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Abstract—In this paper, we address a method for improving 

the accuracy of the feature map from the extended Kalman 

filter based SLAM (EKF SLAM) by estimating the systematic 

parameters of the robot. Most error of the robot while traveling 

is divided into two categories: systematic and non systematic 

error. The systematic error contributes much more to odometry 

errors than non systematic one on most smooth indoor surfaces.  

So, we appended the systematic parameters of the robot to the 

state vector of EKF SLAM as its elements and estimated the 

systematic parameters while performing the prediction and 

update state of EKF SLAM. Because the additional elements to 

be estimated are appended to the state vector of the EKF SLAM, 

this is called an augmented EKF SLAM (AEKF SLAM). 

Experimental result is presented to validate that our AEKF 

SLAM is able to generate a more accurate feature map than 

conventional EKF SLAM by decreasing odometric error of the 

robot.  

I. INTRODUCTION 

O navigate in an unknown environment, an autonomous 

mobile robot needs to build a map by the relative 

observations of environment and simultaneously to compute 

the pose of the robot by using this map. This is called 

Simultaneous Localization And Mapping (SLAM) problem 

in mobile robotics. 

Two analytic approaches have been widely used to solve 

SLAM. The first uses an Extended Kalman Filter (EKF) to 

generate the feature map and to manage the associated 

uncertainty by generating a stochastic feature map with a 

single state vector and a covariance matrix [1]. Successful 

SLAM algorithms that use EKF have been developed for 

various applications [2]-[9]. The second analytic approach to 

SLAM uses a Rao-Blackwellized Particle Filter (RBPF) 

[10],[11]. One version, FastSLAM [12],[13] uses a particle 

filter to represent potential trajectories of the robot; the 

probability that a particle survives is proportional to the 
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likelihood of observation given that particle and its map. 

FastSLAM can therefore represent an arbitrary distribution 

over the robot pose and thus operate when noise is 

non-Gaussian. FastSLAM is better than EKF SLAM at 

solving the data association problem for detecting loop 

closures.  

 Most errors in SLAM are caused by biased noises arising 

from unequal wheel diameters, wheel diameters that differ 

from their nominal values, wheel misalignment, and 

uncertain effective wheel base [14]. These biased noises 

cause a velocity difference between the left and right wheels, 

which skews the robot’s odometric trajectory to one side and 

conventional SLAM methods including EKF/Fast SLAM 

cannot guarantee good performance in this situation because 

they assume zero mean noise when correcting odometric 

error.  

Borenstein and Feng [14] divided possible error sources in 

the robot into two categories including systematic and non 

systematic errors and developed a calibration technique 

called UMB method which calibrated for systematic errors of 

the differential wheeled mobile robot. Doh et al. [15] 

proposed a calibration method called PC-method for 

compensating the systematic error. Antonelli [16] identified 

3-parameters odometric model and presented a calibration 

method based on the lest-squares technique. These odometry 

calibration methods are off-line method, so the odometry 

calibration is carried out after traveling a specific path.  

Larsen et al. [17] proposed an on-line calibration method 

for the systematic error using an Augmented Extended 

Kalman Filter (AEKF) which simultaneously estimates the 

robot pose and the parameters characterizing the systematic 

error. Martinelli [18] extended the AEKF based approach 

which estimated not only systematic errors but also non 

systematic errors. Yun [19] suggested an odometric error 

calibration method using AEKF and inherent home 

positioning for differential wheel typed home service robot. 

However, an accurate feature map is needed to implement the 

AEKF based approach, because it is modified from the EKF 

localization method.  

In this paper, we apply the AEKF method to the SLAM 

problem. The AEKF computes the parameters characterizing 

the systematic error using a feature map from EKF SLAM 

and the EKF SLAM adopts the systematic parameters of the 

robot for compensating an odometry error in its prediction 

step. Because the state of EKF SLAM and systematic error 

parameters are dependent and complimentary to each other, 

AEKF SLAM is able to generate a more accurate feature map 

by decreasing odometry error of the robot.  
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This paper is organized as follows. Section II presents a 

short primer on the odometry error model of differential 

wheeled robot. Section III presents the architecture of our 

AEKF SLAM framework for generating an accurate feature 

map. In Section IV, the performance of the proposed scheme 

is evaluated. Conclusions are presented in Section V. 

II. ODOMETRIC ERROR MODEL OF DIFFERENTIAL WHEELED 

ROBOT 

Most error of the robot while traveling is divided into two 

categories: systematic and non systematic error. Non 

systematic errors are those errors that are caused by 

interaction of the robot with unpredictable features of the 

environment. These non systematic errors are generated from 

uneven floor of wheel-slippage due to the slippery floors, 

over-acceleration, fast turning, external/internal forces and 

nonpoint wheel contact with the floor [14]. It is almost 

impossible to predict these non systematic errors.  

Systematic errors are vehicle specific and usually caused 

by imperfections in the design and mechanical 

implementation of a mobile robot. In case of differential 

wheeled robot, several sources which generate systematic 

errors exist including unequal diameters between left and 

right wheel, difference between actual average of wheel 

diameters and nominal diameter, misalignment of wheels and 

uncertainty about the effective wheelbase. Especially, 

unequal wheel diameters and the uncertainty about the 

effective wheel base are two most notorious systematic error 

sources [14].  

The odometry error of the robot is more affected by the 

systematic error in most of the indoor environment. Unequal 

wheel diameters noise produce a velocity difference between 

the left and right wheels of the robot, making its odometry 

trajectory lean toward left or right, even when the robot 

actually moves straight and the uncertainty about the 

effective wheel base has an effect only when turning. 

A simple way to characterize the odometry error for a 

mobile robot with a differential drive system is obtained by 

modeling separately the error in the translation of each wheel 

[20]). Let rl, rr and b be the nominal value of left/right wheel 

diameter and the robot wheel base (Fig. 1), respectively and N 

be the number of wheel rotation. The linear and angular 

velocity of the robot can be computed as follows: 

 

/ /2l r l rD r N                                 (1) 

/ /
/

2l r l r
l r

D r N
v

dt dt

 
                             (2) 

 
2

l rl r
N r rv v

v
dt

  
                           (3) 

 21 r lr l
r r Nv v

b b dt




  
                   (4) 

 

Let the systematic parameters of the robot for left/right 

wheel diameter and robot wheel base be l, r and b, 

respectively. The actual diameter of left/right wheel, *

/l r
r and 

actual wheel base of the robot, *b , can be defined as follows:  
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Then actual translation velocity of the left/right wheel is 

calculated as: 
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So, the actual linear and rotate velocities of the robot 

considering the systematic error are represented as: 
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III. IMPROVE THE ACCURACY OF THE FEATURE MAP USING 

SYSTEMATIC PARAMETER ESTIMATION 

The EKF based SLAM is very sensitive to the system and 

sensor noise model. Therefore, an accurate noise modeling is 

required. However it is difficult to find accurate 

motion/sensor models and noise variances in the real robot 

system. In addition to this, since EKF has a usual assumption 

of white Gaussian noise, if there are colored noise or 

systematic bias error, EKF SLAM cannot guarantee an 

accurate feature map. For example, if the distance between 

the left and right wheels or the wheel radius is not precisely 

known, the time update of EKF SLAM will lead the estimates 

to drift. In the absence of sensor measurements, this could 

cause the estimation errors to grow unbound.  

These odometry errors of the robot can be reduced by 

estimating the systematic parameters l, r and b based on the 

AEKF method. In AEKF SLAM, the systematic parameters 

of the robot are augmented to the state vector as its elements. 

Thus, the systematic parameters, the robot pose and the 

feature positions are updated using the Kalman gain and the 

innovation in the measurement update step. The updated 

 
Fig. 1.  Model of differential wheeled mobile robot with relevant 

variables. 
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systematic parameters reduce the odometric error of the robot 

in the prediction step. Then the reduced odometric error in the 

prediction step makes the feature map of EKF SLAM more 

accurate. Finally, the proposed AEKF SLAM can provide an 

accurate feature map and well estimated systematic 

parameters of the robot simultaneously after traveling in an 

unknown environment.  

A. Overall Architecture of AEKF SLAM 

Let xw(k)=[l, l, b]
T
 be a state vector which has the 

systematic error parameters as its elements, xv(k)=[xv(k), yv(k), 

v(k)]
T
  be the estimated robot pose at time k, xm(k)=[x1, y1, …, 

xn, yn]
T
 be the feature position vector which has the positions 

of the observed features. Then, the state vector for the EKF 

SLAM with systematic error parameter is defined as follows: 
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The covariance matrix P(k) which represent the uncertainty 

of the robot state vector is defined as follows: 
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Let ˆ ( )kx and ˆ ( )kP be the estimated state vector and 

covariance. Then the filter recursively updates the mean 

ˆ ( )k
x  and covariance ˆ ( )k

P of the state by combining the 

predicted mean ˆ ( )k
x  and covariance ˆ ( )k

P  with current 

noisy measurement ( )kz .   

The AEKF SLAM consists of two steps; prediction and 

update step (Fig. 2) and the motion model of the robot in the 

prediction step is modified for considering the systematic 

parameters of the robot. 

B. AEKF SLAM for Improving the Accuracy of  the 

Feature Map 

As we mentioned before, the AEKF SLAM is divided into 

two steps: prediction and update step. 

1) Prediction Step:  In the prediction step, when the robot 

pose at time k-1 is ˆˆ ˆ ˆ( 1) [ ( 1), ( 1), ( 1)]Tv v v vk x k y k k       x
 

and the control command of the robot between time k-1 and k 

is u(k)=[vl, vr]
T
 which has the translation velocities of left and 

right wheel. Then the state vector and covariance of EKF 

SLAM at time k are predicted as follows: 
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where, f(·) is a motion model of the robot considering the 

systematic parameters.

  

 

 

 
 

 
 

 

ˆ ˆ ˆ( ) ( 1), ( 1), ( )

ˆ ˆ
ˆcos ( 1)

2
ˆ ( 1) ˆ ˆ

ˆˆ ( 1) sin ( 1)
2

ˆ ( 1) ˆ ˆ

ˆ

v v w

l l r r

v

v
l l r r

v v

v
r r l l

b

k k k k

v v
dt k

x k
v v

y k dt k

k
v v

dt
b

 


 



 



  





 



  

 
   
 
  

  
       

  
   

 
 
 

x f x x u

      (14) 

 

 

where b is the nominal value of left/right wheel diameter and 

the robot wheel base. The covariance of the state vector is 

also predicted as follows: 
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Fig. 2. Overall architecture of AEKF-SLAM. It has a same structure 
as standard EKF SLAM and the motion model of the robot in the 

prediction step is modified for considering the systematic parameters of 

the robot. 
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where,  x
f and  u

f are jacobians of the robot motion model 

w.r.t the robot state vector and the control command, 

respectively and kQ  represents the error covariance matrix of 

the motion model. In this paper, the value of [ , ]
left rightv v   is 

set to [0.3 / sec, 0.3 / sec]m m  and these are three times larger 

than actual standard deviation for generating a zero mean 

Gaussian noise.  

2) Update Step: In update step, let ˆ ˆ[ , ]Ti i im x y be the 

position of an i th measured feature which already exists in 

the state vector ˆ ( )kx  and this feature position can be 

represented as its range (), and bearing (), based on the 

predicted robot pose, ˆˆ ˆ ˆ( ) [ ( ), ( ), ( )]Tv v v vk x k y k k   x . 

 

 

2 2

1

ˆ
ˆ ˆ ( )

ˆ

ˆ ˆ ˆ ˆ( ( )) ( ( ))

ˆ ˆ ( ) ˆtan ( )
ˆ ˆ ( )

i

i i v

i

i v i v

i v
v

i v

k

x x k y y k

y y k
k

x x k









 


 



 
   

 

   
 

   
  

  

z h x

                      

 (19) 

 

This feature is measured from the sensor in terms of its range 

and bearing which are given as [ , ]T

i i i z , then we can 

update mean and covariance of the robot state by following 

process: 
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where, ih is the jacobian matrix of the observation model 

w.r.t the ˆ ( )k
x , Rk is measurement noise covariance matrix 

whose elements  and are set to [0.1 , 1 180 ]m rad , 

respectively, and Kk is a Kalman gain. Then the mean and 

covariance of the robot state is updated by (22) and (23), 

respectively. 

3) State Augmentation: Let n be the number of features in 

the state vector ˆ ( )k
x . If the n+1 th feature, zn+1, which does 

not exist in the state vector, is measured in terms of its range 

() and bearing () in the robot centered frame, this new 

feature is added to the state vector through following process. 

Let zn+1=[ n+1, n+1]
T
  be the position of new feature in the 

robot centered coordinate, then zn+1 is transformed to the 

world coordinate frame as follows:  
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Suppose that 𝐱∗ is the state vector of the robot which includes 

a position of newly measured feature,  
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and the covariance of the state vector *ˆ ( )kx is computed as 

follows: 
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IV. EXPERIMENTAL RESULTS 

The EKF-SLAM with systematic parameter estimation has 

been evaluated both simulated and real indoor environment. 

For the simulation environment, we used the Matlab 

simulation developed by Bailey et al [21]. In fact, the 

packages served as an excellent platform for learning and 

analyzing existing Kalman filter to compare the performance 

of the proposed SLAM method against. With the vehicle 
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model used in Bailey’s simulation program being the 

Ackerman model [22], we had to modify it to a differential 

wheel model [23] and also set the maximum detection range 

of the sensor to 4m. An update step is carried out after eight 

consecutive prediction steps and this helps in reducing the 

computational burden of the SLAM algorithm.  

The real experiment has been carried out on well-known 

data sets, named as Freiburg building [24]. In the Freiburg 

building data set, the size of map is 40×18m and odometry 

and range measurements were also recorded by a Pioneer and 

a SICK laser scanner. In the middle of the map, a long 

corridor exists and this is a good for testing the odometric 

error compensating performance of the EKF SLAM.  

A. Simulation Result 

The simulation experiment was carried out under biased 

noise which represented the systematic error of the robot. The 

simulation environment was a cyclic path spanning a space of 

approximately 15x15m. The robot starts from the lower left 

section of Fig. 3 and eventually returns to the start position. 

To simulate the performance of EKF SLAM working under 

the biased noise, we deliberately added two types of error of 

the robot’s left and right wheel velocities. The first one was a  

zero mean Gaussian noise with l  = 0.1m/s and r = 0.1m/s 

and the second was additional 1% and 2% of the left and right 

wheel velocities, respectively. Thus, let 𝑣𝑙
∗  and 𝑣𝑟

∗  be the 

actual translation velocity of left and right wheel, respectively, 

the nominal velocities 𝑣𝑙  and 𝑣𝑙   which were used to compute 

the odometry pose of the robot was calculated as follows: 
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where, N(0,2
) means a Gaussian noise with zero means and 

𝜎2 variance. In addition to this, we subtracted 1% noise to the 

effective wheel base of the robot, so nominal effective wheel 

base of the robot is 

 
* *0.01b b b                                 (35) 

 

where b
*
 is actual effective wheel base of the robot and it is 

set to 0.4m in this paper. 

  The feature maps were generated using the standard EKF 

SLAM and the proposed AEKF SLAM methods (Fig. 3). The 

RMS error in AEKF SLAM just before loop closing was 

much smaller than the one in the EKF SLAM (Table I). 

Because the ground-truth pose of the robot was available in 

the simulator, we could test the filter consistency by using the 

Normalized Estimation Error Squared(NEES): 
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k k k k k k   x x P x x                   (36)  

 

Multiple Monte Carlo runs and computing the average NEES 

was carried out for evaluating the consistency of EKF/AEKF. 

Given N runs, the average NEES computed as follow:  
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In this research, 30 Monte Carlo simulations were 

performed with the two sided 95% probability concentration 

region and it is bounded by the interval [2.19, 3.93]. If 𝜀 𝑘  

rises significantly higher than the upper bound, the filter is 

optimistic. If it tends below the lower bound, the filter is 

conservative. Optimistic means that estimated covariance of 

the robot is smaller than the actual one [25]. 

The EKF became optimistic after 500 steps (Fig. 4). This 

 
(a) A feature map and trajectory from the conventional EKF SLAM. 
(Blue solid line: ground truth trajectory, Red solid line: EKF SLAM 

trajectory, Green thin line: connects the way points which are used for 

control the robot in the simulator. Blue star: ground truth feature 
position, Red cross and ellipse: feature positions and their uncertainty 

ellipse from EKF SLAM 
 

 
(b) A feature map and trajectory from the AEKF SLAM. 

 

Fig. 3.  The feature maps and trajectories from conventional EKF and 

AEKF SLAM in the simulation environment with biased noise. 
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TABLE I 

RMS ERROR OF THE EKF/AEKF SLAM JUST BEFORE LOOP CLOSING IS 

DETECTED 

 EKF SLAM AEKF-SLAM 

RMS error (m) 2.223 0.4 
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means that the estimated covariance of EKF SLAM does not 

contains the ground truth pose of the robot and EKF fails to 

compensate the odometric error accurately. However AEKF 

did not become optimistic and remained consistent. 

In AEKF SLAM, the systematic parameter of the robot, 

xw(k)=[l, r, b]
T
, should be [0.99, 0.98, 1.01]

T
, because we 

appended 1% and 2% noise to the translation velocity of the 

left and right wheel in (34) and 1% noise to effective wheel 

base in (). Finally estimated systematic parameters via 

systematic parameter estimation in AEKF frame and 

estimated value is [l, r, b]
T 

= [0.9920, 0.9814, 1.0072]
T
 (Fig. 

5). 

B. Real Experiment in the Corridor Environment 

Because a long corridor exists in the Freiburg building and 

the corridor a rich environment to extract the line segment 

(Fig. 6), we extracted the line feature from the laser scanner 

measurements data. The systematic error of the robot skews 

the robot’ odometric trajectory to right, even when the robot 

actually moves straight (Fig. 7). Then, we generated the line 

based feature map using EKF and AEKF SLAM (Fig. 8). The 

line feature from the range measurements data, [ , ]T

i i il   , 

is parameterized by its distance 0i  from the origin and the 

direction ( , ]i    of the normal passing through the 

origin and we adopt the measurement equation of the line 

feature for applying EKF SLAM from Garulli’s method [26]. 

To check the performance of the odometry error 

compensation in the real environment, we selected two walls 

at both ends of the corridor, lstart and lend (Fig. 8a).  If the 

SLAM algorithm compensates for the odometric error 

perfectly, the parameters of these two lines should be exactly 

same.  Let the Dl be the Euclidean distance between two lines 

lstart and lend .  

 

   
2 2

l start end start endD                    (38) 

 

Dl from AEKF-SLAM was much smaller than the one from 

the EKF SLAM (Table II). This result also shows that the 

AEKF SLAM can compensate the odometric error more 

exactly and generate more accurate feature map than the EKF 

SLAM in the real environment. 

 

 

V. CONCLUSION 

In this paper, we have proposed the AEKF SLAM for 

increasing the accuracy of EKF SLAM. In AEKF SLAM, the 

systematic parameters of the robot are estimated and these 

systematic parameters of the robot are used for compensating 

the odometric error of the robot in the prediction step. The 

online estimation of systematic parameters was implemented 

in the EKF SLAM process by augmenting the systematic 

parameters as the elements of the EKF SLAM. 

So the proposed AEKF SLAM was able to generate a 

TABLE II 
THE LINE PARAMETERS AT BOTH ENDS OF THE CORRIDOR IN FREIBURG DATA 

SET 

 lstart = [, ] lend = [, ] Dl 

EKF SLAM [1.7359, 1.3063] [2.3590, 1.2768] 0.6058 

AEKF-SLAM [1,7407, 1.3740] [1.6519, 1.3888] 0.0900 

 
 

 

 

 
Fig. 7.  Robot trajectory and feature map of Freiburg data set based on 

the odometry. Green solid arrows indicate that the systematic error 

makes the robot’ odometric trajectory lean toward right, even when the 
robot actually moves straight.   

 
 

Fig. 6.  University of Freiburg, building 079 [23]. 

 
Fig. 5.  Convergence of the systematic error parameters according to 

the time step Red, green and blue solid lines represent the systematic 

error parameters l, r and  b, respectively. 

 
Fig. 4.  Average NEES of the robot pose state over 30 Monte Carlo runs. 

The horizontal dashed line mark the 95% probability concentration 
region for a 3-dimensional state vector. Blue and red solid lines indicate 

the average NEES of EKF and AEKF SLAM, respectively. 
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feature map while estimating a proper set of systematic 

parameters. For this reason, we could model the systematic 

error parameters of the robot and reduce the biased motion 

noise. Comparing the experimental results in simulation/real 

scenarios show that compensating an odometry error of the 

robot by using the systematic parameters of the robot. 

Estimating systematic parameters enhances the accuracy of 

the EKF SLAM, thus the proposed AEKF SLAM shows a 

superior accuracy in the feature map than EKF SLAM. 
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(a) The line based feature map from EKF SLAM 

 

 
(b) The line based feature map from AEKF SLAM 

 

Fig. 8.  Robot trajectory and feature map of Freiburg data set based on 
the trajectory from the EKF and AEKF SLAM. Red/Blue solid line is 

the robot trajectory from the SLAM process, green solid lines represent 

the line features which are generated from the Freiburg data set and 
black solid lines mean that the position of walls computed from the 

AEKF SLAM 
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