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Abstract—The position of a sound source is an important
information for robotic systems to be extracted from a sound.
Of the three spherical coordinates (azimuth, elevation, distance)
only the azimuth direction is extracted in most robot audition
systems. So far rarely investigated is the issue of estimating
the distance between robot and sound source. In this article
we describe a study on distance estimation using a binaural
robot system in an indoor environment for sounds ranging
in distance from 0.5 to 6m. We investigated several proposed
audio cues like interaural differences (IID and ITD), sound
amplitude, and spectral characteristics. All cues are computed
within the framework of audio proto objects. In an extensive
experimental setup with more than 10000 sounds we found
that both mean signal amplitude and binaural cues can, under
certain circumstances, provide a very reliable distance estima-
tion. There was no observable effect of frequency dependent
attenuation so that the spectral amplitude cue was only slightly
above chance level. We also investigated the loss of precision of
azimuth estimation with distance. In contrast to what could be
expected, the performance does not severely deteriorate when
the system is calibrated for different distances.

I. INTRODUCTION

In robotic sound localization the position of a sound

source is often equated with the azimuth angle. This is

due to the focus on interaction with humans which tend to

be separated by azimuth rather than elevation orientation.

Therefore standard sound localization systems are optimized

for azimuth estimation via a planar arrangement of micro-

phones. Recently, the estimation of elevation using only two

microphones has gained momentum ( [1]–[3]). Distance,

however, is still largely ignored, although in many robot

audition scenarios the behavioural relevance of sound sources

decreases with distance. Physics suggests that the measured

signal amplitude, which falls off with distance, could be

a potential distance cue [4]. Furthermore, the frequency-

specific attenuation effect of the air should result in lower

amplitudes in the upper frequency range with increasing

distance, an effect well-known when hearing distant thunder.

We compare the performance of these distance estimation

cues with the use of the standard binaural difference cues

(interaural intensity difference (IID) and interaural temporal

difference (ITD)) extended for distance. We show that a

combination of these cues can provide a good distance

estimation for a binaural robot.

A. Comparison to related work

In robot audition, distance estimation has so far largely

been based on either motion parallax (triangulation) [5], [6]

or large scale microphone arrays [7]. Triangulation requires
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Fig. 1. System architecture (the preprocessing module is described in more
detail in Fig. 2).

a mobile robot, a continuously active sound source and time

to estimate the distance to the source. Larger microphone

structures are not mobile and have not been shown to reliably

estimate the distance of a sound source that is at a substantial

distance from the array’s microphones.

Interestingly, animals seem to be able to robustly estimate

the distance to a sound source in complex environments using

only two ears and without the necessity for ego-motion [8],

[9]. It appears that this capacity is based on cues like the ratio

of direct-to-reverberant energy or the signal’s amplitude.

II. AUDIO PROTO OBJECTS

In [10] we have introduced the concept of audio proto

objects as a mid-level representation of sounds. Basically,

an audio proto object is a collection of compressed audio

features, that represent the mean characteristics of a sound

segment. The system graph for distance estimation in the

framework of audio proto objects is shown in Fig. 1. We

recorded sounds from two microphones at 48 kHz sampling

rate. We employ an auditory preprocessing using a Gam-

matone Filterbank (GFB) as a model of the cochlea [11].

Based on this signal representation we calculate a number of

audio features. The result is a crisp representation of a sound

for which we want to estimate the distance. This process

has already integrated feature values over all samples of a

segment, which substantially reduces the variability of audio

features.

A. Audio feature extraction

The feature extraction system is shown in Fig. 2. It is

similar to and based on the system explained in [10]. We

compute binaural localization cues (ITD and IID), using
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Fig. 2. Sketch of the computation of audio features.

onset-only measurements to reduce the effects of echoes. ITD

uses differences in zero-crossings of the cochlea signal, while

IID works on the signal envelope after spectral subtraction

which removes most of the stationary background noise.

The spectral amplitude (the envelope signal for different

frequencies) is another candidate cue for distance estimation.

We also compute the signal amplitude, which is the sum of

envelope values over all frequencies for a single sample.

B. Segmentation process

The segmentation is based on a simple thresholding pro-

cess working on the signal amplitude. If the signal amplitude

rises above a threshold the segment starts, if it falls below the

threshold the segment ends. This process is very simple, easy

to tune and sufficient in most scenarios. It will obviously fail

in the case of several concurrent sound sources. How to deal

with this problem (sound source separation) is outside the

scope of this paper.

C. Feature compression

The final stage of the proto object generation is com-

pressing the relevant audio features to a representation that

is shorter and independent of segment length. We use a

simple averaging over time for the signal amplitude and

spectral amplitude (separately for all frequency channels).

For the binaural localization cues IID and ITD we perform a

histogram like averaging process as outlined below. After this

stage a set of filter modules removes audio proto objects that

are either too short or whose signal amplitude is too weak

(this function was not used for the data presented here).

III. AUDIO CUES TO DISTANCE

A. Signal amplitude

The most obvious cue to distance is the sound amplitude

A which falls off with distance d:

A= A0/d , (1)

where A0 is the production amplitude (measured at a refe-

rence distance of e.g. d = 1m). In our binaural system the
amplitude is computed as the sample-wise maximum of left

and right amplitude signal. Distance is then computed as:

d = A0/A . (2)

There are two problems associated with this approach - this

relation is only strictly valid under ideal conditions (as shown

in Fig. 5) due to echo effects, and the production amplitude

is normally unknown. As a first solution to the latter problem

we approximate A0 by the mean value of all sounds in the

training set from a distance of 1 m. The former problem is

solved as an extension of the previous idea by measuring

average signal amplitude values over all NC sounds and Nα

azimuth angles:

Ac(d) =
1

Nα ·NC
∑
α

∑
c

Atrain(α,c,d) . (3)

Atrain(α,c,d) denotes a measurement of the mean signal
amplitude for a sound c at azimuth angle α and distance

d. We note that we generally got slightly better results if

the mean was replaced by the median computation. For

estimating the distance of a new sound we search for the

distance d for which the difference between measured signal

amplitude Am and calibrated (averaged) signal amplitude

Ac(d) are minimal:

d = argmin
d

(||Ac(d)−Am||) . (4)

We note that Ac(d) is adapted to the specific environment
in the lab. It deviates from the theoretical form only for

distances above 3m. We therefore expect only a small

improvement from using eqn. 4 rather than eqn. 2. A more

substantial benefit would probably result if the range of

distances is extended further. In Fig. 5 the theoretical values

are compared with measured ones from our training set.

B. Spectral amplitude

We tested the spectral amplitude as a possible cue for

distance estimation, although considered to be only effective

over larger distances. The spectral amplitude W ( f ) is the
average amplitude in frequency channel f integrated over all

samples of the segment. Since it implicitly contains the signal

amplitude we have already exploited for distance estimation,

we normalize the spectral amplitude ~W to a mean of zero
and a norm of one. We then compute a prototypical spectral

amplitude vector ~Wc(d) for every distance d as the average
spectral vector for this distance over all azimuth angles and

all training sounds. The distance estimation for a new sound

with a spectral amplitude vector ~Wm is performed as:

d = argmin
d

(∑
f

|(Wc(d, f )−Wm( f ))|) . (5)

C. Binaural cues

Most sound localization systems are based on measuring

ITD and IID to determine the sound position. While some

approaches extend to 3D [12], binaural cues are mostly

employed for horizontal localization. We could show [3] that

due to the interaction with the robot’s body binaural cues

vary with elevation angle and therefore a combined azimuth
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Fig. 3. Example of IID and ITD histograms for a sound at -60 degrees
azimuth and different distances. Each graph shows histogram values for
different bin centers and frequency channels. For ITD we only show the
first 50 frequency channels, since for higher frequencies all ITD values are
close to zero.

and elevation estimation is possible using only binaural cues.

Our approach for binaural cue-based distance estimation is

based on extending the standard horizontal sound localization

by calibrating also for different distances. We compare

an audio proto object with stored binaural cue histogram

templates for all positions (azimuth angle and distance) and

take the best matching one (highest scalar product value) as

the candidate using both the related azimuth and distance

values. In the audio proto object that represents a sound,

we collect all measurements of IID and ITD. For every

frequency channel f we compute a histogram H f of binaural

cue values (separate for IID and ITD). The histogram bins

cover typical values of IID and ITD (in the range [−0.9,0.9]).
All histograms are normalized to a mean of zero and a

norm of one. In a calibration session we compute these

histograms for different positions (in azimuth and distance)

as the average values over a number of training sounds. As a

result of this procedure we get for every position p= (d,α)
the characteristic IID and ITD distributions H

IID,ITD
f (p).

For an unknown sound, position estimation is performed by

comparing cue histograms HIID,ITD for this sound with the

histograms of all positions. The similarity S to the template

at position p is computed by a scalar product over all

frequencies f and histogram bins n:

SIID,ITD(p) = ∑
f

∑
n

H
IID,ITD
f ,n ∗HIID,ITD

f ,n (p) . (6)

The values for IID and ITD are computed separately and

then averaged. The similarity value S(p) is directly taken as
the evidence for position p. The most likely position of a

sound source is the one with the highest similarity value.

IV. METHODS

Our recording scenario consists of a robot head mounted

on a pan-tilt unit with two ears attached to the sides. The

Fig. 4. Outline of the experimental sessions to record training and test
sets. Note that the two sets were recorded at slightly different positions of
robot and speakers

head is positioned approximately 1 m away from the wall

in a typical robot lab environment of dimensions ( 12 x 11

x 2.8 m) with a substantial amount of echo (T60 = 810ms).
Sounds are generated by a loudspeaker that is positioned

in front of the head (azimuth = elevation = 0 degrees).

The loudspeaker is put at different distances from the head

(from 0.5 to 6 m). Furthermore we horizontally rotate the

head between +90 and -90 degrees in order to get a relative

change in azimuth position. For each combination of speaker

distance and head pan angle we play a number of sound

files. These sounds consist of human speech from various

speakers, environmental sounds, and music. In total we play

68 different sounds. See Fig. 4 for a sketch of the recording

sessions. The sounds were recorded in two separate sessions

(Set1 and Set2) with different positions of the speaker in

the room and different sound files (34 each). Both training

and test sets contain half of the sounds each from Set1 and

Set2 and all azimuth angles. The training set was used to

compute mean (median) values of audio features (e.g. mean

amplitude) for every distance.

A. Correction factors

The measured mean signal amplitudes show a high va-

riability for different sounds that is often larger than the

effect of distance. Two factors for this variability we have

observed are the source’s horizontal position (the measured

signal amplitude depends on the relative orientation of the

robot’s head) and the type of sound. Based on the azimuth

localization we can compute a position dependent correcti-

on factor for the measured signal amplitude. The azimuth

correction factor CA(α) is inserted into eqn. 4 by replacing:

Am←CA(α) ·AM . (7)

We assume that the azimuth localization system can reliably

extract the correct azimuth angle α . Empirical correction

factors varied between 0.93 and 1.1. A variation of this

approach is to predict the signal’s production amplitude.

This could be done based for example on the spectral

characteristics of the sound. Assuming that such a sound
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Cue mean error rel. error correct conf. near/far

Random 2.5 1.22 11% 9.5%
Amplitude (raw) 1.83 0.55 25.8% 2.7%
*Amplitude (azi) 1.83 0.54 25.9% 2.6%
Amplitude (azi+cat) 0.9 0.17 58.1% 0.02%
*Spectral 2.34 1.0 21% 10.5%
*IID 1.14 0.15 71.3% 1.9%
*ITD 1.61 0.43 44.4% 2.9%

Combined 0.36 0.27 77% 0.12%

TABLE I

DISTANCE ESTIMATION PERFORMANCE . FOR SIGNAL AMPLITUDE WE

COMPARE THREE DIFFERENT APPROACHES: USING THE raw AMPLITUDE

MEASUREMENTS AND EQN. 4, APPLYING AN AZIMUTH CORRECTION

(azi) AS IN EQN. 7, AND COMBINED AZIMUTH AND CATEGORY

CORRECTION AS IN EQN. 8. THE RESULTS FOR A COMBINATION OF ALL

CUES (MARKED WITH A STAR ’*’) ARE SHOWN IN THE LAST ROW.

categorization is possible, the distance estimation can now

be based on the concept of ’familiar distance’. For this

investigation we tested the performance gain when A0 is

further modified by a sound-type specific correction factor

CC:

Am←CC ·CA(α) ·Am . (8)

CC was derived from the training set by computing the

average measured signal amplitude for the specific type of

sound relative to the mean over all sounds. Since we don’t

try to estimate the sound type in this work, the results using

this correction factor can be assumed to represent a best case

scenario. We determined correction factors in the range of

0.1 to 5.9.

V. RESULTS

We examined the four distance estimation cues (signal

amplitude, spectral amplitude, IID, and ITD) with a number

of measures: the first one is the mean distance estimati-

on error (averaged over all azimuth angles, distances, and

sound files). We also measured the relative error (estimation

error divided by true distance). We further computed the

percentage of correct estimations (error = 0), for which the

baseline is 1/9 (11%). Finally we looked at the percentage

of severe mislocalizations (termed near/far confusion) where

the localization error exceeds 4 positions (e.g a sound at 0.5

m estimated as 3 m and further or a sound at 6 m localized

at 2 m or less). The results are shown in table I. A more

detailed comparison for different distances and different cues

is shown in Fig. 6. An example of estimated distances for

different positions (azimuth angles and true distances) is

shown in Fig. 7.

A. Signal amplitude and spectral amplitude

For the mean spectral amplitudes we could not observe

any systematic change with distance not even in the hig-

hest frequency channels (around 10kHz). Nevertheless the

spectral amplitudes seem to contain a least some distance

information, generating a performance at a low, but above
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Fig. 5. Mean values (plus/minus 1 standard deviation, computed on the
training set) and theoretical values for signal amplitude over distance. Note
the small deviation between theory and experiment for distances above 3
m. Values are averages over azimuth angles and sounds.
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Fig. 6. Mean localization error averaged over all azimuth angles and sounds
in the test set for the different localization cues at different distances.

chance level. For the signal amplitude we observed a perfor-

mance that is better than chance in all aspects even when raw

amplitude values are taken. Especially at short distance and

regarding near-far confusions performance is very good (less

than 3% near-far confusion). This might partially be due to

the usage of database sounds which do not represent a natural

statistics of amplitudes. On the other hand, the amplitude

of a sound at 6 m is only 1/12 of the value at 0.5 m. We

observed a small deviation of measured signal amplitudes

from theoretical values only for distances of 4m and higher

(see Fig. 5). Consequently, we didn’t find a substantial

difference in performance when using the measured values

instead of the theoretical ones. This is probably due to the

limited range of distances tested. Correcting for different

azimuth angles also had only a small influence on loca-

lization performance. If the signal’s production amplitude

can be predicted, results improve significantly. This means

that at least in our test setting familiar distance can indeed

be a valuable distance cue. It will depend on the scenario

and environment if a prediction of production amplitude

is realistic. In unconstrained environments this is surely

beyond the limits of current audio processing systems. In

more controlled environments (e.g. the system only responds
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Fig. 7. Estimated distance for four different cues at various true distances
and azimuth angles. Data is shown for a single sound.

to a small set of a-priori known sounds), though, familiar

distance could be an excellent distance cue even in natural

environments.

B. Binaural cues

Both IID and ITD show a good performance for distance

estimation, with IID being significantly more precise than

ITD. As usual for binaural sound localization, it is best

to combine IID and ITD measurements. With increasing

distance, both binaural cues have a broader distribution of

cue values in a frequency channel (see Fig. 3). IID in addition

also exhibits a shift towards more extreme values for closer

distances (the ’head shadow effect’). On their own IID and

ITD can provide an estimation of a sound source’s distance

with a good precision (e.g. more than 70% correct distance

estimation using IID). We observed that the performance

of binaural cues depends strongly on the training data. For

training we have two sets that were recorded at two different

positions of the robot’s head in the room (approx. 1 m

difference) and different positions of the speaker within the

room. Using only one set (Set1) for training and the other

(Set 2) for testing the performance decreases substantially:

IID mean error increases from 1.14 to 1.8 m and ITD from

1.6 to 1.9 m. This effect is much weaker for the signal

amplitude cue: the mean error without any correction factor

only increases from 1.8 to 1.9 m. It seems that it is essential

to calibrate the system with sounds from many different

positions of the source and the robot itself.

To visualize the performance in a scenario with a moving

source in the same environment we also recorded test sounds

where a freely moving speaker was approaching the robot

head from a distance of approx. 6 m and an angle of

approximately -30° (sounds 1–5), passing just in front of it

(sounds 7–9) and moving away at an angle of approximately

40° (sounds 11–15) on basically a U-shaped trajectory. The

localization system was using binaural cues to estimate

both azimuth angle and distance plus signal amplitude with

azimuth angle correction for pure distance estimation. The
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Fig. 8. 2D Position estimation map for a life scenario where a speaker
moves in a U-shaped trajectory (see text). Evidence values for different
positions are based on combined IID/ITD and signal amplitude similarities.
Titles show sound number (see text).

results are shown in Fig. 8. Since there is no ground-truth

data available, we can’t quantitatively evaluate the result.

It is obvious that the results are not very precise, but that

except for the last sound a coarse 2D position estimation was

possible although speaker positions didn’t match the position

of the speaker in both recordings sets. Also note that there

is no tracking or temporal smoothing.

C. Azimuth localization precision over distance

An interesting but so far rarely studied question is the

impact of distance on the precision of the azimuth angle

estimation. There is a substantial variation in SNR between

0.5 m and 6 m. For an example sound we measured

SNR(0.5m) = 8.7dB and SNR(6m) = 5.2dB.
The precision of azimuth estimation was investigated in

two different scenarios: the first one uses a calibration of the

sound localization system for only one reference distance (in

our case 1 m) and applies this calibration for all distances.

This basically corresponds to a standard approach. The other

other method uses the binaural cues to perform a combined

estimation of distance and azimuth using a calibration with

all distances. The calibration requires more training examples

and takes considerably more time but has a chance to

incorporate more of the room characteristics.

Our results (see Fig. 9) show that for a calibration with

only one distance, performance is best for the calibrated

distance and deteriorates with increasing distance (absolute

and relative to calibration position). However, using a cali-

bration with all distances the mean azimuth localization error

is substantially lower and best performance was measured at

the nearest position. We therefore conclude that it is highly

beneficial to calibrate the sound localization system explicitly

for different distances.

D. Cue integration

An important question is whether the cues we have investi-

gated are complementary or redundant, i.e. if a combination
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Fig. 10. Mean localization error for the combined cues over distance.

of cues improves the performance or not. We computed cue

weights based on the (inverse) measured variances (errors)

in the training set. The resulting weights are: 0.12 for signal

amplitude, 0.07 for spectral amplitude, 0.6 for IID, and

0.22 for ITD. Note that for the signal amplitude we only

employed the azimuth angle correction. The performance

of the combined (added) cues is shown in the last row of

table I and in Fig. 10. Combined we have a mean distance

estimation error of 0.36 m, 27.5% relative error, a correct

estimation for 77% and near-far confusion for only 0.12%

of all test sounds over all positions. This result is in most

aspects better than the IID cue on its own, showing that a

combination of localization cues can improve performance.

VI. SUMMARY AND OUTLOOK

We have shown a system that uses audio proto objects

and biologically inspired localization cues to estimate the

distance of a sound source. We got very convincing results

in a real-world scenario on a robot head with just two

microphones for binaural cues (IID and ITD). For the signal

amplitude cue we also demonstrated how an integration of

other audio features in the proto object (providing azimuth

angle or a hint to production amplitude) could reduce the

mean distance error to less than 1 m. In the combination

of all cues the mean error was even below 40 cm showing

that an extended binaural robot audio system can provide

a coarse distance estimation for sounds of different types.

We also tested the influence of distance on the precision of

horizontal sound localization and found that when calibrating

for only one distance, localization precision deteriorates

substantially for other distances, while a combined azimuth-

distance estimation leads to a generally lower localization

error. It should be noted that although we tested a large

number of sounds (altogether more than 10000 sounds) in

a rather challenging environment, we very likely did not

capture the full variability of natural environments. Further

tests would be necessary to confirm the results outlined

here. The system could be improved further by additional

cues with a better cue integration model. If visual input

is available, a cross-modal integration will surely improve

performance further. Finally, using the audio proto object

concept a sound-by-sound tracking of sources over time

appears possible.
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