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Abstract— In this paper, we study the stability region for a set
of intelligent controllers developed by learning human expert
control skills using support vector machines (SVMs). Based
on the discrete-time system Lyapunov theory, a Chebychev
points based estimation approach is proposed to evaluate the
stability region, a key property of this set of SVM-based human
learning controllers. One of such learning controllers has
been implemented in vertical balance control of a dynamically
stable, statically unstable single wheel mobile robot – Gyrover.
The experimental results validate the proposed scheme for
estimation of the stability region.

I. INTRODUCTION

Controller design for complex and dynamically stable

systems becomes an increasingly important and challenging

topic. These examples include unmanned aerial vehicles

(UAVs), motorcycles, humanoid robots, etc. Many remark-

able results in this area have been obtained owing to the

advances in nonlinear control theory [6], [7]. But, practical

applications of the approaches are limited in control of

these systems because they rest on the exact knowledge

of the system dynamics and accurate models of the plant

nonlinearities, which are usually not trivial to obtain. In

order to relax some of the exact model-matching restrictions,

several adaptive schemes have been introduced to solve the

problem of parametric uncertainties [2], [7]. For those classes

of systems with structure uncertainties and fast-changing un-

modeled dynamics, the schemes usually do not work well. In

general, these systems exhibit dynamics that are highly cou-

pled, nonlinear, and vary substantially depending on precise

configuration of the systems; moreover, friction and other

difficult-to-model physical properties often impact these dy-

namically stable systems violently. In the recent several

years, intelligent controllers developed using artificial neural

network, fuzzy logic, genetic algorithms, or a combination

thereof are appealing to deal with such complicated systems

[5], [8]. However, it is difficult to collect the needed training

data to build a sufficiently accurate learning model for an

intelligent controller, when the dynamically stable systems

are intrinsically unstable and never work in the domain of

interest without a well-worked feedback controller, whereas
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Fig. 1. A physical plant and a HCS controller combined into a feedback
system.

that is our goal. In such a case, modeling human expert

control strategy is one of the promising solutions.

Modeling human expert control strategy (HCS) with neu-

ral network based algorithms, is a fine solution for the control

of dynamically stable systems with unstructured uncertainties

and fast-changing un-modeled dynamics. Additionally, those

algorithms are parallel and easily implemented with hard-

ware circuits. Thus, the algorithms can be executed in a very

high speed to satisfy the real-time requirement. There are

many successful examples. Asade and Liu [1] have imparted

human control skills to a deburring robot. Yang, Xu and

Chen [18] have implemented a different state-based approach

to open-loop skill learning using Hidden Markov Models

(HMM) in the tele-operation control of a space robot system.

In 1998, Montgomery and Bekey [10] proposed a model-

free “teaching by showing” methodology through training a

fuzzy-neural controller for an autonomous robot helicopter.

Despite their successful applications, HCS-based control

methods are not widely accepted in the control community

because this type of methods usually lack rigorous studies,

even for their convergence analysis, such as asymptotically

stable proofs. In addition, raw HCS controllers that have

not been tested, usually diverge very quickly and only very

few ones among them can work. Even for the limited HCS

controllers that are stable, their performances are signifi-

cantly different from each others. Therefore, it is desirable

if we can estimate their stability regions before practical

testing, because the larger their stability regions, the wider

disturbances and model errors tolerable for these HCS con-

trollers. Then, we can save time and efforts in only testing

the few most promising ones. In this paper, an approach to

estimate the stability region for this type of controllers is

proposed. Stability region or domain of attraction around an

asymptotically stable equilibrium is a critical performance

index for locally stable feedback control laws, especially for

this class of learning controllers. This issue has been studied

by a number of researchers [12], [13].
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In the recent several years, support vector machines

(SVMs) have gained popularity for two reasons. First, it is

satisfying from a theoretical point of view: support vector

learning is based on some simple ideas, and provides an

insight into the relationship between inputs and outputs.

Second, it demonstrates high performance in practical appli-

cations. Thus, SVMs have been extensively applied in many

areas, such as pattern identification, function regression, and

even nonlinear equalization modeling, etc., [14], [16].

The paper is organized as follows. Section II describes the

class of nonlinear systems to be controlled and our problems

in this paper. Theorem of Ehilich and Zeller and a Chebychev

points based estimation approach to evaluate the stability

region for the learning controllers are presented in Section

III. In Section IV, the effectiveness of the proposed method

is illustrated via a simulation study based on the data from

learning human expert controlling of a single wheel robot.

Finally, we close the paper by stating the conclusions in

Section V.

II. PROBLEM STATEMENT

If we use the learning controller u to control the system,

we have a closed-loop discrete time dynamic system and it

is described by the difference equations of the form
{

x(k+ 1) = fx(x(k),u(k))
u(k+ 1) = fu(x(k),u(k)).

(1)

In addition, by letting X = [xT uT ]T and f = [ f T
x f T

u ]T , we

obtain

X(k+ 1) = f (X(k)) (2)

and let X̂ = [x̂T uT ]T and f̂ = [ f̂ T
x f T

u ]T , and then an estima-

tion for (2) is given as

X̂(k+ 1) = f̂ (X(k)). (3)

where x̂ = [x̂1, x̂2, ..., x̂n]
T ∈ R

n is an estimation for the state

vector x, f̂x = [ f̂1, f̂2, ..., f̂n]
T : Rn+m → Rn is an estimation

for fx, u = [u1,u2, ...,um]
T ∈R

m is a learning controller, and

fu = [ fn+1, fn+2, ..., fn+m]
T : Rn+m → Rm is an estimation for

the next time human control.

In this paper, support vector machine (SVM) with poly-

nomial kernels will be used as a neural network structure

to learn the human expert control process. After an off-

line training process, we obtain the support values (α and

α∗) and the corresponding support vectors Xi. By inserting

the simple polynomial kernel into SVM formula, we obtain

f̂ (X) = [ f̂1, f̂2, ... f̂m+n]
T , which is a vector and its element

f̂i is a nonhomogeneous form of degree d in X ∈ R
n+m (

containing all monomials of degree ≤ d)

f̂i = ∑
0≤|β |≤d

c jx
β1
1 x

β2
2 ...xβn

n u
βn+1

1 ...uβn+m
m , i = 1,2, ...,n+m,

(4)

where β is a vector (β1,β2, ...,βn+m), and its component βl

is a nonnegative integer, called a multiindex of order |β |=
β1 +β2 + ...+βn+m; and c j ∈R are weight coefficients, j =
1,2, ...,M, where M = (n+m+d

n+m ). By defining

X = [x1,x2, ...,xn,u1, ...,um], (5)

and rearranging the monomials with respect to their orders,

we can write

f̂ (X) =C+AX + g(X), (6)

where C = [c1,c2, ...cm+n]
T is a constant vector, A ∈

R
(n+m)×(m+n) is a constant coefficient matrix, and g(X) =

[g1(X),g2(X), ...,gn+m(X)]T is a vector, and its elements

gi(X) are polynomials where the degree of each term is

greater than or equal to 2, and i = 1,2, ...,n+m.

Assume that m + n multiple-input-single-output SVM

models have been built through the data collected from a

human expert controlling the physical system over a period of

time. It has been proved by Vapnik [17] that any continuous

mapping over a compact domain can be approximated as

accurately as necessary by an SVM given the training data

number is large enough, This implies that for any ε > 0, if

n̄ is the number of sample data, there exists an N > 0, such

that if n̄ > N,

‖ f (x)− f̂ (x) ‖< ε, ∀ x ∈ D ,

where f is the function to be approximated, f̂ is an SVM-

based learning model and D is a compact domain of a finite

dimensional normal vector space.

The following assumptions are held for the SVM-based

regression models.

Assumption 1: For system (3), in the compact domain D ,

the sample data number is sufficiently large and uniformly

distributed.

Remark 1: The assumption 1 is usually required in control

design with neural networks for function approximation [5]-

[8]. Then from the above analysis, we have assumption 2.

Assumption 2: For system (3), in the region D , the learning

precision is high enough.

Let

e = f (X)− f̂ (X).

Then, we can write

X(k+ 1) = f̂ (X(k))+ e. (7)

According to assumption 2, the model (3) is sufficiently

accurate, i.e., e is small enough and can be neglected here.

Inserting equation (6) into (7) gives

X(k+ 1)≈ f̂ (X(k)) =C+AX(k)+ g(X(k)). (8)

If the origin is an equilibrium point of the system, we have

C = [0,0, ...0]T ,

and if not, by redefining the systems states as (X(k)−C),
we yet can drop term C in (8) to obtain,

X(k+ 1) = AX(k)+ g(X(k)). (9)

Note that as the SVM modeling error e and other noises

always exist, even assumed sufficiently small, the left side of

system (9) is approximately equal to the right side. A detailed

description of the system can be found in our previous paper

[11]. In [11], the stable conditions for the closed-loop system

(9) are investigated, whereas we study the stability region of

the closed-loop system (9), if it is stable.
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III. COMPUTATION OF STABILITY REGION

With Assumptions 1 and 2 being satisfied in the region D ,

we rewrite the system (3) as (9). If Ā is defined as AT A− I

and it is a Hurwitz’ matrix, the equilibrium point X = 0 is

strongly stable under perturbations (SSUP). Thus, our task

in this part is to address a scheme to estimate the stability

region (SR) around the point of X = 0 of (9) through using

the Lyapunov function defined as

V (X(k)) = XT (k)X(k). (10)

The set

Ωr = {X |
√

XT X ≤ R}, R > 0, (11)

is contained in the unknown stability region if the inequality

∆V (X) = XT (k)(AT A− I)X(k)+XT(k)AT g(X(k))
+ gT (X(k))AX(k)+ gT (X(k))g(X(k))
= XT ĀX + ḡ(X)
< 0,

(12)

holds for all

X ∈ Ωr, X 6= 0, (13)

where

ḡ(X(k)) = XT (k)AT g(X(k))+ gT (X(k))AX(k)
+ gT (X(k))g(X(k)).

(14)

The problem is to maximize R, which is actually an optimiza-

tion problem, such that (12) - (13) are satisfied. Namely, the

corresponding set Ωr is the largest subset of the domain of

attraction which can be guaranteed with the chosen Lyapunov

function.

Let

s(X) =−∆V (X). (15)

Apparently, s(X) should be strictly positive in Ωr, except for

X = 0. In addition, we reformulate states X from a Cartesian

coordinate into a hyper-sphere coordinate with the following

replacements.

X1 = r cosθ1 cosθ2 · · · cosθn+m−2 cosθn+m−1

X2 = r cosθ1 cosθ2 · · · cosθn+m−2 sin θn+m−1

X3 = r cosθ1 cosθ2 · · · cosθn+m−3 sin θn+m−2

...
...

...

Xi = r cosθ1 cosθ2 · · · cosθn+m−i sinθn+m−i+1

...
...

...

Xn+m = r sinθ1,

(16)

where r is the radius and θ = [θ1,θ2, ...,θn+m−1]
T are the

angles. In this case

V (X) =V (r,θ ) :=V (y) = r2
, (17)

where y is the vector [r,θ1,θ2, ...,θn+m−1]
T . The function

s(X) can be represented with the equation (18).

s(X) = s(r,θ ) = s(y) = akrk + ak−1rk−1 + ...+ a2r2
, (18)

where coefficients ai are functions of the angles θ , (i =
2, ...,k) .

Next, inspired by [15], we address the Chebychev approx-

imation scheme to compute Ωr. In the following, I = [a,b]
denotes a nonempty real interval with I ⊂ R. We define a

set of Chebychev points in the interval I for a given integer

N > 0 by x(N, I) := {x1,x2, ...,xN}, where

xi :=
a+ b

2
+

b− a

2
cos(

(2i− 1)π

2N
), i = 1,2, ...,N. (19)

Let Fm be the set of polynomials s in one variable with

deg(s) ≤ n. Then, the following result is given by Ehilich

and Zeller in [3].

‖s‖I
∞ ≤C

( n

N

)

‖s‖x(N,I)
∞ , (20)

with N > n is valid for all s ∈ Fm and every interval I, where

‖s‖I
∞ := max

x∈I
|s(x)|, (21)

and

C(q) = [cos(
q

2
π)]−1 for 0 < q < 1. (22)

Using (20), the following inequalities

sI
min ≥

1

2

{(

C
( n

N

)

+ 1
)

s
x(N,I)
min −

(

C
( n

N

)

− 1
)

s
x(N,I)
max

}

,

(23)

sI
max ≤

1

2

{(

C
( n

N

)

+ 1
)

s
x(N,I)
max −

(

C
( n

N

)

− 1
)

s
x(N,I)
min

}

.

(24)

are given by Gartel in [4], where

sI
min := min

x∈I
s(x), sI

max := max
x∈I

s(x). (25)

For trigonometric polynomials, the set of Chebychev

points in I are defined with following equality

xi = a+
i− 1

N
(b− a), i = 1,2, ...,N,

where a and b belong to the interval [0,2π ] and N > 2n.

We can extend the inequalities (20), (23) and (24) for

polynomials in one variable to several variables using the

following replacements. The interval I is replaced by

Î = [a1,b1]× [a2,b2]× ...× [an+m,bn+m], (26)

which represents a hyper-rectangle. For the degree of s with

respect to the i-th variable xi we introduce the abbreviation

ni and the set of Chebychev points in Î is given by

x(N̂, Î) :=x(N1, [a1,b1])× x(N2, [a2,b2])× ...

× x(Nn+m, [an+m,bn+m]),
(27)

where Ni is the number of Chebychev points in the interval

[ai,bi]. Then, the inequalities

sÎ
min ≥

1

2

{

(K + 1)s
x(N̂,Î)
min − (K − 1)s

x(N̂,Î)
max

}

, (28)

sÎ
max ≤

1

2

{

(K + 1)s
x(N̂,Î)
max − (K − 1)s

x(N̂,Î)
min

}

. (29)

with

K =
n+m

∏
i=1

C(
mi

Ni

), Ni > ni, i = 1,2, ...,m+ n
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are achieved.

Using the theorem of Ehilich and Zeller in [3], we can find

out with following inequality whether the polynomial s(y) is

strictly positive in a hyper-sphere with radius r (without the

origin),

(K + 1)s
y(N̂,Î)
min − (K − 1)s

y(N̂,Î)
max > 0, (30)

where the angles θ vary in the interval [0,2π ] and the radius

r varies in the interval (0,r]. If the inequality (30) holds, the

following inequality are also valid,

(K + 1)s(y[i])− (K− 1)s(y[ j])> 0, i, j = 1,2, ..., N̂ (31)

with

s
y(N̂,Î)
min ≤ s(y[i]) ≤ s

y(N̂,Î)
max , i = 1,2, ..., j, ..., N̂ (32)

where y[i],y[ j] ∈ y(N̂, Î) are two Chebychev points. For N̂

Chebychev points we have N̂2 inequalities of type (31) which

are equivalent to (30). According to (28), for i 6= j, the

inequalities (31) provide us with the sufficient conditions for

the strict positivity of polynomial s(y).
In addition, for i = j, the inequalities (31) can be written

as

s(y(i)) = s(r,θ ) > 0, i = 1,2, ..., N̂, (33)

which give us the necessary conditions for the strict positive

of polynomial s(y).
Let r∗ be the maximum radius of the hyper-sphere, in

which the polynomial s(y) is strictly positive. The hyper-

sphere will give us the largest subset of the stability region

with the chosen Lyapunov function V (X). If the inequalities

(31) are numerically solved, an inner approximation r∗in
to the maximum radius r∗ is determined. The solution of

inequalities (33) gives us an outer approximation r∗out to r∗.

In this case

r∗in ≤ r∗ ≤ r∗out (34)

is valid. The maximum is equal to R∗ = (r∗) and gives the

set Ωr∗

Ω∗
r = {X |

√
XT X ≤ R∗}, R > 0, (35)

where R∗ lies

R∗
in ≤ R∗ ≤ R∗

out (36)

and Ωr∗ is the largest subset of the stability region with the

given Lyapunov function.

The main tool in achieving this goal is the use of an

appropriate Lyapunov function. In fact, there are almost

infinity kinds of Lyapunov functions that can be applied

for this aim. However, a large number of experiments show

that quadratic Lyapunov functions usually can work out a

desirable stability region if an SVM learning controller could

have fine performance in practical control experiments. In the

following we will address the type of quadratic Lyapunov

functions.

V (X) = XT PX , (37)

where P is a positive definite symmetric (n+m)× (n+m)
matrix. Assume that the matrix

Q =−(AT PA−P), (38)

is positive definite, V (X) is a valid Lyapunov function for

the system X(k+1) = AX(k), i.e., the linear part of (9). The

relationship among A, P and Q is given by the the following

theorem [9].

Theorem 1: If these are positive definite matrices P and

Q satisfying (38), then A is stable. Conversely, if A is stable,

then given any Q, equation (38) has a unique solution; if Q is

positive definite, P is positive definite, and if Q is symmetric,

P is symmetric as well.

We need to ensure that the systems states and control

inputs can vary in a large area, while the system (3) is still

stable. In Section III, a scheme to estimate the SR based on

the Lyapunov function as (10) has been proposed. To take the

advantage of this, we will present an approach to transform

the type of Lyapunov function into (37) to the formation of

(10).

As P is symmetric, define

P =











p1,1 p1,2 · · · p1,n+m

p1,2 p2,2 · · · p2,n+m

...
...

. . .
...

p1,n+m p2,n+m · · · pn+m,n+m











. (39)

By means of the Cholesky Factorization, as a positive definite

symmetric matrix, P can be efficiently decomposed into

a lower and upper triangular matrices with the following

equation.

P = LT L. (40)

Here the matrix L is an upper triangular matrix in the form

L =















l1,1 l1,2 l1,3 · · · l1,n+m

0 l2,2 l2,3 · · · l2,n+m

0 0 l3,3 · · · l3,n+m

...
...

. . .
. . .

...

0 0 · · · 0 ln+m,n+m.















(41)

The element of the matrix L are calculated as follows.

l1,1 =
√

p1,1, l1, j =
p1., j

l1,1
, j = 2, ...,n+m

li,i =
√

(pi,i −∑i−1
k=1 l2

k,i), i = 2, ...,n+m

li, j = 1
li,i
(pi, j −∑i−1

k=1 lk,ilk, j), i = 2, ...,n+m− 1,

j = i+ 1, ...,n+m.

(42)

By defining

X̃ = LX , (43)

we can rewrite the system (9) as

X̃(k+ 1) =ÃX̃(k)+ g̃(X̃(k))

=LAL−1X̃(k)+Lg(L−1X̃(k)),
(44)

where X̃ is the new state vector. Apparently, X̃ = 0 is still

an equilibrium point of the new state space representation

(44). We can present the Lyapunov function (37) with the

new state vector X̃ ,

V (X) = XT PX = XT LT LX = X̃T X̃ := Ṽ (X̃). (45)
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Therefore, we have a new state space equation

X̃(k+ 1) = ÃX̃ + g̃(X̃(k)), (46)

with the Lyapunov function

Ṽ (X̃) = X̃T X̃ . (47)

Assume that the new system (46) is SSUP. Following the

scheme described in this Section, using the system (46) and

its Lyapunov function (47), we compute a maximum radius

R̃∗ of a new estimate Ωr̃ for the stability region,

Ωr̃ = {X̃ |
√

X̃T X̃ ≤ R̃∗}. (48)

where Ωr̃ is a n+m dimensional sphere for the new states

X̃ , while for the original states X , the maximum radius R̃∗

defines a n+m dimensional ellipsoid

Ωr̃∗ ={X |
√

(LX)T LX ≤ R̃∗}
={X |

√
XT PX ≤ R̃∗}.

(49)

The goal here is to design a symmetric positive definite

P, such that R̃∗ is maximized. Since P = LT L, it is more

convenient to design L to achieve our goal. As L is a upper

triangular (n+m)× (n+m) matrix, we have

N̄ =
(n+m)(n+m+ 1)

2
(50)

independent variables that we can choose. In addition, two

constraints should be satisfied in selecting the N̄ variables:

(1) Q is positive definite; (2) |L| ≈ 1, where |L| denotes the

determine of matrix L. According to Theorem 1, if Q is

positive definite, then P is positive definite. The aim of the

second constraint |L| ≈ 1 is to avoid that the increase of R̃∗

arises from the increase of |L| or |P| .

It is possible that the estimation Ωr̃∗ (49) for the stability

region for the system (9) is better than the estimation Ωr∗

(35), i.e., the volume of the set Ωr̃∗ is larger than the volume

of the set Ωr∗ . However, this kind of approximation has its

limitations, because it is influenced by the chosen Lyapunov

function, namely the given P matrix.

In fact, the size of the stability region is the property of

the systems (9) and should be independent on the selected P

matrix. In addition, the shape of the stability region may be

complicated and unlikely an ellipsoid. Therefore, we should

vary the P matrix in R
(n+m)×(n+m). Suppose that we have

worked out all the Ωr̃∗ referring to all variants of the P matrix

and combine them into a union MΩr , this union MΩr is still

a subset of the stability region and is larger than any single

estimation Ωr̃∗ .

IV. EXPERIMENTAL STUDY

In this section, we will provide an experimental result to

illustrate the theoretical analysis and the estimate scheme for

the stability region.

Fig. 2. Gyrover: A single-wheel robot.
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Fig. 3. Definition of the Gyrover’s system parameters.

A. Experimental System – Gyrover

The single-wheel gyroscopically-stabilized robot, Gyrover,

takes advantage of the dynamic stability of a single wheel.

Fig. 2 shows a photograph of the third Gyrover prototype.

Gyrover is a sharp-edged wheel with an actuation mecha-

nism fitted inside the rim. The actuation mechanism consists

of three separate actuators: (1) a spin motor, which spins

a suspended flywheel at a high rate and imparts dynamic

stability to the robot; (2) a tilt motor, which steers the

Gyrover; and (3) a drive motor, which causes forward and/or

backward acceleration by driving the single wheel directly.

To represent the dynamics of the Gyrover, we need to

define the coordinate frames: three for position (X ,Y,Z), and

three for the single-wheel orientation (α,β ,γ). The Euler

angles (α,β ,γ) represent the precession, lean and rolling

angles of the wheel respectively. (βa,γa) represent the lean

and rolling angles of the flywheel respectively. They are

depicted in Fig. 3.

B. Task and Experimental Description

The aim of this experiment is to illustrate the proposed

theorems and scheme through testing an SVM-based learning

controller with Gyrover.

The control problem consists of controlling Gyrover in

maintaining it vertically balanced, i.e., keeping it from falling

down to the ground. We have built up an SVM-based learning

controller through learning imparted from human expert’s

demonstrations.

There are mainly two control inputs available: U0 con-

trolling the rolling speed of the single wheel γ̇ , and U1
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controlling the angular position of the flywheel βa. The

spinning rate of the flywheel is given a particular value

that is not treated as a control input. In the manual-model

(i.e., controlled by a human), U0 and U1 can be controlled

from a joystick, and in the auto-model, they are sent from a

software based controller running in an on-board computer.

In these experiments, we only use U1, while U0 is fixed to

zero (U0 = 0) all the time. The two lean angles β and βa are

used as the state variables and U1 is the control input in the

SVM-based learning model (1), i.e., x= [β βa]
T and u =U1.

A human expert controls Gyrover to maintain a balance

and then generates about 2400 training samples. Table I

displays some raw sensor data from the human expert control

procedure.

TABLE I
SAMPLE HUMAN CONTROL DATA.

states controller

β βa U1

5.5034 2.4023 179.0000

5.7185 2.3657 176.0000

5.6012 2.1313 170.0000

5.1271 2.1460 170.0000

5.9433 1.0425 143.0000

After calibrating the data into the same scale [−1,1],
respect to individual variable, we divide the sample data

into two groups: a training data set and a testing data set

to train an SVM-based learning model, which is also the

controller. In the learning model, Vapnik’s polynomial kernel

of order 2 is used. Three three-input-one-output SVM models

are built for the three variables β̂a, β̂ , and U1. In each of the

SVM models the three current values are served as inputs.

For β̂a(k + 1), β̂ (k + 1), and u(k + 1), we have 977, 989

and 905 support vectors generated, respectively. The SVM-

based learning models are quite accurate. Fig. 4 shows the

comparison of U1 from the Human control and SVM-based

learning model.
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Fig. 4. U1 comparison of the same Human control and SVM-based learner.

By expanding the three SVM models according to the

Vapnik’s polynomial kernel we obtain the following state

space equation

X(k+ 1) = AX(k)+ g(X(k)), (51)

where X = [β̂a, β̂ , U1]
T := [x1,x2,x3]

T ,

A =





0.8818 0.0074 −0.2339

−0.1808 0.8615 −0.2389

0.0154 −0.0007 0.5167



 (52)

and

g(X)=

















0.0004x2
1 − 0.0013x1x2 +0.0028x1x3 − 0.0017x2x3

−0.0006x2
2+ 0.0027x2

3

0.0004x2
1 + 0.0002x1x2 +0.0034x1x3 + 0.0017x2x3

+0.0003x2
2+ 0.0049x2

3

0.0002x2
1 + 0.0002x1x2 −0.0002x1x3 − 0.0001x2x3

−0.0001x2
2− 0.0007x2

3

















(53)

Then, as r(A) = 0.8680, A is stable. Thus, the system is

SSUP.

Next, we need to estimate the stability region Ω. As

Ā = AT A− I =





−0.1895 −0.1492 −0.1551

−0.1492 −0.2578 −0.2079

−0.1551 −0.2079 −0.6212



 (54)

is negative definite, we will use the following positive

definite function V (X) to estimate the stability region for

this learning controller.

V (X) = XT X . (55)

The first difference of the function is given by

∆V(X) = (AX + g(X))T (AX + g(X))−XTX

= −0.19x2
1 + 0.057x3

1+ 0.0036x4
1− 0.0298x1x2

− 0.17x2
1x2 − 0.008x3

1x2 − 0.26x2
2 − 0.085x1x2

2

+ 0.015x2
1x2

2 + 0.051x3
2+ 0.016x1x3

2 + 0.0046x4
2

− 0.295x1x3 + 0.37x2
1x3 + 0.049x3

1x3 − 0.42x2x3

+ 0.32x1x2x3 − 0.060x2
1x2x3 + 0.28x2

2x3

+ 0.038x1x2
2x3 + 0.031x3

2x3 + 0.15x2
3− 0.037x1x2

3

+ 0.25x2
1x2

3 + 0.83x2x2
3 − 0.033x1x2x2

3 + 0.056x2
2x2

3

− 0.50x3
3 + 0.49x1x3

3 + 0.076x2x3
3 + 0.32x4

3,

(56)

and the polynomial p(X) is −∆V (X). We can now express

the polynomial p(X) in a polar coordinate by using the

following transformation.

x1 = r cosθ1 sinθ2,

x2 = r cosθ1 cosθ2,

x3 = r sin θ1.

(57)

Then the interval I can be given as

Î = [0,1]× [0,2π ]× [0,2π ]. (58)

We find out an inner and outer approximation to the

maximum radius r∗ by the inequalities (31) and (33) . With

192 Chebychev points the following approximation to r∗ has

been found by means of the scheme provided in the section

III.

0.424 ≤ r∗ ≤ 0.426.

Therefore,the lean angle β is in a region of [−22,22] degree,

which is large enough to allow Gyrover staying vertically for

quite a while.
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Fig. 5. Sensor data of the SVM-based learning control results.

C. Experimental Results

By using the SVM-based learning controller to execute

the experiment of balance, the experiment is successful and

Gyrover can independently maintain itself balanced for more

than 5 minutes.

V. CONCLUSION

In this paper, convergence analysis for a class of intelligent

controllers through learning human expert control skills

using SVMs are investigated. One Chebychev approximation

based scheme is proposed to estimate stability region, the

key property for this class of intelligent controllers. An ex-

perimental study is given to validate the proposed estimation

approach and the theoretical discussions therein. The further

exploration for methods to enlarge the estimated stability

region is a part of the future work.
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