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Abstract— A method for detecting changes in the environ-
ment using only vision sensors is presented. We demonstrate
that optical flow can be used to detect these changes at
key locations in outdoor scenarios in difficult and varying
lighting conditions. These key locations are used as nodes in a
topological mapping and localization framework. To close the
loop we employ a bag-of-words methodology. We show that
bag-of-words methods can be used in real-time on a standard
computer to detect loop closures in sparse topological maps.
Experimental results from field trials using our quad-rotor
UAV demonstrate the capability of the proposed scene change
detection method.

I. INTRODUCTION

For a mobile robot to perform fully autonomous tasks it

is generally essential that it can determine its location in the

environment before it can navigate to carry out an assigned

task. A truly autonomous robot should be capable of creating

its own representation of the environment it is working

within by creating maps and using these maps to localize

itself. Mapping and localization are very complex tasks,

which are further complicated when dealing with dynamic

outdoor areas and using vision as the perception sensor. The

main field of map-based localization is called Simultaneous

Localization and Mapping (SLAM). Using SLAM we expect

a system to be able to create a map of relevant features,

estimate the instantaneous camera/robot motion, and correct

for any motion estimation errors by closing the loop in the

map. It is hence obvious that if only new areas are being

explored the performance of a SLAM system will be no

better than a standard visual odometry system [1]. This is

because the main strength of a SLAM systems is its ability

to correct for motion error using the built map. This also

indicates that if the built map is corrupted, e.g. by mapping

dynamic features, it can affect the localization adversely.

Loop closure is made difficult in metric SLAM due to

errors in position estimation, which become progressively

less accurate as the loop gets larger [2]. To overcome this,

a new genre of visual SLAM, called Appearance-based

Mapping and Localization, is being established. The concept

here is to determine loop closure based on similarity in

sensory data input - in the case of visual SLAM similarity

in image frames - and ignoring the robot location.

The state-of-the-art in vision-based mapping and localiza-

tion is currently to capture images at fixed intervals, use

Fig. 1. Our robotic platform is a quad-rotor UAV.

one or more types of image descriptors to describe each

captured image, and create a database of these descriptors

during the mapping phase. During localization, the database

is searched for a match to close the loop or possibly to

extend the map [3], [4]. The advantage of such appearance-

based localization and mapping over metric SLAM is that

the system can produce correct loop closures even when

the robot is lost or has a very poor pose estimate. The

disadvantage of this approach is that for every sensory input

step the entire map has to be searched for matches. This gets

less and less feasible in real-time as the map gets bigger.

The system has to eliminate several false positives and false

negatives, also in real-time. Furthermore, appearance maps

cannot be used for control and planning.

Topological localization and mapping is one level of

abstraction above metric localization and mapping because

it takes into account the connectivities, or relationships,

between the various locations that are encountered in the

process of building the map [5]. The abstraction comes from

raising the attention from low-level local localization to the

higher level connections between the locations. A topological

map can be visualized as a map of nodes and edges, as shown

in Fig. 2. The nodes of a topological map are key points or

locations that are unique and recognizable when they are re-

encountered. Each edge in a topological map describes how

two nodes are connected.

In this paper, we propose a method for building topolog-

ical maps using vision. The main contribution is automatic

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3792



a t1 Ã
b t2

c t3 "d t4 e t5 !f

t6

g

t7ht8i#
j

Fig. 2. An example of a topological map. The nodes (1-8) represent key
locations that are connected by the edges (a − i)

detection of key locations in the environment using optical

flow information; where these key locations serve as nodes

in the topological map. To re-localize the vehicle, we use a

visual appearance strategy.

The rest of the paper is structured as follows. Next we

look at the related research and compare our method to

these. Section III describes how the scene change detection

is performed using optical flow information in the image and

how loop closures are detected using bag-of-words. Results

from field trials using our quad-rotor UAV is presented in

Section IV. In Section V we conclude and suggest future

directions for the research.

II. RELATED WORK

One example of key point detection was presented by

Kortenkamp et al. [6], who introduced gateways as tran-

sition places between spaces. A gateway is different from

a distinguishable feature or place in that all gateways are

similar; an opening leading from one space to another. Using

sonar sensors the authors detected doorways in hallways by

monitoring the change in returned distance to wall. Hence,

a gateway is a temporal signature of the opening, ranging

from the detection of the opening until the detection of the

doorway end.

Duff et al. [7] use a laser range finder in combination

with a wheel odometer to navigate a Load-Haul Dump truck

through underground mines. Incorporating a reactive wall

following control and intersection detection using the laser

range finder, they are capable of navigating through under-

ground mazes. They take advantage of recognized landmarks

to compensate for less precise odometry and localization. In

underground mines, as well as when we drive on street roads,

we can normally only drive forward or reverse. The only time

we need to turn is when the opportunity arises in the form of

an intersection - or a large open area. The authors therefore

call this method of localization opportunistic localization.

Radhakrishnan et al. [8] proposed a vision-based transi-

tion detector for topological localization. They provided a

topological map to their system and trained the system on

transition points in the environment. Using a Naive Bayes

Classifier in a two-tier approach their localizer was capable

of coming up with transition thresholds automatically during

training. These transition thresholds are used to determine

when a transition from one space to another has occurred.

The thresholds are local and directional. The resulting system

produced almost 100% correct transition recognition. The

limitation of their approach is that they have to provide a

topological map and train the system on the transition points.

Finally, their system has only been tested in structured indoor

environments with controlled lighting and they point out

that moving to large outdoor environments with uncontrolled

lighting would be non-trivial.

Werner et al [9] propose a topological SLAM algorithm

based on Bayesian Inference. In their approach they propose

to use an omni-directional camera and extracted image

histograms to perform the task in indoor self-similar envi-

ronments. Their key point detection is not performed using

vision. Their robot traverses the hallways using ultrasonic

sensors and a Voronoi graph of the environment. The Voronoi

nodes—a point equidistant to three (or more) obstacles—fall

at T-junctions and intersections in the hallways. These are the

key points in their topological map, and an image is taken

when the robot reaches such a node.

III. SCENE CHANGE DETECTION

As described previously, we are interested in developing a

sparse topological map of key interest points in the environ-

ment. The main requirement to do so is firstly to be able to

detect key interest points and secondly to be able to describe

these locations for future reference and relocalization. The

key point detection using optical flow is described next.

Loop closures detected using a bag-of-words methodology

is described subsequently.

A. Key Point Detection

When driving or flying through structured or semi-

structured environments, such as urban environments, signifi-

cant scene changes occur when buildings and other structures

appear or disappear next to the vehicle. In such environments,

it is the detection of opening and closing of spaces that is

considered significant. Considering openings and closings of

space as significant is also often suggested in the literature,

[6]-[10], whether in indoor or outdoor scenarios. As Duff

et al. put it nicely, it is the opportunity that arrises at an

opening, which allows for navigating to a different location,

that is considered significant. Inversely, when the opening is

no longer present it is the realisation that we are traversing a

different path (or edge in the topological map). When using

vision, these changes have to occur in the field of view of

the camera and correspond to the changes observed in the

induced optical flow signal.

We are using a similar approach as Kortenkamp et al.

for detection of key locations. Instead of ultrasonic sensors,

we use cameras to perceive the environment and can obtain

information about it by observing the apparent motion in-

duced in the camera and calculating the optical flow. This

is because the magnitude of the induced optical flow in the

image is dependent on two factors, namely the velocity at

which the camera (or object, or both) is moving and the

physical distance to the object generating the optical flow.

In order to determine the distance to a static object, the

component of the optical flow induced by the velocity of the

vehicle must be subtracted. If the vehicle speed is known

3793



TABLE I

OPTICAL FLOW FILTERING PARAMETERS AND SCENE CHANGE

DETECTION PARAMETERS.

Hysteresis Hysteresis Smoothing Min Change Min Time
Accept Reject Window Threshold Threshold

3 2 30 0.02 2.0

it can be used to normalize the magnitude of the optical

flow vectors. If the velocity is unknown, but can be assumed

constant, observed change in the optical flow will still reflect

the change in distance to the observed object. Furthermore,

on a dynamic platform such as an UAV with 6 degrees of

freedom, it might be necessary to also remove any induced

optical flow from roll, pitch, or yaw motion, if these are

significant.

Subsequently, by monitoring the change in the induced

optical flow in the image, change in the environment can

be detected. Key locations in the environment are defined as

places with significant change in the optical flow signal. Key

locations are nodes in the topological map.

In our approach, we use a Canny edge detector in

combination with a pyramidical Lucas-Kanade algorithm to

estimate the optical flow. The optical flow signal is noisy, and

in order to extract the necessary information about the scene

change from the induced optical flow it must be filtered. For

this purpose, the flow vectors are first transformed to polar

co-ordinates:

θ = atan(∆y/∆x) (1)

r = x1 · cos(θ) + y1 · sin(θ) (2)

where x1 and y1 are the vector start position, and the length

of the vector is
√

∆x2 + ∆y2.

To achieve a smooth signal a two step approach is used.

Firstly, a hysteresis voting scheme is applied in the polar

domain. This ensures that only flow vectors present over

several consecutive frames are accepted. A flow vector is

discarded again, once it hasn’t been observed in a few frames

and its vote falls under the minimum hysteresis threshold.

The scene flow response is calculated by deriving the mean

vector lengths in the polar coordinate frame:

µ(r) =
1

n
Σn

i=1
r (3)

where n is the number of vectors.

Next, a fixed width window smoother is applied in the

time domain to remove high frequency information; cor-

responding to small changes. Changes in the environment

are detected by finding peaks and valleys in the filtered

response signal. These changes correspond to key points in

the environment and nodes in the topological map.

It might be desirable to ignore nodes corresponding to

small spikes by accepting only changes larger than a thresh-

old, or to have a minimum distance between two nodes. The

strength of the system is that it will repeatedly trigger on

similar changes, as shown below. For the data presented in

this paper we use the parameters in Table I.

The process of filtering and key point detection for the

L-shaped path in Fig. 4 is shown in Fig. 3. The figure shows

the raw optical flow signal (3(a)), the smoothed signal (3(b)),

and the detection of key points (3(c)). We have no visual

odometer but assuming constant distance to the buildings

we can use the induced horizontal optical flow signal (red

dashed line in Fig. 3(b)) as a scaleless estimate of the

vehicle forward velocity. For visualization purposes only, this

velocity is used in conjunction with the yaw angle from

an onboard Inertial Measurement Unit (IMU) to build a

map. Fig. 3(d) shows an approximate scaleless 2-dimensional

(2D) path of the traversal, the flow magnitude, and the node

locations.

B. Loop Closure

When the creation of a key location is triggered, as

explained above, it is time to check if this is a known

location we have returned to and then add the image to a

database. To speed up the image matching process we use

image descriptors to describe the image and then use a bag-

of-words approach to find matches and to store the image.

As image descriptor, we use SIFT features [11] extracted

from the images that trigger key point detection.

These SIFT descriptors are fed to a bag-of-words algo-

rithm [12] to build up a database. When querying for a match,

we have through empirical verification found out that, the

correct match, if any, is in 95% of the times in the top n = 3
matches. To ensure that there indeed is a correct match we

perform SIFT matching between the query image and the

database image. A loop closure has been detected if at least

50% of the SIFT features match. This process is faster but

not as robust as performing geometric verification

x
T

2
Fx1 = 0 (4)

where, x1 and x2 are the locations of the SIFT descriptors

in the two images returned by the matching function and F

is the principal matrix of the camera. Only if the two images

are from the same locations, and the SIFT features represent

the same points in the scene, will a solution exist for this

equation.

Once a match has been detected, a choice must be made

whether the newly matched node should be added to the map

or not. Adding the node to the database will signify that there

will exist two nodes representing the same location and hence

more than one correct match in database. Not adding the new

node will keep the map more concise and smaller, but small

changes due to lighting and dynamic changes can be lost too.

In our implementation we have chosen the former method

and add all detected nodes to the database. This is justified

because the created topological map is very sparse. During

loop closure, however, we stop looking for more matches

once the first match has been found.

IV. RESULTS

Our robotic platform is a quad-rotor Unmanned Aerial

Vehicle (UAV) from Ascending Technologies GmbH (Fig. 1).

The UAV has onboard an IMU, GPS, camera, and an Atom
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(a) Raw flow response.

0 20 40 60 80 100 120 140 160 180 200

−4

−3

−2

−1

0

1

2

3

4

5
Filtered flow signal

time [s]

fl
o

w
 r

e
s
p

o
n

s
e

 [
p

ix
e

ls
]

 

 

horizontal flow

vertical flow

combined flow

(b) Filtered flow response.
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(c) Flow response and node detection.
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(d) 2D view of the flow response and the node locations.

Fig. 3. Scene change detection from the optical flow response signal.

1.6GHz processor running Ubuntu 9.10. The Point Grey

Firefly camera is mounted on top of the UAV and produces

grey scale images in 752 × 480 pixels at 30 fps. For the

key point detection, however, only every fifth frame at a

resolution of 376×240 is used while the IMU and GPS units

are not used at all. Images are captured and logged onboard

Fig. 4. Overview of the field test area. The approximate paths of the
three experiments are shown and the start position is marked with an ’S’.
Experiment 1 (magenta) was a double loop of ∼ 375m, experiment 2
(yellow) was a single loop of ∼ 155 m, and experiment 3 (cyan) was an
L-shaped path of ∼ 85 m.

the UAV but post-processed in real-time on a Macbook Santa

Maria 2GHz Dual2 2GB notebook running Ubuntu 9.04.

The field trials took place at Birmensdorf Barracks village,

Switzerland. This is an artificial village with one and two

level buildings and also some demolished buildings. Three

experiments were carried out, see Fig. 4. In the first ex-

periment we flew a double loop and captured 8720 frames

(magenta path). The second experiment contains the inner

loop and 6013 frames (yellow path) while in the third

experiment we flew an L-shape through the first passage,

capturing 5622 frames (cyan path). All flights were human

remote controlled, and since no other sensor than the camera

is used we assume the flight speed to be constant.

As shown by Hrabar and Sukhatme [13], the camera

should be facing 90◦ to the direction of motion to measure

the maximum optical flow to increase the signal-to-noise

ratio. In the same study the authors suggest, though, the

optimum angle of the camera to be 45◦ for control purposes.

Therefore, in experiments 1 and 3 we used a 90◦ mount

angle, while in experiment 2 we used a 45◦ mount angle for

the camera.

Experiment 1 is our baseline experiment. By flying a dou-

ble loop, key points should be detected at similar locations

where there is overlap. In experiments 2 and 3, key points

from these flights are matched to key points detected during

experiment 1. There are several hours between the tests

flights and the lighting condition changed significantly.

The results for these three experiments are visualized in

Figs. 5(a)-5(c). Notice that these topological maps are for

visualization only. They are scaleless - in fact they have been

scaled differently for better visualization. The performance

of the key point detection and the loop closure procedures

are measured separately and can be seen in Tables II-III. In

these results, the actual number and location of loop closures

(LCs), false positives (FPs), and false negatives (FNs) are

manually tagged. Please also refer to the attached video1 for

a demonstration of how the key point detection and loop

1http://nourani.dk/?pId=ROBOTICS&subId=TUBES
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(c) Experiment 3

Fig. 5. Detected loop closures are shown in green, false negatives in blue, and false positive loop closures in red. Notice that x and y-axis are not labelled
as the maps are scaleless and the paths have been scaled differently for visual clarity.

TABLE II

NUMBER OF IMAGE FRAMES, KEY POINTS DETECTED, FALSE POSITIVES

(FP) AND FALSE NEGATIVES (FN).

Experiment Num Frames Num Num Num
Nodes FP FN

1 8720 35 3 1

2 14733 (8720 + 6013) 50 0 2

3 14342 (8720 + 5622) 47 3 1

TABLE III

NUMBER OF NODES IN THE TOPOLOGICAL MAP, POSSIBLE LOOP

CLOSURES (LC), ACTUAL LCS AND FALSE LOOP CLOSURES (FP).

Experiment Num Nodes Possible LC Num LC Num FP

1 35 13 8 0

2 50 35 15 1

3 47 27 10 1

closure procedures performed during experiment 1.

It is rather difficult to measure and justify what is

the correct number of key points and where they should

be. Similarly, it is difficult to determine what is a false

negative—key point detection missed—and what is a false

positive—unnecessary key point triggering. Manual tagging

of the video sequence from experiment 1 resulted in 31 key

points—compared to the automatically detected 35 nodes—

and did not result in better loop closure results. The most

important features of the key point detection must be its

ability to repeatedly trigger at same key locations while

keeping the map sparse with very few FPs. From Table II

we can see that the number of missed key points, FNs,

is between 1-2 for each of the experiments, while the

number of FPs is between 0-3. Comparing to the number

of image frames, 8720 − 14733, these are extremely low

numbers showing the discriminatory behaviour, robustness,

and repeatability of the method. Fig. 6 shows an example

of FP key point detection. During this 90◦ turn around

the building the operator is changing flight height. These

changes in vertical velocity result in spikes in the flow signal

which are detected as change in the environment. We have

no threshold for minimum distance between two nodes and

are currently ignoring FP key point detection due to height

TABLE IV

AVERAGE PROCESSING TIMES IN milliseconds FOR THE LOOP CLOSURE

PROCEDURE.

SIFT DB DB
Descriptor Query Update Total

Time [ms] 1654 350 15 2034

Percent [%] 81.92 17.34 0.74 100.0

changes as they are due to manual flight operation and will

not be experienced during automated flights or if vehicle

velocity information was available.

The loop closure has three parts to it: SIFT descriptor

generation, DB query, and DB update2. Table IV shows the

average calculation times for each of these processes. Using

a more efficient implementation on a GPU can bring down

the SIFT descriptor processing time to the neighbourhoods

of 200ms. This, however, is not feasible on an embedded

system like the one used on the UAV. From this table it

can be observed that the vast majority of the processing

time is spent generating SIFT descriptors. The overall loop

closure procedure is around 2 s, however, it is only called

after a key point detection event. The mean and standard

deviation time between key point detections in the three

experiments are µ = 11.03 s, σ = 7.05 s and the mean optical

flow calculation time including filtering and voting is 20ms,
which indicates that the loop closure can be performed in

real-time, even on an embedded system.

An example of a FP loop closure is shown in Fig. 7. There

is approximately 10m between the location where these

nodes were generated in experiments 1 and 3, respectively.

There is enough overlap between the two images and the

SIFT descriptors such that the algorithm deems this a loop

closure.

V. CONCLUSION

We have demonstrated the robustness of optical flow as

a measure to detect significant scene changes in outdoor

2Friedrich Fraundorfer’s bag-of-words algorithm expects the SIFT fea-
tures to be extracted using Andreas Vevaldi’s SIFT extraction code. It was
therefore not possible to try other SIFT implementations or other feature
descriptors, such as SURF.
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(a) (b)

Fig. 6. Example of a false positive key point detection during experiment
3 (Nodes 5 and 6). The second key point (b) was detected due to a sudden
change in height.

(a) (b)

Fig. 7. The similarity between the buildings triggers some false positive
loop closures. Here an example of false positive loop closure between nodes
1 and 17 in experiment 2.

environments in varying and difficult lighting conditions. We

have also shown that optical flow can be used to detect large

changes robustly even when used onboard a highly dynamic

platform, such as a UAV.

The scene change detections were used to define key

locations as nodes in a topological framework. To detect loop

closure we applied a bag-of-words approach.

The system was used to perform topological mapping and

localization on data sets gathered from field trials using our

quad-rotor UAV. A total of four key locations where missed

during the three flights where 132 nodes were detected, while

only generating six false positive nodes in the maps. These

results show that the scene change detection is capable of

detecting key points repeatedly at the same locations in the

environment over several fly-throughs with varying flight and

lighting conditions.

We also experimented mounting the camera at both 45◦

and 90◦ to the direction of motion. The signal magnitude

and hence also the signal-to-noise ratio is lower at 45◦

(experiment 2) . Still, as the results show, Fig. 5(b), the

scene change detection is not compromised by the change

of camera angle. In terms of control for navigation, it is

hence desirable to use 45◦ camera angles for scene change

detection also.

During loop closure, to avoid false positive matches, the

matching threshold of the SIFT matching is set at a high

50%. This results in a number of key locations not being

matched. One possibility for improving the loop closure is

to use geometric verification as mentioned earlier.

The UAV is currently equipped with a single camera

pointing to the left. Addition of a second camera pointing in

the opposite direction, will allow to perform cross-check be-

tween the matches found for each camera. The loop closure

performance can be further improved by taking advantage

of the topology; rejecting matches that are too far away in

terms of topology, e.g. nodes 10 and 0 in experiment 3.

Although the key point detection and loop closure times

allow for real-time processing the results are from offline

processing. Future work also includes implementation of

the vocabulary search for onboard loop closure. This will

allow us to feedback the mapping and localization results

for navigational purposes.
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