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Abstract— Multi-camera systems are used in many domains
such as vision-based robotics or video surveillance. An accurate
extrinsic calibration is usually required. In most of cases, this
task is done by matching features through different views of
the same scene. However, if the cameras’ fields of view do not
overlap, such a matching procedure is not feasible anymore.

Despite this constraint, this article deals with a simple and
flexible extrinsic calibration method. The main contribution is
the use of an unknown geometry scene and a planar mirror
to create an overlap between views of the different cameras.
Furthermore, the impact of the mirror refraction is also studied.
The aim is the calibration of two non-overlapping cameras
embedded on a vehicle, for visual navigation purpose in urban
environment. The proposed approaches have been validated
with both synthetic and real data in a metrological experimental
framework.

I. INTRODUCTION

Several approaches have been proposed in order to cali-

brate a set of cameras with non-overlapping field of view.

Depending on application, a multi-camera system can be

static or embedded on a vehicle. In this paper, both cases are

considered. In the first case, it’s possible to use an additional

camera moving around the static cameras to calibrate [1].

Calibration is obtained thanks to a 3D reconstruction up to a

scale factor. In contrast, Lamprecht [2] calibrates a moving

multi-camera system. A fixed calibration object is tracked

and a prior knowledge about the system speed is required.

Another approach, first proposed in [3] and improved in [4],

consists in using the rigidity constraint between the coupled

cameras. First, each camera trajectory is computed. Second,

the relative poses are deduced since they do not change over

time. Then, this rigidity constraint can be used during a

localization process of the multi-camera system [5], [6].

An alternative is to use a mirror to create an overlap be-

tween views. Martins [7] puts an object between the camera

and planar mirrors to calibrate the system and reconstruct

the object. Another way to use planar mirrors is shown by

Gluckman [8] in order to capture stereo images just from

one camera. Sturm and Bonfort [9] use planar mirrors to

estimate the pose of a calibration object with respect to one

camera. Similar works have been presented by Hesch [10],

[11] to analytically solve this problem. Kumar [12] develops

an extrinsic calibration method for a multi-camera system,

where a planar mirror and a known geometry calibration

pattern are used.
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In this paper, we propose a calibration strategy which does

not require knowing the scene geometry. Our approach uses

visual markers stuck on the mirror surface in order to initial-

ize nonlinear equations. After a mathematical formalization

of the problem II, we introduce two distinctive methods to

estimate the relative pose of rigidly linked cameras. Their

fields of view can be totally non-overlapping. How to apply

this method in the context of mobile robots is presented. In

Section IV, the impact of the mirror’s refraction is studied.

Finally (Section V), the results validate our approach with

both synthetic and real data. Appendix VII is dedicated to

an automatic feature detection and an identification method.

II. MATHEMATICAL FORMULATION

The goal is to calculate the rigid transformation between

different cameras from 2D/2D matchings.

A. System overview

We consider a scene Si of 3D points (Fig. 1), and at least

two rigidly linked cameras C1r and C2r, with known intrin-

sic parameters.The camera C2r can see directly the scene.

The camera C1r watches several views of this scene thanks

to the mobile planar mirror. Let 1rT2r be the homogeneous

transformation from C1r to C2r coordinate systems. In the

same way, 1rTΠj
represents the homogeneous transformation

from C1r and Πj coordinate system, where Πj denotes the

planar mirror observed in the jth image from C1r.

We call a virtual camera, the camera obtained by a mirror

plane symmetry.C1vj is the jth virtual camera obtained from

C1r relative to Πj . It is assumed that one image of the scene

is acquired by each C1vj and one other image by C2r. s
1vj

i ,

s2r
i are respectively the projected points of the scene Si, in

the image plane of C1vj and C2r. Fig. 1 illustrates the whole

system. Due to symmetry, real cameras are represented by a

right-handed basis whereas virtual cameras are represented

by a left-handed basis.

A set of 9 markers Mk — blue circles in Fig. 1 — are

stuck on the mirror’s surface to enable each mirror pose Πj

computation (see III-A). The automatic and subpixel markers

detection is detailed in appendix VII. In the sequel, m1r
kj

denotes the jth projection of Mk points in the C1r image

plane. Such markers are used for several reasons:

• Geometric constraints are added.

• The mirror pose estimate enables to deduce the link

between a real camera and its virtual camera. Moreover,

opposite to [12] where degenerate configurations are

present (for example: the mirror cannot be orthogonal to

the camera’s optical axis), our methods don’t forbid any

pose for the mirror. So the user’s task is more flexible.
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Fig. 1. Schema of the mirror and the multi-camera system

B. Intrinsic parameters of a virtual camera

The intrinsic calibration matrix concept can be extended

for the virtual cameras. Let’s consider the intrinsic calibration

matrix Kr of a pinhole real camera (2). With fx = f/dx and

fy = f/dy, where f is the focal length, dx and dy are the

pixel sizes of the CCD array, and (u0, v0) are the principal

point pixel coordinates.

The virtual camera’s image plane is obtained by a reflec-

tion with respect to an axis of our choice. As we want to get

a simple expression for the intrinsic calibration matrix, we

choose the vertical axis through the principal point1. (x, y)
are the real camera image coordinate system (the origin is the

principal point). The pixel coordinates of the real and virtual

camera are respectively (ur, vr) and (uv, vv), expressed by:
{

ur = x
dx

+ u0

vr = y

dy
+ v0

⇔

{

uv = 2u0 − ur = − x
dx

+ u0

vv = y

dy
+ v0

(1)

The virtual intrinsic calibration matrix Kv then simplifies to:

Kr =





fx 0 u0

0 fy v0
0 0 1



⇒ Kv =





−fx 0 u0

0 fy v0
0 0 1



 (2)

III. NON-OVERLAPPING CAMERA CALIBRATION

First, we propose two ways to calibrate the system: one use

a known calibration pattern, the other doesn’t require such a

pattern. Second, the calibration procedure for a mobile robot

is discussed.

A. Mirror pose computation

Our calibration method starts by computing an estimation

of the mirror pose Πj relative to C1r. Starting from an

approximate knowledge about the markers Mk (measured

with a ruler), a homography is computed using a 2D/3D

registration technique [14]. Therefore, a planar object pose

is first obtained using a decomposition of the homography

matrix H relating the object and the camera image plane

(see (3) and [15]). The homography is estimated linearly,

and then refined using a nonlinear optimization (refer to [16]

for more details). Once H is obtained, the pose parameters

(R, T ) are computed as follows :










λ = ‖K−1
h1‖

−1

= ‖K−1
h2‖

−1

T = λK−1
h3

and











r1 = λK−1
h1

r2 = λK−1
h2

r3 = r1 ∧ r2

(3)

1This problem is mentioned in [13].

Where R = [r1 r2 r3] , H = [h1h2h3] and K is the intrinsic

matrix of the current camera. A last step consists in refining

both poses and markers geometry in a bundle adjustment

process [17].

B. Calibration with a known pattern

We suppose that the scene geometry (i.e. the points Si) is

known. The calibration process is detailed in Algorithm 1.

Algorithm 1: Extrinsic calibration with a known calibra-

tion pattern

Inputs : s2r
i , s

1vj

i , m1r
kj

, Mk and Si

Outputs: 1rT2r,1rTΠj
, and Mk

Step 1: Initialization

For each image j :

Calculate the mirror Πj pose relative to C1r.

Refine the markers Mk geometry and the mirror Πj

poses by bundle adjustment.

For each image j :

Deduce the virtual camera C1vj pose by

symmetry with respect to Πj .

Calculate the pattern Si pose relative to C1vj .

Calculate the transformation 2rTS between camera

C2r and the pattern Si.

Deduce the initial transformation 1rT2r by

averaging all the several estimations [18], [19], [20].

Step 2: Global nonlinear optimization

argmin
(1rT2r ,1rTΠj

,2rTS ,Mk)
(
∑

k

∑

j

‖m1r
kj

− proj
C1r

(Mk) ‖2

+
∑

i



‖s2r
i − proj

C2r

(Si) ‖
2 +

∑

j

‖s
1vj

i − proj
C

1vj

(Si) ‖
2



)

(4)

Where proj
C

(M) is the projection function of the point M

in the camera C. With p([XY Z]T ) = 1

Z
(X Y )T , we get:

proj
C1r

(Mk) = p(K1r
1rTΠj

Mk)

proj
C2r

(Si) = p(K2r
2rTSSi)

proj
C

1vj

(Si) = p(K1vj

1vjT1r
1rT2r

2rTSSi)

(5)

where the symmetry transformation between C1vj and C1r is

1vjT1r =

(

I3 − 2njn
T
j 2djnj

0 0 0 1

)

. Here, nj is the mirror
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normal vector expressed in C1r coordinate system, and dj

is the distance between C1r and Πj .

The calibration pattern can be either planar or not. During

the initialization step, a planar object pose is obtained by

using (3). If the calibration pattern isn’t planar, 3D pose

estimation is first initialized by the method described by

Dementhon [14], then by nonlinear optimization2. In the

second step, all system parameters (cameras and mirror

poses) are optimized by minimizing every reprojection error

using the Levemberg Marquardt algorithm.

From a practical point of view, the user has to move the

mirror until a suffisant number of pattern points are seen by

both C1vj and C2r .

C. Calibration without a known pattern

We now propose a calibration process (algorithm 2) which

uses an unknown geometry scene Si : no calibration pattern

is required. Thus, the field of view is not restricted to a

pattern anymore: the whole field of view covered by the

mirror can be used. From user point of view, this algorithm

is easier and more flexible than the first one, because the

entire scene hasn’t to be observable through the mirror in

all images (scene’s occlusions are handled). It relies on an

accurate and automatic feature detector which is detailed in

Appendix VII.

Algorithm 2: Extrinsic calibration without any known

calibration pattern

Inputs : s2r
i , s

1vj

i , m1r
kj

and Mk

Outputs: 1rT2r,1rTΠj
, Mk and Si

Step 1: Initialization

For each image j :

Calculate the mirror Πj pose relative to C1r.

Refine the markers Mk geometry and the mirror Πj

poses by bundle adjustment.

For each image j :

Deduce the virtual camera C1vj pose by

symmetry with respect to Πj .

Reconstruct the scene points Si relative to C1r ,

using C1vj and s
1vj

i : a projective factorization [16,

p 444] and a bundle adjustment are used.

Calculate the camera C2r pose 2rT−1

S relative to

the scene Si, express in C1r coordinate system. It’s

the initial guess of 1rT2r = 2rT−1

S .

Step 2: Global nonlinear optimization

argmin
(1rT2r ,1rTΠj

,Si,Mk)
(
∑

k

∑

j

‖m1r
kj

− proj
C1r

(Mk) ‖2

+
∑

i



‖s2r
i − proj

C2r

(Si) ‖
2 +

∑

j

‖s
1vj

i − proj
C

1vj

(Si) ‖
2



)

(6)

In contrast to algorithm 1, every scene point is recon-

structed during the last optimization step. The scale factor

2Levenberg Marquardt algorithm minimizes reprojection error. Every
rotation is represented by Euler angles.

Fig. 2. Two non-overlapping cameras embedded on a vehicle

of the whole system (common to every calibration process) is

obtained using at least one accurate known distance between

two scene points. In the proposed schema, C1r and C2r don’t

have a symmetric function. Increasing the number of mirror

poses Πj yields to a larger amount of data extracted from

C1r. In contrast, just one image is extracted from C2r. The

proposed methods are so described for clearness purpose.

However, they can easily be converted to symmetric methods

by adding — during the optimization process — new images

of the mirror in front of C2r.

Moreover, an outlier rejection process is useless since

feature’s false detections are rejected, during the subpixel

refinement or the label identification (see appendix VII).

D. Calibration for a mobile robot

Recently, some navigation methods have been proposed

for mobile robots using a single camera and natural land-

marks. However, those approaches are very sensitive to

outdoor light conditions. To alleviate this problem, a solution

consists in mounting two cameras on the vehicle: one at the

front, another at the back (see Fig. 2).

The main advantages are the vehicle symmetry, and the lo-

calization robustness against outdoor illumination problems,

e.g., overexposure. If the sun is in front of one camera,

the other gives some useful information. Then, the local-

ization process requires calibrating the multi-camera system.

Contrary to previous cases, the multi-camera system is not

static which slightly changes Algorithm 2. The proposed

calibration scheme, which takes advantage of the robot

motion, is described in the Procedure.

Procedure: Calibration setup for a mobile robot

Move the vehicle and acquire N images of the scene.

Stop the vehicle. A camera should observe the scene. In

our case, it’s the front camera, referred as C2r .

Move the mirror N times in front of the other camera,

referred as C1r.

Apply the calibration without a known pattern

(Algorithm 2).

Contrarily to Algorithm 2: after the reconstruction stage, a

pose is estimated for all the N views of the scene. Then, they

are taken into account during the nonlinear optimization.

This additional set of scene views enables to:

• get a better 3D scene reconstruction.

• have the same number of images for each camera.
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Fig. 3. Refraction caused by a planar mirror watched by a central camera

IV. REFRACTION INFLUENCE

This section is dedicated to the study of the impact of

the refractive effect — caused by the glass layer over a

second surface mirror — on the pose estimation of a mirrored

object. To the best of our knowledge, this problem has never

been studied. Indeed, if the refraction is ignored, then the

calibration algorithms can converge to biased results. Let’s

now see how to model the refraction and take it into account

in the calibration process.

A. Perspective camera and refraction model

Instead of studying the view of an object through a mirror,

we consider an equivalent problem: the view of a virtual

object through a glass layer. Therefore, this equivalent glass

layer is twice thicker as the mirror glass layer. According to

Snell-Descartes’ first law, we can restrict the problem to the

plane defined with the optical center C of the camera, the

observed point P ′ and the mirror normal. Fig. 3 illustrates

the refraction phenomena. In the mirror case, the virtual point

P ′ is the symmetry of the real point P with respect to the

reflective surface. e refers to the mirror thickness, ic is the

angle of incidence when refraction is considered and ic0
is

the angle defined by the line (CP ′) and the surface normal

of the mirror.

The goal is to get the minimum optical path length

between P ′ and C (Fermat’s principle). In our case, the

optical path length can be expressed as:

C = nair(a+ c) + nglassb (7)

with nair = 1 and nglass = 1.5. Geometrically, we obtain

the equation (8):

2e tan

(

arcsin

(

nair

nglass

sin(ic)

))

=(L0 + L+ 2e) tan(ic0
) − (L0 + L) tan(ic)

(8)

ic0
is first computed, by ignoring refraction. Then, a Gauss-

Newton method is used to solve for ic in the equation (8).
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Fig. 4. Image plane error due to the refraction. A planar checkerboard
pattern is observed at a distance of about 1.2 m with a mean angle of
incidence of 29°

Fig. 5. Pixel error if the refraction were ignored

B. Impact of the refraction on the image plane

If the refraction was not considered, we would try to

observe the point P ′ on the red dotted line emanated from

camera center (see Fig. 3), whereas P ′ is in fact on the black

dotted line. It involves the angular error δic = ic − ic0
. For

a set of close points, it would lead to biased projections

in the image plane of the camera (see Fig. 4 which shows

the pixel error for a planar pattern. The grid size is about

2 cm). In this section, we consider real world values for the

mirror thickness e = 2.80 mm, an 8 mm focal length for

the camera and the pixel width: 4.4 µm.

Thus, we’re able to quantify the impact of the angular

error δic with respect to angles of incidence ic0
and dis-

tances CP ′ between the camera and the point. However,

this quantitative effect is meaningful on the camera’s image

plane. Fig. 5 shows the theoretical pixel error errpix if the

refraction were ignored. For each ic0
and CP ′, we computed

L + L0 = CP ′cos(ic0
) − 2e and then solve (8) to get δic.

The pixel error is lastly obtained with errpix = fysin(δic),
by assuming that P ′ is on the optical axis of the camera.
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Some intuitive results are found back: refraction is all the

more significant that the angle of incidence is high and that

the observed point is near. So, do we really need to consider

refraction? The answer isn’t boolean, but depends on the

desired accuracy, the focal length, the mirror thickness, the

angle of incidence and the distance of the observed point.

For instance, if the observed point is about 1 m distant,

with an angle of incidence of 16°, then image error is 1
pixel (see Fig. 5). As a consequence, refraction can easily

induce an error around about one pixel. However, features

are detected with subpixel accuracy: round about a tenth or

a hundredth of pixel. In this case, refraction should not be

ignored.

C. Pose estimation and refraction

The pose of an object viewed through a refractive medium

can be calculated in two steps:

• First, the object pose is estimated while refraction is

ignored (with for instance Dementhon’s algorithm [14]).

• Second, the reprojection error is minimized by taking

into account the refraction phenomena and the optimal

optical path length computation, cf IV-A.

For the calibration algorithms, the refractive effect is just

included in the projection function proj
C

1vj

() of the virtual

cameras.

V. RESULTS

In this Section, the proposed methods are validated with

both synthetic and real data.

A. Results with synthetic data

The experimental protocol is the following. First of all,

scene points Si are created. We synthesize all camera poses,

and several random mirror poses at distance about 150 mm
from the camera C1r. The mirror is assumed to be first

surface. This ground truth is used to calculate the image

points s2r
i , s

1vj

i and m1r
kj

. Then, they are all subject to

an additive white Gaussian noise with standard deviation

σ. Finally, the relative pose between the two cameras is

estimated with noisy data. Six images of the mobile mirror

are acquired. Moreover, all scene points are supposed to be

in the virtual camera’s field of view. Intrinsic parameters are

also supposed to be known.

During this experiment, the transformation 1rT2r corre-

sponds to the translation (0.3m −0.5m −1m)T and the

rotation from yaw, pitch and roll angles (15°, 180°, -20°).

For every σ value, 20 measures have been performed. The

calibration accuracy is given by both the norm ‖dT ‖ of the

translational error vector and the angular error dR whose

expression is given by:

dR = d(R̂, R∗) = arccos

(

trace(R̂TR∗) − 1

2

)

(9)

where R∗ is the ground truth rotation and R̂ is the estimated

rotation.
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Fig. 6. Results with synthetic data: mean value of the pose estimation
error with respect to noise level

Fig. 6 shows the performances of the Algorithm 1, using

a known planar grid pattern with 84 points (about 12 cm by

30 cm) at distance 1 m from C2r. It can be compared with

the performances of Algorithm 2, for which an 84 points

unknown 3D scene is randomly created at about one meter

from C2r .

For the same point number, both methods are equivalent

according to translation estimation. Whereas in presence

of noise, rotation estimation is three times more accurate

with the Algorithm 2 as compared to Algorithm 1. This is

because the points of a known grid pattern are restricted to

a quite tiny area and our experiments show that the more

scattered the features are, the more accurate is the extrinsic

calibration. Nevertheless, the feature detection noise could

counterbalance the accuracy due to scattering. As a result,

the accuracy depends on a compromise between the number,

the scattering, and the noise of features.

B. Results with real data

We use an 8 mm focal length for the camera, with a

pixel width of 4.4 µm. During our first experiments, we

used a low cost mirror of unknown quality. The results

weren’t satisfying (the standard deviation of reprojection

error was 0.6 pix) because of the inaccuracy of the planarity,
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Fig. 7. Metrological system and its mechanical linkage

Pose   Pose   12

Fig. 8. Relative poses experiment - pure translations

and too much bending deformation (due to low thickness

e = 2.8 mm). So we use a 6mm thick mirror with a surface

accuracy of 4λ to 6λ per inch, where λ is the wavelength.

Such mirrors are front surface.

In order to have an accurate ground truth — unavailable if

our system were directly mounted on a vehicle — a camera is

mounted onto a metrological motion system. Its mechanical

linkage is shown in Fig. 7. It is assumed that the axis of

rotation and the axis of translation are perfectly orthogonal.

A motorized rotation stage, with 0.01° accuracy, is mounted

on a linear stage. A micrometric translation is reachable.

L refers to measured translation vector norm, and ψ is the

measured angle of rotation. A camera is rigidly mounted on

the rotor. The camera optical center is set along the axis of

rotation by manually minimizing the parallax.

Thanks to the metrological system, a multi-camera system

is recreated with high accuracy. Each camera is obtained at

a fixed rotation/translation pair (ψ,L).
The criteria for the rotation accuracy between cameras C1r

and C2r, is defined as follows:

dR = |d(I3, R̂) − (ψ1 − ψ2)| (10)

with the function d() defined by (9). Some unknown param-

eters are added by the experiment system: the parallax error

δ and the rotation matrix between the rotor and the camera

coordinate system Rc. We don’t make any assumption on

those parameters, hence only valid and accurate metrological

measures are used. Therefore, the calibration is done thanks

to the Procedure of III-D with pure translations (see Fig. 8).

We acquire several pictures of the mirror moving in front of

the fixed camera C1r, and pure translations are applied to

camera C2r. A picture is acquired every 5 cm, for L varying

from 0 through 100 cm. This set of poses of camera C2r

represents the ground truth.

The line ∆ fits their aligned optical centers. The algorithm

accuracy is measured with the following criteria:

• The distance d between the line ∆ and optical centers,

• The angular error φ between each camera C2r and the

mean camera [18], [19], [20],

TABLE I

EXPERIMENT RESULTS OF THE PROCEDURE OF III-D

Mean Standard deviation

d (mm) 0.04 0.03

φ (°) 0.009 0.005

dR (°) 0.02 0.002

τ (mm) 0.02 0.02

‖dT‖ + 2δ (mm) 4.7 0.07

Fig. 9. Experiment with an unknown scene geometry, indirect view (top),
and direct view (bottom). The image resolution is 1600x1200.

• The angular error dR between the pose of C1r and C2r,

• The error τ of the translation vector norm between two

successive poses.

Table I shows the results when a 180° rotation and a 1 m
translation are applied between C1r and C2r (for N = 21)

(see Fig. 9).

As detailed in Table I, all the aligned C2r poses are

reconstructed very precisely (d is under 0.1 mm and φ is

about 0.01°). The rotation between C1r and C2r is found

back with an accuracy less than 0.03° (dR). The translation

error τ is about 0.02 mm added up to each successive poses;

i.e. for a 1 m translation it leads to an error of 0.3 mm.

This error is due to the estimation of the scale factor. The

error ‖dT ‖ of the norm of translation between C1r and C2r

is biased, which is mostly due to the parallax error δ. After

the minimization, the standard deviation of reprojection error

is 0.14 pix. These results are satisfying for mobile robot

applications.

We compared the previous results with Algorithm 2. The

angular difference is less than 0.02°. The norm of the

translation difference is 2.6 mm. Indeed, additional poses

of camera C2r lead to a best depth estimation of the scene,

and thus to an accurate translation estimation.
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Fig. 10. Impact of the refraction on the accuracy of the Algorithm 1
(synthetic data)

C. Refraction and calibration algorithm

Let’s consider a simulated ground truth created with the

refractive effect, the experimental protocol is similar to

the one described previously in V-A. Fig. 10 shows the

effect of the refraction on Algorithm 1, called twice; with

or without modeling the refraction. During these simula-

tions, the transformation 1rT2r corresponds to the translation

(0m 0m −1m)T and the rotation from yaw, pitch and roll

angles are (5°, 40°, -20°). When the refraction is ignored for

low noise level, Fig. 10 shows that estimation of translation

and rotation can be biased. For mobile robot localization,

this translation bias (2 mm) is acceptable but the rotation

bias (0.07°) is greater than the real achievable accuracy (see

V-B).

VI. CONCLUSION

A flexible method for calibration of a static or embedded

multi-camera system, with non-overlapping fields of view,

has been proposed and validated with both synthetic and real

data. The analysis of the refraction allows to know whether

it can be ignored or not, basing on several experimental

conditions: desired accuracy, focal length, mirror thickness,

angle of incidence and distance of the observed points. More-

over, the results show that the calibration method without a

known pattern — which is more flexible in practice — leads

to similar performances, assuming that scene features are

scattered enough. Finally, the metrological experiment shows

that the accuracy obtained is satisfying for localization of a

mobile robot.

VII. APPENDIX - MARKERS AND LANDMARKS

A flexible calibration procedure should be as automatic

as possible. To do so, we have developed an automatic

feature detection and label identification. For scene features,

we don’t use interest points, but rather circular landmarks

similar to [21], with a black bullseye and a circular code

(see Fig. 9). Mirror markers are white reflecting disks on

black disks. Such colors allow to easily classifying markers

from landmarks.

A. Automatic detection

In order to get the most user friendly protocol, we have

developed an automatic ellipses detector. The only input is

an image, and the outputs are the characteristics (location,

major and minor axis length) of every black or white

elliptical region in the image. The detector is described by

the following:

• Regional extrema in image’s gray levels thanks to

morphological operations.

• Watershed and blob analysis.

• Classify elliptical regions.

A region is classified as elliptical if: A

πab
> 0.99 , where

A, a and b are respectively the region’s area, the major and

the minor semi-axis’ length of the ellipse that has the same

normalized second central moments as the region.

B. Automatic subpixel refinement

For scene landmarks we use concentric circles, because the

perspective projection of a circle’s center can be recovered.

We have developed an automatic subpixel detector based on

a pattern matching. Fig. 11 shows the detector initialization

on the first line, and result on the second line. First column is

the image, second is the pattern and third is the absolute dif-

ference between image and pattern. The images histograms

of last column are equalized. When a false detection occurs,

the candidate is rejected if the root mean square error is

greater than 0.07 (for an image’s gray level from 0 to 255).

A constrained nonlinear optimization fits image content

with respect to a homography transformation and the land-

mark’s photonic response (see Fig. 12). The photonic re-

sponse is defined by 5 parameters: a high value, a low value,

and for the transition: the slope p of the line and the two

arcs’ radius r1 and r2. Such a pattern matching algorithm

was first developed by Lavest [22], with just an affine

transformation and a Levenberg Marquardt optimization. Our

method is more adapted to real data because divergent cases

can be avoided. At this stage, for a calibrated camera, the

localization of a landmark could be found back thanks to (3).
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Fig. 11. Subpixel detection of concentric ellipses, before and after
convergence (homographic transformation)
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Fig. 12. Photonic response of a landmark

C. Automatic label identification

First, mirror markers are automatically labeled thanks

to their asymmetrical geometry. Second, the circular code

allows to automatically label landmarks, no matter how they

are seen (directly or through the mirror). A circular code is

composed of 3 parts: a header H common to every landmark,

a label L, and a parity bit P (see Fig. 13). Here we choose 7
bits for the header and 8 bits for the label, expressed in Gray

code. The code must be read counterclockwise for a direct

view, and clockwise for an mirrored landmark (see Fig. 14).

The header’s choice is not random. To find it, an exhaustive

exploration of the circular codes is done. A circular code is

valid, for a direct view, if and only if:

• The header is found back only one time in counterclock-

wise direction.

• The header is never found back in clockwise direction.

The best header is achieved when a maximum number

of messages are valid. In this case, several maxima were

possible, so we choose one with the most of transitions:

104 in decimal base code (i.e. 1011100 in Gray code). The

number of allowed labels is 212 over 28 = 256.

Thanks to this header choice, the circular code is readable

even if the landmark is mirrored. Note that orientation of the

target is now found back. Thus, the whole pose (localization

and orientation) can be computed.
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