings of the reliability of bearing
estimates from a non-differential optical flow configuration.
A GPU-based omnidirectional stereovision system was also
successfully used to allow the robot to plan and explore an
indoor environment. The combination of the abovementioned
together with an appearance-based localization and mapping
system equipped with loop closing detection and a relaxation
algorithm has prove the feasibility of a purely vision-based
mobile robot for topological SLAM.
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Robot Localization using Stereo Vision”, Autonomous Robots, vol.
18, no. 1, pp 59-80.

[27] A. Pretto, E. Menegatti, E. Pagello, Y. Jitsukawa, R. Ueda and T.
Arai, “Toward Image-based Localization for AIBO using Wavelet
Transform”, in 10th Congress of the Italian Association for Artificial
Intelligence, 2007.

[28] S. Se, D.G. Lowe and J. Little, “Vision-based Mobile Robot Lo-
calization and Mapping using Scale-Invariant Features”, in IEEE
International Conference on Robotics and Automation, vol. 2, 2001,
pp 2051-2058.

[29] M. Tomono, “3D Localization and Mapping using a Single Camera
Based on Structure-from-Motion With Automatic Baseline Selection”,
in IEEE International Conference on Robotics and Automation, 2005,
pp 3342-3347.

[30] I. Ulrich and I. Nourbakhsh, “Appearance-based Place Recognition
For Topological Localization”, in IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp 1023-1029.

[31] S. Umeyama, “Least Squares Estimation of Transformation Parameters
between Two Point Patterns”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 4, 1991, pp 376-380.

[32] B. Yamauchi, “A Frontier-Based Approach for Autonomous Explo-
ration”, in IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation, 1997, pp 146-151.

[33] A.M. Zhang and L. Kleeman, “Robust Appearance Based Visual Route
Following for Navigation in Large-scale Outdoor Environments”,
International Journal of Robotics Research, vol. 28, no. 3, 2009, pp
331-356.

3791




