
 

  
Abstract—The theory of stochastic observability is vital in 

describing the performance of Simultaneous Localization and 
Mapping (SLAM) as a nonlinear stochastic state estimation 
problem quantifying effects of random noise on its 
observability. We show that the eigen space corresponding to 
the stochastically unobservable states of the state error 
covariance matrix of the SLAM problem initialized with 
unknown initial conditions are in the null space of the 
information matrix associated with observations of the SLAM 
problem. We establish by using theoretical analysis and 
examples that the stochastically unobservable directions of the 
SLAM state space can be changed by modifying the 
observation model of the SLAM problem. We then use 
simulations and experiments to show that stochastically 
observable directions of state space and their degree of 
stochastic observability can be modified as required in a 
particular application (such as surveying, mapping and 
surveillance) by changing the vehicle path with respect to the 
landmarks in the environment by selecting which landmarks to 
observe and by modifying the observation model.  

 
Index Terms—SLAM, stochastic observability  

 

I. INTRODUCTION 
IMULTANEOUS Localization and Mapping (SLAM) ([1] 
and [2]) is still considered one of the major challenges in 
autonomous localization faced by the mobile robotics 

research community. An effective, scalable and efficient 
solution to the SLAM problem is a key to many applications 
such as exploration, surveying, surveillance, transportation, 
mining etc where deployment of autonomous vehicles is 
promising. The SLAM problem is a highly nonlinear, 
stochastic and dynamic state estimation problem 
encompassing a state space which widely varies over the 
time. In particular process and observation models used in 
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SLAM are of highly stochastic nature involving random 
process and measurement noise. 
Observability of SLAM was first addressed in [3] using 
Linear system techniques. Piecewise constant theory and 
linear system techniques are used in addressing the 
observability of SLAM in [4]. Nonlinear observability 
theory is used to analyze SLAM in [5] and [6]. However, all 
existing literature in particular [3]-[6] does not consider the 
effects of process and measurement noise on the 
observability of SLAM. 
For deterministic systems, the knowledge of initial 
conditions is adequate to determine the state of the systems 
at any given time. However, for stochastic state estimation 
problems such as SLAM knowledge of the initial state alone 
without observability is not sufficient to recover the system 
state at any time. In such stochastic systems, the important 
concept is the relationship of measurements and inputs to the 
initial state, which can then be used to derive the state at any 
time from the measurements and the inputs. Therefore 
stochastic state estimation problems must fulfil observability 
even if the initial conditions of the system are known. 
Although, SLAM is usually initialized using known vehicle 
initial conditions, initial conditions of the landmark states 
added to the SLAM state are usually completely or partially 
unknown. Hence, we can’t completely treat SLAM as a 
problem initialized with known initial conditions.  
SLAM problem in general has noisy process and 
observation models. Since, the observability of the 
deterministic system corresponding to the stochastic system 
(when noise injection is zero) is a prerequisite for the 
observability of the stochastic system, study of the 
observability of the SLAM problem ([3]-[6]) is essential. 
However, it is also important that the observability of the 
SLAM problem be addressed in a stochastic context to have 
a clear picture of the effects of random noise on its 
observability properties. Hence, in our investigation we 
address the stochastic observability of the SLAM problem 
and its effects on initial conditions. 
There are several motivations of understanding stochastic 
observability of the SLAM problem. Knowledge of 
stochastic observability is essential in designing efficient 
stochastic observers and designing sensor configurations for 
the SLAM problem to have desired target (or landmark) 
observation capabilities. Study of stochastic observability is 
also essential in understanding the effect of initial state 
uncertainty of the SLAM problem on its estimator
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 performance. Understanding of the stochastic observability 
also provides means of quantifying how process and 
measurement noises affect the observability and estimability 
of the SLAM problem. 
The paper is organized as follows. Section II describes the 
SLAM problem. Section III investigates the SLAM problem 
in information form, its stochastic observability, effects of 
initial conditions on SLAM and their interrelations. In 
Section IV we show how we can completely avoid 
stochastically unobservable directions in the SLAM state 
space by modifying the observation model. Section V 
provides simulations and experiments to substantiate the 
theoretical results established. Section VI concludes the 
work. 

II. THE SIMULTANEOUS LOCALIZATION AND MAPPING 
PROBLEM 

A vehicle is said to be implementing a SLAM algorithm if 
it is building a map of its surrounding environment and 
localizing at the same time with respect to the constructed 
map. In a nutshell, the discrete time feature based SLAM 
problem [9] comprises the following process and 
measurement models. Suppose a vehicle is moving on a two 
dimensional (2D) flat surface while estimating its pose 

( )v kx  and location states of n point landmarks in the 
surroundings. The estimated states are;  

[ ]( ) ( ) ( ) ( ) T
v v v vk x k y k θ kx =                     (1) 

[ ]1 1( ) ( ) ( ) ... ( ) ( ) T
n nk x k y k x k y km =            (2) 

( ) ( ) ( )
TT T

n vk k kx x mÈ ˘= Î ˚                         (3) 

where ( )vx k  is the vehicle longitudinal coordinate ( )vy k  is 
the vehicle lateral coordinate, ( )vθ k  is the vehicle heading, 
and ( )ix k  and ( )iy k i"  are the longitudinal and lateral 
coordinates of the ith estimated landmark all at time step k. 
The process model assuming a car-like (or bicycle) vehicle 
model is; 

1( ) ( ( 1),  ( 1)) ( 1)n nk k k k= − − + −x f x u η              (4) 

[ ]( ) ( ) cos( ( )) ( )sin( ( )) ( ) Tn u k k u k k kθ θ ω=f 0   (5) 

( ) ( ) tan ( )k u k k Lω γ=                             (6) 
where 1( )kη  is a zero mean uncorrelated noise term 
representing the process noise with the covariance matrix 

( ),kQ  [ ]( ) ( ) ( ) ,Tk u k kγ=u  ( )u k  is the speed input, ( )kγ  
is the steering angle input all at time step k and L  is the 
vehicle wheel base. The transition function is denoted by 

(.).f  The measurement model assuming a range and bearing 
sensor is; 

2( ) ( ( )) ( )nk k k= +z h x η                          (7) 

1 2(.) [( ) ( ) ... ( ) ]TT T T
n=h h h h                (8) 

2 2

1

( ( ) ( )) ( ( ) ( ))
tan {( ( ) ( )) ( ( ) ( ))} ( )

i v i v
i

i v i vv

x k x k y k y k
y k y k x k x k kθ−

⎡ ⎤− + −= ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

h  (9) 

where 2 ( )kη  is a zero mean uncorrelated noise term 
representing the measurement noise with the covariance 
matrix ( ).kR  Measurement function for observing n 
landmarks is denoted as (.).h  Once the process and 
measurement models are defined, we can use any estimation 
algorithm to recursively update and estimate the SLAM state 
vector.  

III. INFORMATION FILTER AND STOCHASTIC 
OBSERVABILITY 

A. Information Matrix Associated with Observations 
Information filter [7] is a widely used state estimation filter 
in practice. We use the information filter equations here to 
investigate the stochastic observability of SLAM. The state 
update equation of the Fisher Information form is; 

1 1( | ) ( | 1) ( )k k k k k− −= − +P P I                 (10) 
1( ) ( ) ( ) ( )Tk k k k−=I H R H                    (11) 

where ( | )k kP  is the updated error covariance matrix of the 
estimated state vector ( | )n k kx  at time step k, ( | 1)k k −P  is 
the predicted error covariance matrix at time step k given 

( 1| 1),n k kx - -  ( )kH  is the Jacobian of the measurement 
model and ( )kR  is the measurement noise covariance 
matrix both at time step k. We can obtain ( | 1)k k −P  using 
the following equation of the Kalman filter prediction. 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)Tk k k k k k k− = − − − − + −P F P F Q   (12) 
where ( 1 | 1)k k− −P  is the error covariance matrix of 

( 1 | 1),n k kx - -  ( 1)k −F  is the Jacobean of the process 
model and ( 1)k −Q  is the process noise covariance matrix 
at time step k-1. The information state vector is 

1( | ) ( | ) ( | )nk k k k k k−=y P x  and 1( | )k k−P  is the 
information matrix of the state vector ( | ).n k kx  

1( ) ( ) ( ) ( )Tk k k k−=I H R H  in (11) is known as the 
Information Matrix Associated with the Observations 
(IMAO). Since both the process and observation noises of 
the SLAM problem are assumed Gaussian, the inverse of the 
state error covariance matrix is equal to the Fisher 
information matrix. 
The prediction (12) of the covariance matrix always 
increases uncertainty. Therefore, if we initialize SLAM with 
an infinitely uncertain initial conditions 1( | 1)k k− −P  will 
also be infinite. Thus, 1( | 1)k k− −P  in (10) should be zero. 
Thus, in order to have a finite covariance matrix 1( | )k k−P  
from the measurement updating we should be able to invert 

( )kI  suggesting that when ( )kI  is singular it cannot give 
any information about at least some of the states and thus, 
the uncertainty of these states cannot be reduced.  
Since ( )kR  is a positive definite matrix we find using 
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Property 1 of the Appendix that 1( )k−R  also is a positive 
definite matrix. Since 1( ) ( ) ( )T k k k−H R H  is Hermitian, it 
follows from Property 2 of the Appendix that rank and null 
space of 1( ) ( ) ( )T k k k−H R H  is similar to the rank and the 
null space of ( ).kH  In the ensuing discussion we therefore 
for simplicity analyze ( )kH  to determine stochastic 
observability properties of 1( ) ( ) ( ).T k k k−H R H  

B. Stochastic observability of the SLAM problem 
Since SLAM is a stochastic estimation problem, it is often 
required to investigate how the observability conditions 
affect the SLAM problem in the presence of random noise. 
In a deterministic problem observability or providing known 
initial conditions alone is adequate to determine all the states 
from time zero to any finite value. However, in the presence 
of random noise, the observability conditions can be 
violated resulting in unobservability. Hence, in the ensuing 
discussion we try to compare and contrast the effectiveness 
of the SLAM problem with a stochastic observability or 
estimability ([11] and [12]) measure on systems. One 
important measure on observability of stochastic nonlinear 
systems is the eigen values (designating the maximum 
variance of the linear combination of error states [12] of the 
error covariance matrix). The smallest eigen values of the 
error covariance matrix therefore correspond to the linear 
combination of the most observable states and the largest 
eigen values of the error covariance matrix correspond to the 
linear combination of the least observable states. The 
appropriate linear combinations of states having the 
provided degree of observability are given by the respective 
eigen vectors.  
When the initial state covariance matrix (0 | 0)P  is finite, it 
is extremely difficult to symbolically determine the eigen 
values and vectors of unobservable states. We therefore, 
numerically evaluate such conditions for SLAM in 
simulations and experiments. When the initial conditions are 
completely unknown it follows from (10) that the IMAO 
denoted by ( )kI  is the inverse of the error covariance 
matrix. Hence, the unobservable states in the error 
covariance matrix must result in infinite eigen values in the 
error covariance matrix, thus resulting zero eigen values in 
the inverse of the error covariance matrix. Hence we have to 
look for zero eigen values and corresponding eigen vectors 
in determining unobservable states. However, the eigen 
space ES  comprising all the eigen vectors of ( )kI  for an 
eigen value λ  by definition is; 

( ( ) )ES null k λ= −I I                           (13) 
where I  is an identity matrix with the same dimension as 

( ).kI  Hence for zero eigen values, the eigen space ,0ES  is 
given by the null space of ( ).kI  However, since the null 
space of ( )kI  is similar to that of ( )kH  we have; 

( ),0 ( )ES null k= H                             (14) 
Therefore, the eigen space of the linear combinations of 
unobservable states is given by the null space of the 

measurement Jacobian.  

IV. STOCHASTICALLY UNOBSERVABLE STATE SPACE OF 
SLAM INITIALIZED WITH UNKNOWN INITIAL CONDITIONS 

It is important to know the stochastically unobservable 
directions in the state space, in designing efficient and 
effective observers for SLAM so that landmarks located at a 
known configuration to the vehicle path are observed well. 
If we know such directions, we can decide on the path we 
can direct the vehicle to observe certain important 
landmarks depending on the configuration of the landmarks 
in the environment, availability of traversable paths and 
other constraints. In this Section we investigate the 
stochastically unobservable directions of the SLAM problem 
initialized with unknown initial conditions based on the 
theory developed in Section III and find closed form 
solutions for some important scenarios. Herein after we refer 

( | 1),vx k k −  ( | 1),vy k k −  ( | 1),ix k k −  and ( | 1)iy k k −  as 
,vx  ,vy  ,ix  and iy  respectively for notational simplicity. It 

follows from (7)-(9) that if all the landmarks are observed 
the n landmark SLAM problem has a measurement Jacobian 
given by;  

1 2[( ) ( ) ... ( ) ]TT T T
n=H H H H                  (15) 

2 2 2 2

0
1

i i i i i i i i
i

i i i i i i i i

x r y r x r y r
y r x r y r x r

Δ Δ −Δ −Δ⎡ ⎤
= ⎢ ⎥−Δ Δ − Δ −Δ⎣ ⎦

0 0
H

0 0
  

(16) 
where ,i v ix x xΔ = −  ,i v iy y yΔ = −  and 2 2 .i i ir x y= Δ + Δ   

Suppose now that the thj  column of iH  and H  are j
iC  and 

jC  respectively. It follows from (16) that;  
1 2 2i
i i

++ =C C 0                                 (17) 
2 3 2i
i i

++ =C C 0                                 (18) 
1 2 3 2 2 3 2

1 1 1 1( ) ( )i i
i i i i i i iy x y y x x+ +−Δ + Δ + + − − − =C C C C C 0  (19) 

Hence, from (15) and (17)-(19) it follows that; 
1 2 2

1

n
i

i

+

=

+ =∑C C 0                               (20) 

2 3 2

1

n
i

i

+

=

+ =∑C C 0                               (21) 

1 2 3
1 1

2 2 3 3
1 1

1

( ) ( )

             {( ) ( ) }

v v

n
i i

i i
i

y y x x

y y x x+ +

=

− − + − + +

− + − + =∑

C C C

C C 0
     (22) 

Therefore, it follows that (20), (21) and (22) represent null 
vectors of H  and hence eigenvectors of ( )kI  corresponding 
to zero eigen values where iC  now corresponds to the 
column vectors of ( ).kI  Hence, the vectors (20), (21) and 
(22) are along the stochastically unobservable state space in 
the n landmark SLAM problem initialized with unknown 
initial conditions if only the estimated landmarks are 
observed.  
Since, when only all the estimated landmarks are observed 
SLAM has three stochastically unobservable directions in 
the state space, we investigate in the ensuing discussion 

4326



 

whether we can get rid of these stochastically unobservable 
directions in the state space by modifying the SLAM 
observation model. When all the estimated landmarks and 
the vehicle heading are observed; the new measurement 
Jacobian 1H  is given by 1 TT T⎡ ⎤= ⎣ ⎦H H H  where 

[ ]0 0 1 .=H 0  Hence, it follows that (17), (18) and 

(20), (21) are still true for 1H  when thj  column of iH  and 
1H  are j

iC  and jC  respectively. Therefore, it follows that 
(20) and (21) represent null vectors of 1H  and hence 
eigenvectors of ( )kI  corresponding to zero eigen values 
where iC  now corresponds to the column vectors of 

1 1 1( ) ( ) ( ) ( ).Tk k k k−=I H R H  Hence, the vectors (20) and 
(21) are along the stochastically unobservable state space in 
the n landmark SLAM problem initialized with unknown 
initial conditions if only the estimated landmarks and  the 
vehicle’s heading are observed.  
When all the estimated landmarks and the vehicle’s lateral 
and longitudinal coordinates are observed; the new 
measurement Jacobian 1H  is now given by 
1 TT T⎡ ⎤= ⎣ ⎦H H H  where 

 
1 0 0
0 1 0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0
H

0
                           (23) 

It follows from (16) and (23) that; 
3 2 2 3 2( ) ( )i i
i i i i iy y x x+ ++ − − − =C C C 0                 (24) 

where thj  column of iH  and 1H  are j
iC  and jC  

respectively. 
Hence, using (15), (16), (23) and (24) we obtain; 

( )3 2 2 3 2

1
( ) ( )

n
i i

i i
i

y y x x+ +

=

+ − − − =∑C C C 0             (25) 

Therefore, it follows that (25) is a null vector of 1H  and 
hence eigenvectors of ( )kI  corresponding to zero eigen 
values where iC  now corresponds to the column vectors of 

1 1 1( ) ( ) ( ) ( ).Tk k k k−=I H R H  Hence, the vector (25) is along 
the stochastically unobservable state space in the n landmark 
SLAM problem initialized with unknown initial conditions 
if only the estimated landmarks and the vehicle’s 
longitudinal and lateral coordinates are observed.  
When all the estimated landmarks and one a priori known 
landmark are observed; the new measurement Jacobian 1H  
is given by 1

1

TT T⎡ ⎤= ⎣ ⎦H H H  and 

2 2

0 0 0
1 0 0

i i i i
i

i i i i

x r y r
y r x r

Δ Δ⎡ ⎤
= ⎢ ⎥−Δ Δ −⎣ ⎦

0 0
H

0 0
        (26) 

where ,i v ix x xΔ = −  ,i v iy y yΔ = −  and 2 2 .i i ir x y= Δ + Δ  

iH  is obtained from (26) when 1.i =  Let the thj  column of 

iH , 1H  and 1H  are j
iC , jC  and 1

jC  respectively. It 
follows from (26) that; 

1 2 3
1 1 1 1 1( ) ( )y y x x− − − + + =C C C 0                      (27) 

If we now consider iH  it follows that; 

1 2 3
1 1

2 2 3 2
1 1

( ) ( )

      ( ) ( )             
i i i

i i
i i i i

y y x x

y y x x+ +

− − − +

+ − − − =

C C C

C C 0
         (28) 

Therefore, using (27) and (28) we have; 

( )

1 2 3
1 1

2 2 3 3
1 1

1

( ) ( )

      ( ) ( )             
n

i i
i i

i

y y x x

y y x x+ +

=

− − − +

+ − − − =∑

C C C

C C 0
 (29) 

Therefore, it follows that (29) is a null vector of 1H  and 
hence eigenvectors of ( )kI  corresponding to zero eigen 
values where iC  now corresponds to the column vectors of 

1 1 1( ) ( ) ( ) ( ).Tk k k k−=I H R H  Hence, the vector (29) is along 
the stochastically unobservable state space in the n landmark 
SLAM problem initialized with unknown initial conditions 
if only the estimated landmarks and a priori known 
landmark are observed.  
When all the estimated landmarks and two a priori known 
landmarks are observed; the new measurement Jacobian 1H  
is given by 1

1 2

TT T T⎡ ⎤= ⎣ ⎦H H H H  where iH  for 1i =  and 
2 are given by (26). When the two a priori known 
landmarks and the vehicle are collinear it follows that 

1 1 1 1
2 2 2

1 1 1 1

0 0 0
1 0 0

k x r k y r
y r x r

Δ Δ⎡ ⎤
= ⎢ ⎥−Δ Δ −⎣ ⎦

0 0
H

0 0
        (30) 

where k  is a scalar parameter. Hence, it follows that any 
column operation done on first three columns of 1H  to make 
a null column (see (29)) will result in a null column in 2H  
as well. When one of the two a priori known landmarks and 
the vehicle are collinear with the thi  estimated landmark, it 
follows that 

2 2 2

0 0 0
1 0 0

i i i i

i i i i

k x r k y r
y r x r

Δ Δ⎡ ⎤
= ⎢ ⎥−Δ Δ −⎣ ⎦

0 0
H

0 0
        (31) 

where k  is a scalar parameter. Hence, it follows that any 
column operation done on first three columns of iH  to make 
a null column (see (29)) will result in a null column in 2H  
as well. Therefore, when all the estimated landmarks and 
two a priori known landmarks which are collinear with the 
vehicle are observed or when one a priori landmarks and an 
estimated landmark are collinear with the vehicle are 
observed the n landmark SLAM problem initialized with 
unknown initial conditions has a stochastically unobservable 
direction in state space along the vector given by (29). 
Assume now that (1) the two a priori landmarks and the 
vehicle are not collinear and (2) any one of the two a priori 
known landmarks is not collinear with an estimated 
landmark and the vehicle. It now follows from the structure 
of the 1H  that all the columns are not null vectors on their 
own. Since the first three columns of 1H  has four rows 
corresponding to 1H  and 2H  both with zero elements in 
columns other than 1-3, the non zero terms in 1H  and 2H  
can be made null only by the column operations on first 
three columns of 1 .H  Assume that there are three column 
operations 0iT ≠  for 1i = , 2, 3 on first three columns of 
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1H  that result in null columns. 
( ) ( )1 1 1 1 1 2 0x r T y r TΔ + Δ =                     (32) 

( ) ( )2 2
1 1 1 1 1 2 3 0y r T x r T T−Δ + Δ − =              (33) 

( ) ( )2 2 1 2 2 2 0x r T y r TΔ + Δ =                     (34) 

( ) ( )2 2
2 2 1 2 2 2 3 0y r T x r T T−Δ + Δ − =              (35) 

When one of iT  for 1i = , 2, 3 is zero it results in 
inconsistent equations. Similarly, if all iT  for 1i = , 2, 3 are 
considered together it follows that only solution we have is  

0iT =  for all 1i = , 2, 3. Hence, the assumption is a 
contradiction. There are no column operations on columns 
1,2 and 3, either all together or in pares which result in a 
null column. Hence, only possibility of having a null column 
is using column operations on any column pare 
corresponding to a landmark. Let there be two column 
operations 2 2 0iT + ≠  and 3 2 0iT + ≠  which result in a null 
column by operating on (2 2 )thi+  and (3 2 )thi+  columns of 
1 .H  It then follows that; 

( ) ( )2 2 3 2 0i i i i i ix r T y r T+ +− Δ + −Δ =                 (36) 

( ) ( )2 2
2 2 3 2 0i i i i i iy r T x r T+ +Δ + −Δ =                 (37) 

Since, the determinant of the system of equations (36) and 
(37) on variables 2 2iT +  and 3 2iT +  are not equal to zero, the 
only solution we have is 2 2 3 2 0.i iT T+ += =  This is a 
contradiction to the assumption that  2 2 0iT + ≠  and 3 2 0.iT + ≠  
Hence, it is not possible to have null columns in 1H  by any 
column operation. Therefore, when all the estimated 
landmarks and two a priori known landmarks which are 
nether collinear with the vehicle nor any one of two a priori 
known landmarks are collinear with any estimated landmark 
and the vehicle are observed; the n landmark SLAM 
problem initialized with unknown initial conditions has no 
completely stochastically unobservable direction in the state 
space. 
It is very important to note from (25) and (29) that we can 
select ( , )i ix y  or ( , )x y  so that certain directions along state 
space are much more observable than the others. That means 
by selecting observed landmarks (known) and taking certain 
vehicle paths one can improve the stochastic observability of 
the SLAM problem. 

V. SIMULATIONS AND EXPERIMENTS 
This section comprises of simulations and experiments to 
substantiate the theoretical results we have established in the 
previous sections. 

A. Simulations 
We have used an Extended Kalman Filter [9] based 
estimation theoretic algorithm in simulations to evaluate the 
theory of stochastic observability of SLAM. We assumed a 
car like mobile robot moving in a 2D simulation 
environment (Fig. 1) according to a specified trajectory 
while observing point landmarks in the environment using a 

range and bearing sensor. We also use a nearest neighbor 
data association method [2] and a map management method 
[11] in the SLAM algorithm.  
 

 
Fig. 1 Simulation of SLAM 
 
We evaluate the effect of the initial conditions on the 
stochastic observability of the SLAM problem by first 
assuming finite initial state error covariance and then by 
assuming infinitely large initial state error covariance. In 
evaluating the eigen values and eigen vectors of the error 
covariance matrices of SLAM we normalize (see [12]) the 
error covariance matrix prior to calculating singular values 
and vectors so that, singular values are dimensionally 
homogeneous and within the same range. 

( ) ( )1 1' ( | ) ( | ) ( | ) ( | )k k k K k k k K
− −

=P P P P        (38) 

( )( )' '( | ) ( | ) ( | )N k k n Trace k k k k=P P P              (39) 

We then use the normalized error covariance matrix 
( | )N k kP  to evaluate eigen values and eigen vectors. 

Fig. 2, Fig. 6 and Fig. 7 show the variation of minimum and 
maximum eigen values of the SLAM error covariance 
matrix when SLAM is initialized with zero initial state 
uncertainty of the vehicle location and (1) only all the 
estimated landmarks are observed, (2) all the estimated 
landmarks and one a priori known landmark are observed 
and (3) all the estimated landmarks and two a priori known 
landmarks which are not collinear with either the vehicle or 
any other estimated landmarks are observed respectively.  
 
Fig. 2, Fig. 6 and Fig. 7 establish that the maximum eigen 
value or in other words the maximum variance along the 
least observable direction is lowest when the SLAM 
problem satisfies the full rank conditions of 

1 1 1( ) ( ) ( ) ( ).Tk k k k−=I H R H  This result further extends the 
result of Section IV that SLAM initialized with unknown 
initial conditions has no completely stochastically 
unobservable directions when ( )kI  is full rank to the case of 
finite initial uncertainties. Further, the maximum eigen value 
increases beyond initial value in Fig. 2 and 6 when ( )kI  is 
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not full rank thus, resulting in stochastically unobservable 
SLAM. Recall from [11] that a state estimator is estimable 
only if there is increasing amount of information in the form 
of Fisher.  
 

 
(a) 

 
(b) 

Fig. 2 Eigen values of the SLAM state error covariance matrix when only 
all the estimated landmarks are observed and starting with finite initial 
uncertainty.  
 

 
Fig. 3 Eigen value variation of the SLAM state error covariance matrix at 
time step 1800 when only all the estimated landmarks are observed. 
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Fig. 4 Eigen vector in along the least observable direction in the state space 
of the SLAM problem at time step 1800 when only all the estimated 
landmarks are observed. 
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Fig. 5 Eigen vector in along the most observable direction in the state space 
of the SLAM problem at time step 1800 when only all the estimated 
landmarks are observed. 
 
Fig. 3 shows the variation of eigen values of SLAM at time 
step 1800. It shows SLAM has directions of state space 
which are stochastically observable in varying degrees. Fig. 
4 and 5 illustrate the least and most stochastically observable 
directions of SLAM state space at time step 1800. Fig. 8-10 
shows the variation of eigen values and stochastically 
observable directions of the SLAM problem initialized with 
very large uncertainty (in this case it is 1010 ). It verifies that 
SLAM still has a stochastically observable solution when 
initialized with very large uncertaities when ( )kI  is full rank 
as shown in Section IV. Fig. 9, Fig. 10 and Fig. 11 show the 

variation of eigen value and the least and most stochastically 
observable directions of SLAM state space when initialized 
with very large uncertainty. 
 

 
(a) 

 
(b) 

Fig. 6 Eigen values of the SLAM state error covariance matrix when all the 
estimated landmarks and one a priori known landmark are observed.  
 

 
(a) 

 
(b) 

Fig. 7 Eigen values of the SLAM state error covariance matrix when all the 
estimated landmarks and two a priori known landmarks which are not 
collinear with the vehicle position or any of the estimated landmarks are 
observed (stating with zero initial uncertainty).  
 

 
(a) 

 
(b) 

Fig. 8 Eigen values of the SLAM state error covariance matrix when all the 
estimated landmarks and two a priori known landmarks which are not 
collinear with the vehicle position or any of the estimated landmarks are 
observed starting with infinitely large initial uncertainties 
 

 
Fig. 9 Eigen value variation of the SLAM state error covariance matrix at 
time step 1800 when only all the estimated landmarks are observed. 
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Fig. 10 Eigen vector in along the least observable direction in the state 
space of the SLAM problem at time step 1800 when only all the estimated 
landmarks are observed. 
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Fig. 11 Eigen vector in along the most observable direction in the state 
space of the SLAM problem at time step 1800 when only all the estimated 
landmarks are observed. 
 

B. Experiments 
This subsection describes the SLAM experiments ([10]) 
using the car park dataset of the University of Sydney. Car 
park dataset was obtained by driving a utility vehicle 
equipped with GPS, wheel and steering encoders and a laser 
range finder. We use the car park data set to check the 
consistency of the localization error estimates when SLAM 
is made locally weakly observable (by observing at least 2 
known landmarks and all the estimated landmarks). We use 
the GPS measured landmark locations as known landmarks. 
Fig. 12 shows the map of estimated landmarks and the 
vehicle. It can be observed that the estimated vehicle path 
and the landmarks are consistent with the true vehicle path 
and the landmark locations as measured by GPS.  
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Fig. 12 SLAM results from the car park data set when the nonlinear 
observability rank condition is satisfied . 
 
Fig. 13 and 15 demonstrate the variation of minimum and 
maximum eigen values when (1) only all the estimated 
landmarks are observed and initialized with zero state 
uncertainty, and (2) all the estimated landmarks and two a 
priori known landmarks which are not collinear with either 
the vehicle or any other estimated landmarks are observed 
and initialized with very large state uncertainty respectively 
for the University of Sydney car park data set. Fig 13 (b) 
shows an increasing maximum eigen value whereas Fig. 15 
(b) shows a decreasing maximum eigen value. Hence, 
establishing SLAM is estimable and stochastically 
observable even when initialized with very large state 

uncertainties when all the estimated landmarks and two a 
priori known landmarks which are not collinear with either 
the vehicle or any other estimated landmarks are observed. 
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(b) 

Fig. 13 Eigen values of the SLAM (starting with zero initial state 
uncertainty) state error covariance matrix when only all the estimated 
landmarks are observed in the experiment. 
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(b) 

Fig. 14 Eigen vectors of the SLAM (starting with zero initial state 
uncertainty) state error covariance matrix when only all the estimated 
landmarks are observed in the experiment. (a) Least observable direction, 
(b)-Most observable direction 
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(a)  

(b) 
Fig. 15 Eigen values of the SLAM (starting with infinitely large initial state 
uncertainty) state error covariance matrix when all the estimated landmarks 
and two a priori known landmarks are observed.  
 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27

State space
 

(a) 
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27

 
(b) 

Fig. 16 Eigen vectors of the SLAM (starting with infinitely large initial state 
uncertainty) state error covariance matrix when only all the estimated 
landmarks are observed in the experiment. (a) Least observable direction, 
(b)-Most observable direction 
 
Fig. 14 and 16 show the least and most observable directions 
of SLAM state space for SLAM initialized with zero initial 
uncertainty and SLAM initialized with very large 
uncertainty. The results verify that we can change the 
stochastically observable and unobservable directions in the 
SLAM state space by changing the vehicle path with respect 
to landmarks, by selecting which landmarks to observe and 

4330



 

by modifying the observation model (as done in simulations, 
experiments and theoretical discussion in Section IV). 

VI. CONCLUSION 
Since, SLAM is a stochastic state estimation problem we 

argue that it is important to evaluate its observability in a 
stochastic sense. We have described in this paper an 
interesting and useful insight into the stochastic 
observability of the SLAM problem using eigen values and 
eigen vectors of its state error covariance matrix.  

We highlighted that the Fisher Information Matrix 
Associated with Observations (IMAO) must be nonsingular 
if the n landmark SLAM problem initialized with completely 
unknown initial conditions be solvable. We have shown that 
the eigen space corresponding to the stochastically 
unobservable states of the state error covariance matrix of 
the SLAM problem initialized with unknown initial 
conditions are in the null space of the IMAO of the SLAM 
problem. 
We show that there are three vectors (given by (20), (21) 
and (22)) along the stochastically unobservable state space 
in the n landmark SLAM problem initialized with unknown 
initial conditions if only the estimated landmarks are 
observed. We also show that there are two vectors (given by 
(20) and (21)) along the stochastically unobservable state 
space in the n landmark SLAM problem initialized with 
unknown initial conditions if only the estimated landmarks 
and  the vehicle’s heading are observed. We also establish 
that there is a vector (given by (25)) along the stochastically 
unobservable state space in the n landmark SLAM problem 
initialized with unknown initial conditions if only the 
estimated landmarks and the vehicle’s longitudinal and 
lateral coordinates are observed.  
Furthermore, we show that there is a vector (given by (29)) 
along the stochastically unobservable state space in the n 
landmark SLAM problem initialized with unknown initial 
conditions if only the estimated landmarks and a priori 
known landmark are observed. Finally we establish that, 
when all the estimated landmarks and two a priori known 
landmarks which are nether collinear with the vehicle nor 
any one of two a priori known landmarks are collinear with 
any estimated landmark and the vehicle are observed; the n 
landmark SLAM problem initialized with unknown initial 
conditions has no completely stochastically unobservable 
direction in the state space. 
We have also used simulations and experiments to show that 
stochastically observable directions of state space and their 
degree of stochastic observability can be modified as 
required in a particular application by changing the vehicle 
path with respect to the landmarks in the environment, by 
selecting which landmarks to observe and by modifying the 
observation model. Therefore it is shown that depending on 
the application one can improve the stochastic observability 
of required landmarks of the map by selecting certain 
vehicle paths, modifying observation model and changing 
the sensor configuration thus improving the performance of 
SLAM in surveying, surveillance and mapping applications. 

APPENDIX 

Properties of positive definite matrices (from [8]). 
1. Every positive definite matrix is invertible and its 

inverse is also positive definite. 
2. Let ()n n×=A  be positive definite. If () ,n m×=C  then 

*C AC  is positive semi-definite. Furthermore,  
*( ) ( )rank rank=C AC C                     (40) 

*( ) ( )null null=C AC C                       (41) 
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