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Abstract— This paper presents an easily-configurable robot
audition system using the Histogram-based Recursive Level
Estimation (HRLE) method. In order to achieve natural human-
robot interaction, a robot should recognize human speeches
even if there are some noises and reverberations. Since the
precision of automatic speech recognizers (ASR) have been
degraded by such interference, many systems applying speech
enhancement processes have been reported. However, per-
formance of most reported systems suffer from acoustical
environmental changes. For example, an enhancement process
optimized for steady-state noise, such as fan noise, yields low
performance when the process is used for non-steady-state
noises, such as background music. The primary reason is
mismatches of parameters because the appropriate parameters
change according to the acoustical environments. To solve this
problem, we propose a robot audition system that optimizes
parameters adaptively and automatically. Our system applies
linear and non-linear enhancement sub-processes. For the linear
sub-process, we used Geometric Source Separation with the
Adaptive Step-size method (GSS-AS). This adjusts the parame-
ters adaptively and does not have any manual parameters. For
the non-linear sub-process, we applied a spectral subtraction-
based enhancement method with the HRLE method that is
newly introduced in this paper. Since HRLE controls the
threshold level parameter implicitly based on the statistical
characteristics of noise and speech levels, our system has high
robustness against acoustical environmental changes. For robot
audition systems, all processes should be perfomed in real-
time. We also propose implementation techniques to make
HRLE run in real-time and show the effectiveness. We evaluate
performance of our system and compare it to conventional
systems based on the Minima Controlled Recursive Average
(MCRA) method and Minimum Mean Square Error (MMSE)
method. The experimental results show that our system achieves
better performance than the conventional systems.

I. INTRODUCTION

In order to avoid performance degradation of automatic
speech recognizers (ASR) due to interferences such as back-
ground noise, many speech enhancement processes have
been applied to robot audition systems [1], [2], [3], [4].
Most reported systems have adaptive functions to cope with
environmental changes, however, there are adaptable range
limits because of several assumptions.

For example, [1], [2], [3] apply the Minima-Controlled
Recursive Average (MCRA) method [5] for noise spectrum
estimation. MCRA tracks the minimum level spectra and
judges whether the current input signal is voice active
or not (inferring noise) based on the ratio of the input
energy and the minimum energy after applying a consequent
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Fig. 1. A robot audition system

thresholding operation. This means that MCRA implicitly
assumes that the minimum level of the noise spectrum does
not change. Therefore, if the noise is not steady-state and
the minimum level changes, it is very difficult to set the
threshold parameter to a fixed value. Moreover, even if a
fine tuned threshold parameter for a non-steady-state noise
works properly, the process will fail easily for other noises,
even for usual steady-state noises. A similar issue exists in
the step-size parameter for the Geometric Source Separation
(GSS) method [6]. To balance separation precision and
process stability the step-size parameters should be adjusted
depending on the environment. Because a robot should be
used in various environments, to select the best parameter set
covering all possible environments is practically impossible.
Therefore, it is important to create methods that control their
parameters automatically or do not require any parameters at
all.

In this paper, we propose an easily-configurable robot
audition system using the Histogarm-based Recursive Level
Estimation (HRLE) method that does not require a level-
based threshold parameter and has high robustness for noise
environment changes.

II. SPEECH ENHANCEMENT FOR ROBOT AUDITION

Fig. 1 shows a system configuration for robot audition
systems. To recognize input speech signals precisely, the
speech enhancement process is applied prior to ASR. The
combination of linear and non-linear sub-processes is a
popular configuration for the speech enhancement process
[1], [2], [7], [8]. The linear sub-process is mainly used for
noise reduction and source separation, and the non-linear
sub-process is applied for further noise reduction for the
remaining noise and other interferences, because the linear
sub-process can not cancel interference perfectly mainly due
to the mismatch between propagation models and real-world
propagation patterns of acoustical waves.

A. Linear speech enhancement sub-process

Since a linear sub-process does not cause non-linear
distortion, most systems use it as the initial enhancement
process. Classical BeamForming (BF) and adaptive BF are
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very common methods [9] and are used for basic speech
enhancement systems [10]. For further performance improve-
ment, recently reported systems often use Blind Source
Separation (BSS)-based methods. For example, [8] uses
Independent Component Analysis (ICA) and [1], [2] em-
ploy the Geometric Source Separation (GSS) method [11].
General BSS-based methods require the adjustment of a step-
size parameter which controls adaptation speed and stability.
Since inadequate step-size parameters degrade or destroy
(in the worst case) the enhancement process, the step-size
adjustment should be done carefully.

B. Non-linear speech enhancement sub-process
Most non-linear sub-processes are executed in the spectral

power domain, which ignore phase information. [4], [7],
[8] apply Spectral Subtraction (SS) method, which is a
traditional enhancement process used in many applications
because of its simplicity. [1], [2] use the Minimum Mean-
Square Error (MMSE) method [12], which is popular for
speech signal enhancement and causes lower musical noise
compared to SS, although it requires much higher com-
putational cost than SS. Both SS and MMSE require a
function to estimate interference spectra, for which MCRA
[5] is common because of its low computational cost. Gen-
erally, most non-linear enhancement processes use many
parameters, which require adjustments. For example, the
speech enhancement process of our previous system called
postfilering [1] has 38 parameters. Similar to the step-size
parameter in linear BSS processes, several parameters in a
non-linear process strongly affect its performance. Therefore,
the parameters should be adjusted according to the environ-
ment.

C. Issues for practical robot applications
The main issue is parameter adjustment for practical

robot applications. Differently from systems for stable en-
vironments, robot audition systems are used in dynamically
changing environments. Even if the room used is fixed and
the background noise spectrum is almost stable, signal-to-
noise ratio (SNR) changes dynamically according to various
factors: position and voice loudness of a human speaker,
position, head orientation, action states of a robot, etc. To
achieve high enhancement performance, parameters should
be adjusted to the optimum values. Since, the optimum
values change according to the environments, it is difficult
to achieve high performance in all possible environments.
Preparing multiple parameter sets and switching to the pa-
rameter set depending on the current environment may solve
this problem. However, it requires a lot of measurements
and adjustments. For example, our previous system requires
more than 3 days to optimize 10 important parameters of
a postfilter using Genetic Algorithm (GA). Another related
problem is how to detect the current environment properties.

III. EASILY-CONFIGURABLE SPEECH ENHANCEMENT
PROCESS

To solve the parameter adjustment problem, we propose
an easily-configurable speech enhancement process for robot
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Fig. 2. Histogram (left) and Cumulative histogram (right) of input power
level

audition. This enhancement process uses few parameters,
which do not require fine tuning. Similar to conventional
speech enhancement approaches, this process consists of
linear and non-linear sub-processes. For the linear sub-
process, we applied the GSS-AS [13] method that requires
no parameter adjustment. For non-linear sub-process, we
applied an SS-based noise reduction process with a new
method: the Histogram-based Recursive Level Estimation
(HRLE) method that requires 5 parameters, of which only 2
parameters are to be optimized.

A. GSS-AS

Geometric Source Separation (GSS) [11] is a popular
source separation method having high performance with
low computational cost. GSS has been improved to an
incremental method by J. Valin, et. al. for a real-time
robot system [2]. GSS-AS is a further improved method of
incremental GSS with an adaptive step-size technique. This
technique performs automatic adjustments of the step-size
parameters in time and frequency domain, and achieves high
performance without any manual parameter selection [13].

B. Histogram-based Recursive Level Estimation (HRLE)

We propose to apply an HRLE method for adaptive noise
estimation. HRLE estimates input noise levels by taking the
Lx value from an input power level histogram. Fig. 2 shows
the HRLE’s diagram. The x in Lx indicates the position
of the cumulative histogram. For example, L0 means the
minimum level, L100 denotes the maximum and L50 is the
median. This Lx value is commonly used in environmental
noise measurement using sound-level meters. The difference
of our proposed method to the method used in a sound-level
meter is the average calculation. Since HRLE uses recursive
averages, HRLE can calculate time-continuous histogram in
real-time. Therefore, the estimated noise level can adapt
smoothly and quickly to the environmental changes while
a sound-level meter is unable to do it because of a fixed-
period average. The HRLE method can be represented by
the following equations:

YL(t) = 20 log10 |y(t)|, (1)
Iy(t) = ⌊(YL(t) − Lmin)/Lstep⌋, (2)

N(t, i) = αN(t − 1, i) + (1 − α)δ(i − Iy(t)), (3)

S(t, i) =
i∑

k=0

N(t, k), (4)
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Ix(t) = argmin
I

[
S(t, Imax)

x

100
− S(t, I)

]
, (5)

Lx(t) = Lmin + Lstep · Ix(t), (6)

where t shows the current time step, y(t) represents an
input signal that has complex values for processes in time-
frequency domain. Lmin, Lstep and Imax are the minimum
level, the level width of 1 bin and the maximum index
of the histogram, respectively, x indicates the percentage
position of the cumulative frequency, α is the time decay
parameter that is calculated from time constant Tr and
sampling frequency Fs as α = 1 − 1/(TrFs), Lx(t) is the
estimated level (output), δ(t) shows the Dirac delta function
and ⌊·⌋ is the flooring function. In these equations, we used
digital histograms N(t, i) and S(t, i) with integer index
i for practical implementation, while Fig. 2 uses analog
argument histograms N(L) and S(L) for simplicity. This
method uses 5 parameters. However, most of them are fixed
and do not need to be adjusted according to the environment.
The first 3 parameters: Lmin, Lstep and Imax determine the
range and sharpness of the histogram, they do not affect
the estimated results, if we set proper values to cover the
input level range with few errors. The typical values are
Lmin = −100, Lstep = 0.2 and Imax = 1000 (We suppose
the maximum spectral level is normalized to 96dB(1Pa) ).
The last 2 parameters, x and α, are primary parameters
that influence the estimated level. However, parameter x
is not so sensitive to the estimated Lx value, if the noise
level is stable. For example, in Fig. 2, Lx indicates the
same mode value even if parameter x changes by roughly
30–70 %. For unstable noise, x determines the estimated
level in the noise level range. Practically, since the speech
signals are sparse in the time-frequency domain, the speech
occurrence frequency is mostly less than 20% of the noise
occurrence frequency and the value (20%) is independent of
both SNR and (vibration) frequency. Therefore, we can set
this parameter only according to the preferred noise level that
we want to estimate and not to SNR or vibration frequency.
For example, if the speech occurrence frequency is 20%,
we set x = 40 for the median noise level, and x = 80 for
the maximum. This is HRLE’s main advantage compared to
other level-based estimation methods. For example, MCRA
requires a threshold parameter for the discrimination of noise
and signal, that should be adjusted according to SNR, which
changes with frequency. Also, the last parameter Tr does
not need to be changed according to neither SNR nor to
frequency. This parameter controls the equivalent average
time for histogram calculation. Tr should be set to allow
sufficient time for both noise and speech periods. For typical
interaction dialogs, such as question and answer dialogs, the
typical value of Tr is 10s, because the period of most speech
utterances is less than 10s.

IV. IMPLEMENTATION TECHNIQUES FOR HRLE

We propose four techniques (T1-T4) to reduce the calcu-
lation cost of HRLE.

A. Direct level conversion table (T1)

The level conversion process decsribed in Eqs. (1) and (2)
requires logarithms and square-roots. This calculation cost
can be reduced by introducing a conversion table. Since the
absolute calculation for complex variables requires square-
root, a conversion table from power value to dB-level index
is efficient. By preparing a conversion table that describes
the power boundary values for each dB-level indices, the
level index can be obtained without any errors. However,
this conversion table requires an index search for finding
which section between the boundaries the input power value
belongs to. To avoid this search process, we propose to
make an approximated direct conversion table from the input
power (floating point variable) to the level index (integer
variable). A direct conversion table is a table that defines
all the converted values for all possible input values. For
example, if we can assign 233 bytes of memory for this table,
we can store all combinations from single-precision floating
point values (32 bits, ’float in C’) to 16 bit-precision integer
(2 bytes, ’short in C’). Since 233 bytes are too large, we
propose an approximation by truncating some fine fraction
bits of the input variable. To truncate 15 fraction bits and 1
sign bit (since power is non-negative) from the input power,
we can make the conversion table with only 64Kbyte of
memory with very few boundary errors.

B. Direct cumulative calculation (T2)

The histogram N(t, i) in Eq. (4) is only used as a
temporary function to calculate the cumulative histogram
S(t, i). Therefore, we can reduce the calculation cost by
calculating S(t, i) directly without N(t, i). In Eq. (3), N(t, i)
is updated by multiplying α for all indices and adding (1−α)
for only index Iy(t). For S(t, i), these are equivalent to also
multiplying α for all indices and adding (1− α) for indices
from Iy(t) to Imax.

C. Exponentially incremented value addition (T3)

The multiplication of α for S(t, i) causes one of the
highest calculation cost. This process is performed to add
the exponentially-decayed weight ατ (|α| < 1) for past-
time data Iy(t − τ). Since S(t, i) is used to search only
the relative x% value (= 100 · S(t, I)/S(t, Imax)), we can
avoid the α multiplication process for all indices by adding
the exponentially-incremented value (1 − α)α−t for indices
from Iy(t) to Imax instead of (1 − α). This reduces the
calculation cost, because no multiplications are required
for this process. However, this process causes exponential
increases of S(t, I). Therefore, a magnitude normalization
process of S(t, i) is required when S(t, Imax) approaches the
maximum limit value of the variable. The frequency of this
normalization process can be reduced to set the normalization
factor that changes from almost the maximum limit value to
the minimum limit value.

D. One direction search using previous values (T4)

The index search process for the Lx value described in
Eq. 5 requires a large calculation cost in the HRLE method.
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Fig. 3. Calculation time with/without four techniques

The naive implementation would use a for-loop process
from I = 1 to Imax and judge in the for-loop whether
the current |S(t, Imax) − S(t, I)| is the minimum or not.
To reduce the number of decisions, we propose the use of
the previously detected index Ĩ and one direction search.
Since S(t, I) is a non-negative monotonically increasing
(non-decreasing) function of I , finding the index Ix that
minimizes |S(t, Imax)−S(t, Ix)| is equivalent to finding the
nearest index to the intersection point between monotonically
decreasing function y = S(t, Imax)− S(t, I) and horizontal
axis line y = 0 in the (Ix, y) plane. Therefore the one
direction search suffices if we start searching from a non-
terminal point I (1 < I < Imax). Also, since I is supposed
to be a neighbor index to Ĩ , to start the search index from Ĩ
is the most effective.

E. Effectiveness of proposed techniques

Fig. 3 shows the normalized calculation time with and
without proposed techniques. We used a laptop computer
having Intel Atom 1.6GHz CPU and 1GByte of memory.
The original calculation time (100%) is 35 seconds for
5 seconds of input data with 16kHz sampling. Therefore,
the original calculation can not be performed in realtime
(Realtime factor: RTF = 7). We can find that our proposed
techniques reduced the calculation time by 94%. Since the
RTF = 0.42, this calculation can be performed in realtime.
Regarding the contribution of the techniques to the calcula-
tion time reductions, the direct cumulative calculation (T2)
is most effective, because the required memory is reduced
by 50% and all operations for N(t, i) are eliminated. On
the other hand, direct level conversion table (T1) does not
contribute to the overall calculation time reduction, because
the level conversion process is required only one time for
each time-frame while other processes are computed Imax

times. However, T1’s effectiveness (2%) is not neglegible
considering that the real calculation time takes only 6% of
the total caaculation time. Because the overhead processes
(File I/O, windowing, FFT, etc.) are included in the final
calculation time, the load for HRLE’s process is small.

V. EVALUATION

We evaluate noise estimation performance of HRLE in V-
B and the total system performance with ASR in V-C after
describing the common experimental settings in V-A.

S1

S2

Microphone

Loudspeaker 

for noise

Robot head

Loudspeaker 

for target speech

1m

1m

30°

Fig. 4. Experimental setting

TABLE I
PARAMETER SETTING

System parameters
Sampling Rate Fs 16kHz

Window length 512
Window shift 128
Window type hanning

HRLE parameters
Lmin = −100 dB Lstep = 0.2 dB

Imax = 1000 x = 50 % / 20%
Tr = 10s (Sct. 4.1 / 4.2)

MCRA parameters
αd = 0.95 αp = 0.2
L = 125 αs = 0.8
w = 1 δth = 5

A. Common experimental settings

Fig. 4 shows the microphone and sound source positions.
To control SNR and to measure the true noise level, we
measured noise signal and impulse responses and synthesized
the input signals with the speech signals recorded in a
silent environment. The impulse responses were measured
using a head embedded microphone in a humanoid robot
developped by Honda with loudspeakers (S1 and S2) in front.
We used speech signals extracted from an ATR phonetically-
balanced Japanese word dataset as source signals. This
dataset includes 216 words for each speaker. We used a
measured robot noise (mainly fan noise) as a steady-state
noise and a music signal as a non-steady-state noise. All
experiments were performed in a time-frequency domain,
for which Table I listed the system parameters. To show
HRLE’s effectiveness, we compared it to the MCRA method.
The parameters for HRLE and MCRA were also described
in Table I. The MCRA parameters were identical to the
parameters described in MCRA’s original paper ([5]), with
which we supposed that MCRA yields the best performance.

B. Noise estimation performance

We evaluated noise estimation performance with a special
focus on the robustness against environmental changes. We
assumed that the background noise changes from a steady-
state noise into a non-steady-state noise. Since the HRLE
and the MCRA parameters are tuned for steady-state noises,
estimation performance for non-steady-state noises will show
the robustness. We used a robot fan noise and a classical
music of strings as the steady-state and non-steady-state
noises, respectively. Fig. 5(a) shows the input spectrogram
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Fig. 5. Input signal spectrograms
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Fig. 6. Noise signal spectrograms

for steady-state noise (fan) and Fig. 5(b) is non-steady-
state noise (music). In Fig. 5(a), we can see the horizontal
stripes for steady-state fan noise and four separated bright
parts for speech sentences. In Fig. 5(b), there are many fine
vertical lines for music noise. Both SNR of the input signals
were 20dB. Fig. 6(a) and Fig. 6(b) show the steady-state
and non-steady state noise spectrograms, respectively. Since
estimating very fine fluctuation of noises is impossible, to
estimate a time-averaged smooth spectrogram is the target
for both noise estimation methods. Fig. 7(a) shows the
estimated noise levels (spectrogram) using HRLE for the
steady-state noise. We found that the spectrogram converges
very quickly. 8(a) shows the estimated spectrogram using
MCRA. Different from HRLE, MCRA requires at least 1
second for convergence because of block-based processes.
This means that MCRA can not enhance the first speech
sentence uttered in 0.5 - 1.2 s for slow convergence while
HRLE can. Fig. 7(b) shows the estimated spectrogram using
HRLE for non-steady-state noise. The estimated spectrogram
is almost the same as the one for the steady-state condition
(Fig. 7(a)). On the other hand, the estimated spectrogram
using MCRA in Fig. 8(b) shows deteriorated convergence
speed and smoothness compared to the steady-state condition
(Fig. 8(a)). Fig. 9(a) shows the estimated errors obtained
for steady-state condition. The horizontal and vertical axes
show the time and error levels, respectively, the solid and
dotted lines represent MCRA and HRLE, respectively. The
estimation errors are small for both methods after 1 second
and there is little difference between HRLE and MCRA
levels. However, for a non-steady-state condition shown in
Fig. 9(b) the estimation error for HRLE is lower than the one
for MCRA by 2-5dB and the convergence speed for HRLE
is also faster than the one for MCRA. From these results,
we can conclude that HRLE has robustness against noise
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Fig. 7. Estimated spectrograms by HRLE
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Fig. 8. Estimated spectrograms by MCRA

environmental changes compared to MCRA.

C. Total system performance

We evaluated our proposed system through a robot audi-
tion system: HARK [1]. The system integrates sound source
localization, voice activity detection, speech enhancement
and ASR.

We used a word correct rate (WCR) for the evaluation
metric using ATR216 and Julius [14] for ASR. The acous-
tic model for ASR was trained with enhanced speeches
using only GSS-AS process applied on a large data cor-
pus: Japanese Newspaper Article Sentences (JNAS)1. We
evaluated 4 systems: Baseline, Postfilter, MCRA and HRLE.
Linear sub-process by GSS-AS was applied to all systems.
Baseline is a system without any non-linear enhancement
sub-processes. Postfilter is our previous version using a
MMSE-based non-linear enhancement sub-process. MCRA
uses a non-linear enhancement sub-process based on SS and
MCRA. HRLE is the proposed enhancement process using
HRLE. First, we adjusted only the x parameter of HRLE be-
cause we did not know its value for the optimum suppression
intensity for ASR. To be fair, we newly introduced a gain
parameter G for MCRA that magnified the estimated noise
power of G. The other parameters are the same as given in
the set in V-A. Fig. 10 shows the WCR scores obtained using
these parameters. We can see lower suppressions than median
or average are suitable for our system. The reason is that the
acoustic model matches to noisy speeches better than clean
speeches, since the training dataset includes the resideual
background noises and non-target speeches using GSS-AS.
We used the best parameters, namely x = 20 for HRLE
and G = 0.4 for MCRA. For postfilter, we optimized 10
parameters using a genetic algorithm to yield the best ASR

1http://www.mibel.cs.tsukuba.ac.jp/ 090624/jnas/instruct.html
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TABLE II
ENVIRONMENTAL NOISE CONDITIONS

No. Label Noise conditions SNR [dB]
1 Fan BGN (diffuse noise from robot) 0
2 Music Music (θ = 30◦) + BGN 2
3 Speech Speaker (θ = 30◦) + BGN 2

performance in a similar acoustical condition. We evaluated
WCR scores for 3 different noise types (Fan, Music, Speech)
as described in Table II. The main speaker was located
1m in front of the robot. The input data was 236 isolated
utterances and the estimated noises were initialized by every
utterances. Since robot systems make new estimations when
a new speaker emergences and restart the initialization, when
the speaker vanishes, we assumed a dynamic environment is
created, in which the speaker changes frequently. Fig. 11
shows the WCR for each condition.

We found out that our previous system (postfilter) was
the worst in almost all conditions because of the lack of
robustness against environmental changes. HRLE has higher
scores compared to MCRA under all conditions. For Fan
and Music conditions, the HRLE’s scores were highest in
all methods. For the Speech condition, all enhancement
methods’ scores were lower than the Baseline. We suppose
this is because statistical characteristics of noise and speech
are the same, all enhancement methods failed to estimate the
noise level precisely.

VI. CONCLUSION

This paper proposes a robot audition system using
the Histogram-based Recursive Level Estimation (HRLE)
method. Since our system controls primary parameters
adaptively according to the environment, the system has
high adaptivity against acoustical environmental changes.
Also, we proposed implementation techniques for HRLE
and demonstrated that the HRLE can perform in realtime.
Experimental results showed that our system can achieve
better performance than conventional systems.
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