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Abstract— This paper presents a methodology for learning
arbitrary discrete motions from a set of demonstrations. We
model a motion as a nonlinear autonomous (i.e. time-invariant)
dynamical system, and define the sufficient conditions to make
such a system globally asymptotically stable at the target.
The convergence of all trajectories is ensured starting from
any point in the operational space. We propose a learning
method, called Stable Estimator of Dynamical Systems (SEDS),
that estimates parameters of a Gaussian Mixture Model via
an optimization problem under non-linear constraints. Being
time-invariant and globally stable, the system is able to handle
both temporal and spatial perturbations, while performing the
motion as close to the demonstrations as possible. The method
is evaluated through a set of robotic experiments.

I. INTRODUCTION
We use Programming by Demonstration (PbD) [1], also

referred to as Learning by Imitation, to teach a robot how
to move its limbs to perform a discrete, i.e. point-to-point
motion1 [2]. In PbD, an agent (e.g. human, robot, etc.)
shows the robot a task a few times (usually between 3-
5 times to make the task bearable for the trainer). To
avoid addressing the correspondence problem [3], motions
are demonstrated from the robot’s point of view by the
user guiding the robot passively through the task. In our
experiments, this is done either by back-driving the robot
or by teleoperating it using motion sensors (see Figure 1).
We hence focus on the “what to imitate” problem and
derive a means to extract the generic characteristics of the
dynamics of the motion. Following [4], we assume that the
relevant features of the movement, i.e. those to imitate, are
the features that appear most frequently, i.e. the invariants
across the demonstration. As a result, demonstrations should
be such that they all contain the main features of the desired
task, while exploring as much as possible the variations
allowed by it.

In this paper, we present a learning procedure that extracts
the relevant features of a desired task from demonstrations
and formulate these features as a Dynamical System (DS)
problem as follows: Consider a state variable ξ ∈ Rd that
can be used to unambiguously define a discrete motion of
a robotic system (e.g. ξ could be a robot’s joint angles, the
position of an arm’s end-effector in Cartesian space, etc).
Let the set of N given demonstrations {ξt,n, ξ̇t,n}T

n,N
t=0,n=1

be instances of a global motion model governed by a first
order autonomous Ordinary Differential Equation (ODE):
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1Motions in space stopping at a given target. For example, consider the
standard ”pick-and-place” task.

Fig. 1. Demonstrating motions by teleoperating a robot using motion
sensors (left) or by back-driving it (right).

ξ̇ = f(ξ;θ) + ϵ (1)
where f : Rd → Rd is a nonlinear continuous and con-
tinuously differentiable function with a single equilibrium
point ξ̇∗ = f(ξ∗;θ) = 0, θ is the set of parameters of f ,
and ϵ represents zero mean Gaussian noise. The noise term
ϵ encapsulates both inaccuracies in sensor measurements
and errors resulting from imperfect demonstrations. Optimal
values to estimate the noise-free model of f(ξ;θ) can be
obtained based on the set of demonstrations using different
statistical approaches2. We will further denote the noise-free
estimate of f with f̂ throughout the paper. Given an arbitrary
starting point ξ0 ∈ Rd, the evolution of the robot’s state, or
motions can be computed by integrating from Eq. 1.

Use of such formulation is advantageous in that it enables
a robot to adapt its trajectory “on-the-fly” in the face of
perturbations. Perturbations may either be due to a sudden
displacement of the target with respect to the robot (e.g.
imprecise estimation of the target location, or if the target
is moving itself or if the robot’s end-effector is suddenly
pushed away) or to delays in the execution of the task. We
will refer to these two types of perturbation as spatial and
temporal perturbations, respectively. Throughout this paper
we choose to represent a motion in a kinematic coordinate
system, and assume that there exists a low-level controller
that converts kinematic variables into motor commands (e.g.
force or torque).

Definition 1 The function f̂ is globally asymptotically stable
at the target ξ∗ if by starting from any point ξ0 ∈ Rd, the
generated motion converges asymptotically to ξ∗, i.e.:

lim
t→∞

f̂(ξt;θ) = ξ∗ ∀ξ0 ∈ Rd (2)

f̂ is locally asymptotically stable if it converges to ξ∗ only
when ξ0 is contained within a subspace D ⊂ Rd.

2In fact, the noise term is eliminated from the model because it follows
a zero mean distribution.
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We will estimate f̂ and learn its parameters θ so that it op-
timizes accuracy of the reconstruction of the demonstration
data under the constraint of being globally stable in Rd as
per Definition 1. Constructing an estimate of the underlying
dynamics of the motion as formulated in Eq. 1 is a non-
trivial task. Next we briefly review literature on work done
so far to estimate such a function.

II. RELATED WORKS

Statistical approaches to modeling robot motions have
become increasingly popular as a means to deal with noise
inherent in any mechanical system. They have proved to
be interesting alternatives to classical control and planning
approaches when the underlying model cannot be well es-
timated. Existing approaches to the statistical estimation of
f in Eq. 1 use either Gaussian Process Regression (GPR)
[5], Locally Weighted Projection Regression (LWPR) [6],
or Gaussian Mixture Regression (GMR) [7], where the
parameters of the Gaussian Mixture are optimized through
Expectation Maximization (EM) [8]. GMR and GPR find
an optimal model of f̂ by maximizing the likelihood that
the complete model represents the data well, while LWPR
minimizes the mean-square error between the estimates and
the data (for a more detailed comparison and discussion on
these methods refer to [9])

Because all of the aforementioned methods do not opti-
mize under the constraint of making the system stable at
the attractor, they are not guaranteed to result in a stable
estimate of the motion. In practice, they all fail to ensure
the global stability and most of the time the local stability
of f̂ (see Definition 1), and thus may converge to a spurious
attractor or completely miss the target (diverging/unstable
behavior) even for relatively simple 2 dimensional dynam-
ics. These errors are due to the fact that there is yet no
theoretical solution for ensuring stability of arbitrary non-
linear autonomous DS [10]. Figure 2 illustrates an example
of unstable estimation of a non-linear DS using the above
three methods for learning a two dimensional motion. Figure
2(a) presents the stability analysis of the dynamics learnt with
GMR. Here in the narrow regions around demonstrations, the
trajectories converge to a spurious attractor just next to the
target. In other parts of space, they either converge to other
spurious attractors far from the target or completely diverge
from it. Figure 2(b) shows the obtained results from LWPR.
All trajectories inside the black boundaries converge to a
spurious attractor. Outside of these boundaries, the velocity
is always zero (a region of spurious attractors) hence motion
stops once it crosses these boundaries or it does not move
when it initializes there. In Figure 2(c), we see that while for
GPR trajectories converge to the target in a narrow area close
to demonstrations, they are attracted to spurious attractors
outside that region.

In all these examples, the critical concern is that there is
no generic theoretical solution to determine beforehand for
an arbitrary non-linear function whether a trajectory will lead
to a spurious attractor, to infinity, or to the desired attractor.
Thus, it is necessary to conduct numerical stability analysis

  Target Demonstrations Reproductions Spurious Attractors

ξ 2

(a) GMR (b) LWPR

ξ1

ξ 2

(c) GPR

ξ1

(d) SEDS

Fig. 2. An example of two-dimensional dynamics learned from three
demonstrations using four different methods: GMR, LWPR, and GPR, and
SEDS. Regions associated to spurious attractors are isolated with dashed
lines. For further information please refer to the text.

to locate the region of attraction of the desired target which
may never exist, or be very narrow. Besides, finding this
region of attraction becomes computationally costly and a
non-trivial task in higher dimensions.

Among works done on DS, [2], [11], [12], [13] ensure the
stability of f̂ by modulating it with an inherently stable uni-
dimensional linear dynamics. The modulation between f̂ and
the stable linear dynamics is controlled with a time dependent
phase variable that exponentially decreases as time passes
by. While this is an easy means to ensure global stability, it
has two drawbacks: 1) the implicit time-dependency requires
a heuristic to re-scale the planned trajectories in time when
an unexpected disturbance causes a delay in the reproduction
(so-called temporal perturbations); 2) stability resulting from
the underlying linear DS is ensured for each dimension
separately, and therefore requires the re-synchronization of
all DSs, especially when one dimension (e.g. one joint) is
perturbed but not the others [9].

In [9], we proposed an iterative method to construct a
mixture of Gaussian so as to ensure asymptotic stability
at the target. However, this method solely ensures local
asymptotic stability in a narrow region D (while global
stability outside D was ensured through a fixed linear DS). It
also relies on determining numerically the region D, which
is computationally intensive, hence it is difficult to apply the
method to high-dimensional problems.

In this paper we present a method, called Stable Estimator
of Dynamical Systems (SEDS), that computes optimal values
of θ while ensuring that f̂ is globally stable in Rd. Figure
2(d) shows the results obtained from this method. As can
be seen, the system is globally asymptotically stable and all
trajectories converge to the target. This ensures that the task
can be successfully accomplished starting from any point in
the operational space without any need for re-indexing or
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re-scaling. Inspired by human body motion, we show how
such a model can be used to integrate different motions into
one single dynamical system. Such modeling is especially
useful when one desires to execute a single task in a different
manner starting from different areas in space, mainly to
consider task constraints, to avoid robot’s joint limits, etc.
Next we formalize the method presented in this paper.

III. MULTIVARIATE MOTION LEARNING

In this section we proceed in three steps: First in Sub-
section III-A we restate the problem introduced in Eq. 1
in the statistical framework. Then in Subsection III-B we
derive the necessary and sufficient conditions to guarantee
the global stability of an arbitrary function f̂ . Then in
Subsection III-C we propose an optimization problem to
compute optimal values of the parameters θ∗ while satisfying
stability conditions.

A. Problem Formulation

We use a probabilistic framework and model f̂ via a
finite mixture of Gaussian functions. Using such an approach,
unknown parameters of f̂ become priors πk, means µk and
covariance matrices Σk of k = 1..K Gaussian functions (i.e.
θk = {πk, µk,Σk} and θ = {θ1..θK}). The mean and the
covariance matrix of a Gaussian k are defined by:

µk =

(
µk
ξ

µk
ξ̇

)
, Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(3)

Given a set of N demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, each
recorded point in the trajectories [ξt,n, ξ̇t,n] is associated with
a probability density function P(ξt,n, ξ̇t,n):

P(ξt,n, ξ̇t,n) =
K∑

k=1

πkN k(ξt,n, ξ̇t,n; θk)

{
∀n ∈ 1..N
t ∈ 0..Tn (4)

where N k(ξt,n, ξ̇t,n; θk) is given by:

N k(ξt,n, ξ̇t,n; θk) =
1√

(2π)2d|Σk
ξ |
e−

1
2 ([ξ

t,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (5)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (see
[14]):

ˆ̇
ξ =

K∑
k=1

πkP(ξ;µk
ξ ,Σ

k
ξ )∑K

i=1 π
iP(ξ;µi

ξ,Σ
i
ξ)
(µk

ξ̇
+Σk

ξ̇ξ
(Σk

ξ )
−1(ξ − µk

ξ ))

(6)
The resulting nonlinear function f̂(ξ;θ) from Eq. 6 usu-

ally contains several spurious attractors or limit cycles (see
Figure 2). Thus parameters θ need to be determined that lead
to an estimate f̂(ξ;θ) with a single asymptotically stable
attractor.

B. Stability Analysis

Stability analysis of dynamical systems is a broad subject
in the field of dynamics and control, and can generally be di-
vided into two branches: linear and nonlinear systems. While
the stability of linear dynamics has been well studied [10]
and can be ensured solely by requiring that the eigenvalues
of the system are negative, stability analysis of nonlinear
dynamical systems is still an open questions and theoretical
solutions exist only for particular cases. In this paper, we
obtain the sufficient conditions to ensure the global stability
of a series of nonlinear dynamical systems given by Eq. 6.

We start by simplifying the notation of Eq. 6 through a
change of variable. Let us define:

Ak = Σk
ξ̇ξ
(Σk

ξ )
−1

bk = µk
ξ̇
−Akµk

ξ

hk(ξ) =
πkP(ξ;µk

ξ ,Σ
k
ξ )∑K

i=1 πiP(ξ;µi
ξ,Σ

i
ξ)

(7)

Substituting Eq. 7 into Eq. 6 yields:

ˆ̇
ξ = f̂(ξ;θ) =

K∑
k=1

hk(ξ)(Akξ + bk) (8)

First observe that f̂ is now expressed as a non-linear sum
of linear dynamical systems. The nonlinear weighting terms
hk(ξ) in Eq. 8, where 0 < hk(ξ) ≤ 1, give a measure of the
relative influence of each Gaussian locally. Beware that the
intuition that the nonlinear function f̂(ξ;θ) should be stable
if all eigenvalues of matrices Ak are negative k = 1..K,
is not true. Here is a simple example in 2D that illustrates
why this is not the case and also why estimating stability of
non-linear DS even in 2D is non-trivial.

Example: Consider the parameters of a model with two
Gaussian functions to be:

Σ1
ξ = Σ2

ξ =

[
3 0

0 3

]

Σ1
ξ̇ξ

=

[
−3 −30

3 −3

]
, Σ2

ξ̇ξ
=

[
−3 3

−30 −3

]
µ1
ξ = µ2

ξ = µ1
ξ̇
= µ2

ξ̇
= 0

(9)

Using Eq. 7 we have:A1 =

[
−1 −10

1 −1

]
, A2 =

[
−1 1

−10 −1

]
b1 = b2 = 0

(10)

The eigenvalues of both matrices A1 and A2 are complex
with values −1 ± 3.16i. In other words, each matrix deter-
mines a stable system. However, the nonlinear combination
of the two matrices as per Eq. 8 is stable solely when
ξ2 = ξ1, and is unstable in Rd \ {(ξ2, ξ1)|ξ2 = ξ1} (see
Figure 3).
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Fig. 3. An example showing that stability of each matrix Ak does not
ensure the stability of the whole dynamics. Here the system is stable only
for points on the line ξ2 = ξ1 (drawn in black).

Theorem 1: An arbitrary non-linear dynamical system ξ̇ =
f̂(ξ;θ) given by Eq. 8 is globally asymptotically stable at
the target ξ∗ in Rd if:{

(a) bk = −Akξ∗

(b) Ak+(Ak)T

2 are negative definite
∀k = 1..K (11)

where (Ak)T corresponds to the transpose of Ak. For the
definition of a negative definite matrix refer to appendix I.

Proof: See appendix II.

Eq. 11 provides us with sufficient conditions to make
an arbitrary nonlinear function given by Eq. 8 globally
asymptotically stable at the target ξ∗ (we further phrase this
equation as stability conditions). Such a model is advanta-
geous in that it ensures starting from any point in the space,
the trajectory (of, e.g., a robot arm’s end-effector) always
converges to the target.

C. Learning Algorithm

Section III-B provided us with sufficient conditions on
θ whereby the estimate f̂(ξ;θ) is globally asymptotically
stable at the target. It remains now to determine a pro-
cedure for computing unknown parameters of Eq. 8, i.e.
θ = {π1..πK ;µ1..µK ; Σ1..ΣK} such that the resulting
model is globally asymptotically stable. In this section we
propose a learning algorithm, called Stable Estimator of
Dynamical Systems (SEDS), that computes values of θ by
solving an optimization problem under the constraint of
ensuring the model’s global asymptotic stability. Given a set
of N demonstrations {ξt,n, ξ̇t,n}T

n,N
t=0,n=1, we compute the

optimal values of θ by solving:

min
θ

J(θ) =
1

N

N∑
n=1

Tn∑
t=0

(
(ξ̂t,n(θ)− ξt,n)2+

+ (
ˆ̇
ξt,n(θ)− ξ̇t,n)2

)
(12)

subject to

(a) bk = −AkξT

(b) 1
2 (A

k + (Ak)T ) are negative definite
(c) Σk

ξ are positive definite ∀k ∈ 1..K

(d) 0 < πk ≤ 1

(e)
∑K

k=1 π
k = 1

(13)

where ˆ̇
ξt,n(θ) = f̂(ξ̂t,n(θ);θ) are computed directly from

Eq. 8, and ξ̂t,n(θ) =
∑t

i=0
ˆ̇
ξi,n(θ)dt generate an estimate

of the corresponding demonstrated trajectory ξn by starting
from the same initial points as were demonstrated, i.e. ξ̂0,n =
ξ0,n, ∀n ∈ 1..N .

Eq. 12-13 correspond to a Non-linear Programming (NLP)
problem [15] that can be solved using different optimization
techniques such as Newton-Like algorithms [15], Dynamic
Programming [16], etc. In this paper we use a quasi-Newton
method to solve the optimization problem [15]. The first
and second terms inside the integral of Eq. 12 force the
solver to optimize reproduction in both position and velocity
spaces, but if necessary, a weighting factor could be used
to set the influence of each term. The first two constraints
in Eq. 13 are stability conditions from Section III-B. The
last three constraints are imposed by the nature of the
Gaussian Mixture Model to ensure that Σk

ξ are positive
definite matrices, priors πk are positive scalars smaller or
equal than one, and sum of all priors is equal to one. It can
be easily shown that a feasible solution to this NLP problem
always exists. For example, a general initialization value for
θ that satisfies such constraint could be:{

Σk
ξ = I, Σk

ξ̇ξ
= −I ⇒ Ak = −I

µk
ξ = µk

ξ̇
= 0 ⇒ bk = 0

(14)

where I denotes the identity matrix. Starting from these
initial values, the solver tries to optimize the value of θ such
that the cost function J is minimized. However since the
proposed NLP problem is non-convex, based on the choice
of initial values for the parameters and the complexity of
the represented motion, the optimization may converge to a
local minimum with a poor estimate of the actual dynamics.
In section IV we show that despite the fact that the global
minimum may not be attained, the algorithm is able to
accurately learn a wide variety of robotic motions.

Note that the total number of parameters is 1, 2d and
d(2d + 1) to estimate the priors, means µk and covariance
matrices Σk of each Gaussian (by construction the covariance
matrix is symmetric), respectively. However, the number of
parameters can be reduced since the constraints given by Eq.
13-(a) provide an explicit formulation to compute µk

ξ̇
from

other parameters (i.e. µk
ξ , Σk

ξ , and Σk
ξ̇ξ

). Furthermore when

constructing f̂ , the term Σk
ξ̇

is not used and thus can be
omitted during the optimization. Taking into account all of
the above, the total number of learning parameters reduces
to K(1 + 3

2 (d + d2)), where K is the number of Gaussian
functions. In other words, learning grows linearly with the
number of Gaussians and quadratically with the dimension.
In comparison, for the same number of Gaussian functions
K, the number of parameters in the proposed method is fewer
than in GMR and LWPR3, and the retrieval time (estimation
time of ξ̇, given the input ξ) is low and in the same order of
GMR and LWPR.

3The number of parameters in GMR and LWPR is K(1+3d+2d2) and
7
2
K(d+ d2) respectively.
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IV. EXPERIMENTAL EVALUATIONS

We conducted a set of robotic experiments to evaluate the
performance of SEDS in teaching a robot how to perform
a motion4. In the first experiment, a 6 degrees of freedom
(DOF) industrial Katana-T arm is taught to how to put small
blocks into a container5 (see Figure 4). We use Cartesian
coordinates system to represent the motion (the axes ξ1,
ξ2, and ξ3 correspond respectively to x1, x2, and x3 in
the Cartesian coordinates system). In all of the examples,
the coordinate system is attached to the target. In order
to have human-like motions, the learnt model should be
able to generate trajectories with both similar position and
velocity profile to the demonstrations. In this experiment,
the task was shown to the robot six times, and was learnt
by solving the optimization problem given by Eq. 12-13
using K = 6 Gaussian functions. Figure 4(a) illustrates
the obtained results for generated trajectories starting from
different points in the task space. The direction of motion is
indicated by arrows. All reproduced trajectories are able to
follow the same dynamics (i.e. having the similar position
and velocity profile) as demonstrations.

Adaptation to Perturbation: Figure 4(b) shows the robust-
ness of the model to external perturbations. In this graph, the
original trajectory is plotted in thin blue line. The thick black
line represents the generated trajectory for the case where
the target is displaced at t = 1.5 second. Having defined the
motion as Dynamical Systems, adaptation to a new target
position can be done instantly.

While convergence to the target is always ensured from
conditions given by Eq. 11, due to the lack of information
for points far from demonstrations, the model may reproduce
some trajectories that are not consistent with the usual way of
doing the task. For example, consider Figure 5-Top, i.e. when
the robot starts the motion from the left-side of the target, it
first goes around the container and then approaches the target
from its right-side. This behavior may not be optimal as one
expects the robot to follow the shortest path to the target
and reach it from the same side as the one it departed from.
However, such a result is inevitable since the information
given by the teacher is incomplete, and thus the inference
for points far from the demonstrations are not reliable. In
order to improve the task’s execution, it is necessary to
provide the robot with more demonstrations (information)
over regions not covered before. By showing the robot more
demonstrations and re-training the model with the new data,
the robot is able to successfully accomplish the task (see
Figure 5-Bottom).

The next three experiments consisted of having the 7DOF
right arm of the humanoid robot iCub perform complex
motions, containing several non-linearities (i.e.sucessive cur-
vatures) in both position and velocity profile. As before, we
use Cartesian coordinate systems to represent these motions.

4The main steps of the method presented in this paper and the experi-
mental results are shown in the accompanying video.

5The robot is only taught how to move blocks. The problem of grasping
the blocks is out of the scope of this paper. Throughout the experiments,
we pose the blocks such that they can be easily grasped by the robot.
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(a) The ability of the model to reproduce similar trajectories starting from
different points in the space.
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Fig. 4. The Katana-T arm performing the experiment of putting small
blocks into a container. Please see the text for further information.
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Fig. 5. Improving the task’s execution by adding more data for regions
far from demonstrations.
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Fig. 6. The first experiment with the iCub. The robot does a semi-spiral
motion toward its right-side, and at the bottom of the spiral it stretches its
hand forward completely.

Figure 6 illustrates the results from the first task, where the
iCub starts the motion in front of its face. It then does a semi-
spiral motion toward its right-side, and finally at the bottom
of the spiral it stretches its hand forward completely. In the
second task, the iCub starts the motion close to its left fore-
hand. Then it does a semi-circle motion upward and finally
brings down its arm completely (see Figure 7). In the third
motion, the iCub performs a loop motion with its right hand,
where the motion lies in a vertical plane and thus contains a
self intersection point (see Figure 8). Critical to such kinds
of motion is the ambiguity in the correct direction of velocity
at the intersection point if the model’s variable ξ considered
to be only the cartesian position (i.e. ξ = x ⇒ ξ̇ = ẋ). This
ambiguity usually results in reproductions skipping the loop
part of the motion. However in this example, defining ξ such
that it includes both the cartesian position and velocity (i.e.
ξ = [x; ẋ] ⇒ ξ̇ = [ẋ; ẍ]) can solve this ambiguity. The three
experiments were learnt using 5, 4 and 7 Gaussian functions,
respectively. In all three experiments the robot is able to
successfully follow the demonstrations and to generalize the
motion for several trajectories with different starting points.

We also further examine SEDS in a library of 20 different
human handwriting motions recorded using a Tablet PC,
and compare it against our previous method Binary Merging
(BM) [9] and those of four alternative methods GMR, LWPR,
GPR, and DMP6. Figure 9 shows the results for 5 out of
20 motions. Quantitative performance comparison of all the
six methods is given in Table I. In this paper, we only
focus on the comparison between SEDS and our previous
approach BM. The detailed comparison between alternative
approaches and BM is provided by [9]. Here, we use the
same accuracy measurement proposed by [9], with which

6Because GMR requires a fixed set of Gaussians, we used the same
number of Gaussians as the one selected for the proposed approach.
Similarly, the number of Gaussians used in DMP was initialized with that
found by LWPR for the same task.

 
 Target Demonstrations Reproductions Initial points

−200

−100

0

−200
−100

0

0

100

200

300

400

ξ1(mm)ξ2(mm)

ξ 3
(m

m
)

−200

0

200

−100
0

100
200

−400

−300

−200

−100

0

100

200

ξ̇1(mm/s)

ξ̇2(mm/s)

ξ̇ 3
(m

m
/
s)

Fig. 7. The second experiment with the iCub. The robot does a semi-circle
motion upward and then brings down its arm completely.
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Fig. 8. The third experiment with the iCub. The robot performs a self-
intersecting motion.

a method’s accuracy in estimating the overall dynamics
of the underlying model f̂ is quantified by measuring the
discrepancy between the direction and magnitude of the
estimated and observed velocity vectors for all training data
points.

ē = 1
N

∑N
n=1

(
1

Tn+1

∑Tn

t=0 r(
1−ξ̇t,n.

ˆ̇
ξt,n

∥ξ̇t,n∥∥ ˆ̇ξt,n∥+ϵ
)2 +

q (ξ̇t,n− ˆ̇
ξt,n)T (ξ̇t,n− ˆ̇

ξt,n)

∥ξ̇t,n∥∥ξ̇t,n∥+ϵ

) 1
2

(15)

where r and q are positive scalars that weigh the relative
influence of each factor, and ϵ is a very small positive scalar.

Regarding Table I, while both BM and SEDS are able
to learn the demonstrated dynamics with relatively similar
accuracy, each method has its own advantages and disadvan-
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Fig. 9. Performance comparison of the new approach against BM through
a library of 20 different handwriting motions. Only 5 of 20 examples are
shown here.

tages. The new method outperforms the previous approach
in that it can better generalize the motion for trajectories far
from demonstrations, while in BM trajectories go directly
toward the target if they started outside of the region enclosed
by demonstrations (see Figure 9-b,c, and d). On the other
hand, BM offers more flexibility in learning complex motions
since it unfolds a motion into a set of discrete joint-wise
partitions and ensures the stability conditions locally in each
partition. In contrast, SEDS is more constraining by the fact
that it tries to fit a motion with a single globally stable
dynamics. Moreover, BM is able to determine the (locally)
optimum number of Gaussian functions automatically while
the proposed method needs a user to predefine it beforehand.

In the last experiment, we show how the proposed method
can be used to integrate different motions into one single
dynamics (see Figure 10). In this experiment, the task is
learnt using K = 7 Gaussian functions, and demonstrations
data are recorded using a Tablet-PC. Regarding Figure 10,
the robot is able to approach to the target following an
arc, a sine, or a straight line path starting from the left,
right, or top-side of the task space, respectively. While
reproductions locally follow the desired motion around each
set of demonstrations, they smoothly switch from one motion
to another in areas between demonstrations. The proposed
method offers a simple but reliable procedure to teach a robot
different ways of performing a task.

TABLE I
PERFORMANCE COMPARISON OF SEDS AGAINST ALTERNATIVE

APPROACHES IN LEARNING 20 HUMAN HANDWRITING MOTIONS

Is stability Average / Range Average / Range ofMethod
ensured? of error ē No. of Parameters

SEDS Yes 0.23 / [0.14-0.38] 65 / [26 - 91]
BM Yes 0.21 / [0.14-0.53] 98 / [56 - 196]

DMP Yes 0.88 / [0.37 - 2.02] 92 / [29 - 182]
GMR No 0.16 / [0.10 - 0.37] 75 / [30 - 105]
LWPR No 0.22 / [0.08 - 0.49] 609 / [168 - 1239]
GPR No 0.05 / [0.03 - 0.09] 2190 / [1806 - 3006]†

† GPR’s learning parameter is of order of d(d+1); however, it also requires keeping
all training datapoints to estimate the output ξ̇. Hence the total number of required
parameters is d(d + 1) + 2n ∗ d, where n is the total number of datapoints.

ξ1
ξ 2

 

 

Target

Demonstrations

Reproductions

Fig. 10. Embedding different ways of performing a task in one single
model. The robot follows an arc, a sine, or a straight line starting from
different points in the workspace.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a method in which arbitrary dis-
crete motions are modeled as nonlinear autonomous dynam-
ics. The sufficient conditions to make the motion globally
stable are provided, and a learning method, called SEDS, is
proposed to estimate the model’s parameters. This method
enables a robot to perform a task starting from any point in
the operational space while keeping the motion as similar as
possible to the demonstrations. The obtained results illustrate
the ability of SEDS in handling both temporal and spatial
perturbations. Using SEDS, the robot is able to on-the-fly
adapt its trajectory to a change in the target position.

However, one should emphasize that the optimization
problem given by Eq. 12 is non-convex, and convergence
to the global minimum cannot be ensured. But, often the
obtained approximation of the minimum is good enough
to accurately model the represented motion. Furthermore,
similar to GMM, SEDS requires a user to predefine the
number of Gaussian functions, i.e. K. While it still remains
an open question, in practice we noticed that the Bayesian
Information Criterion (BIC) [17] can be used as a relatively
good estimate to the optimum number of K. Finally, an
assumption made in this paper is that represented motions
can be modeled with a first order time-invariant ODE. While
the nonlinear function given by Eq. 8 is able to model a
wide variety of motions, the method cannot be used for some
special cases violating this assumption. Most of the time, this
limitation can be tackled through a change of variable (for
example see Figure 8).
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APPENDIX I
POSITIVE AND NEGATIVE DEFINITE MATRIX

A d × d real symmetric matrix A is positive definite if
ξTAξ > 0 for all non-zero vectors ξ ∈ Rd, where ξT

denotes the transpose of ξ. We call A a negative definite
matrix if ξTAξ < 0. For a non-symmetric matrix, A is
positive (negative) definite if and only if its symmetric part
Ã = (A+AT )/2 is positive (negative) definite.

APPENDIX II
PROOF OF THEOREM 1

We start the proof by first recalling the standard Lyapunov
Stability theorem [10]:

Lyapunov Stability Theorem: An arbitrary function ξ̇ =
f̂(ξ;θ) is asymptotically stable at the point ξ∗, if a continu-
ous and continuously differentiable Lyapunov function V (ξ)
can be found such that:


(a) V (ξ) > 0 ∀ξ ∈ Rd & ξ ̸= ξ∗

(b) V̇ (ξ) < 0 ∀ξ ∈ Rd & ξ ̸= ξ∗

(c) V (ξ∗) = 0 & V̇ (ξ∗) = 0

(16)

Note that V̇ is a function of both ξ and ξ̇. However, since
ξ̇ can be directly expressed in terms of ξ using Eq. 8, one
can finally infer that V̇ only depends on ξ.

Consider a Lyapunov function V (ξ) of the form:

V (ξ) =
1

2
(ξ − ξ∗)T (ξ − ξ∗) ∀ξ ∈ Rd (17)

First observe that V (ξ) is a quadratic function and hence
satisfies condition Eq. 16.a. Condition given by Eq. 16.b
follows from taking the first derivative of V (ξ) w.r.t. time,
we have:

V̇ (ξ) =
dV

dt
=

dV

dξ

dξ

dt

⇒ =
1

2

d

dξ

(
(ξ − ξ∗)T (ξ − ξ∗)

)
ξ̇

⇒ = (ξ − ξ∗)T ξ̇ = (ξ − ξ∗)T f̂(ξ;θ)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)(Akξ + bk)︸ ︷︷ ︸
=ξ̇ (see Eq. 8)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)(Ak(ξ − ξ∗) + Akξ∗ + bk︸ ︷︷ ︸
=0 (see Eq. 11-a)

)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)Ak(ξ − ξ∗)

⇒ =

K∑
k=1

hk(ξ)︸ ︷︷ ︸
hk>0

(ξ − ξ∗)TAk(ξ − ξ∗)︸ ︷︷ ︸
<0 (see Eq. 11-b)

(18)

⇒ < 0 ∀ξ ̸= ξ∗

Conditions given by Eq. 16.c are satisfied when substituting
ξ = ξ∗ into Eqs. 17 and 18:

V (ξ∗) =
1

2
(ξ − ξ∗)T (ξ − ξ∗)

∣∣∣∣
ξ=ξ∗

= 0 (19)

V̇ (ξ∗) =
K∑

k=1

hk(ξ)(ξ − ξ∗)TAk(ξ − ξ∗)

∣∣∣∣∣
ξ=ξ∗

= 0 (20)

Therefore, an arbitrary ODE function ξ̇ = f̂(ξ;θ) given
by Eq. 8 is globally asymptotically stable if conditions of
Eq. 11 are satisfied.
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