
Implementing a reactive semantics using
OpenRTM-aist

Geoffrey Biggs
Intelligent Systems Research Institute

National Institute of Advanced Industrial Science and Technology
Tsukuba, Ibaraki, Japan

geoffrey.biggs@aist.go.jp

Bruce A. MacDonald
Department of Electrical and Computer Engineering

University of Auckland
New Zealand

b.macdonald@auckland.ac.nz

Abstract—The expression of reactive behaviour is a significant
and important requirement in robotic software engineering,
since robots must cope with a wide range of unpredictable events
and environments. However it is important that the semantics
for reactive expression can be used across different architectures
and languages. The RADAR robot programming language
provides architecture– and language–independent semantics for
managing the reactive parts of robot software together with
the deliberative parts, allowing greater interaction between the
two. We evaluate the architecture-independence of RADAR,
as an example, by implementing its reactive semantics using
the OpenRTM-aist component-based, distributed architecture.
Our goal is to evaluate what limitations the choice of imple-
mentation environment may place on the capabilities of such
an architecture-independent semantics. In our implementation,
we aimed to produce a standard OpenRTM-aist system using
the RADAR semantics. We have found that the architecture-
independent semantics concept works well in the case of
RADAR, although some specific improvements are needed for
full interaction between deliberative and reactive sections of
robotic software.

I. INTRODUCTION

A key area when programming a robot is reactivity, the
recognition of and response to events that occur in the real
world. A recent application-specific robot programming lan-
guage, RADAR, provides a semantics for specifying robotic
reactivity events and responses from within deliberative robot
code [1]. This prevents barriers to close interactions between
the two parts of robotic software. The semantics allow for
greater ease-of-coordination between the deliberative and
reactive parts of a robot program, and in particular eases
managing the behaviour of reactive parts when the program
state changes.

RADAR is a set of language extensions designed for
robot developers. RADAR was designed to be language-
and architecture-independent. Rather than being designed for
a specific architecture or tied to a particular language, the
semantics are designed so as to be applicable to and imple-
mentable in a range of robot software architectures across
a range of architecture styles and using any of the popular
programming languages of the time. This facilitates robot
developers replicating the same or similar concepts across
languages and architectures. This is important for making
robots more programmable.

In this paper, we present an evaluation of the architecture-
independent part of the design. We have implemented the
RADAR semantics for reactivity management using the
OpenRTM-aist architecture. RADAR semantics have already
been tested using a Python implementation based on Python
threads. This is a monolithic programming method, while,
by contrast, OpenRTM-aist is a distributed, component-based
architecture. By implementing in OpenRTM-aist, we aim
to test how effective the semantics are in a different style
of architecture, and so evaluate how effective the concept
of architecture-independent semantics is. We evaluate what
limitations occur in the use of the implemented semantics,
and so our implementation targets the creation of standard
OpenRTM-aist systems using RADAR semantics. This allows
us to discover where the implementation environment, that
is, OpenRTM-aist, limits the capabilities of the semantics.
We have noted, where relevant, how these limitations can be
overcome. This analysis suggests design issues that reactive
semantics should address in robotic software engineering.

Section II briefly describes the RADAR semantics for
reactivity, including the original implementation. Section III
discusses OpenRTM-aist in order to provide a background for
the implementations discussed in this paper. The following
sections describe the implementation design. Discussions are
given in Section VII, followed by conclusions.

II. RADAR

RADAR’s reactivity semantics are based on the signals and
slots found in Boost [2] and Qt [3]. RADAR uses a structured
version of this concept. A more detailed description can be
found in [1] and [4]. A simple example is shown in Listing 1.

RADAR’s reactivity semantics are focused on three key
concepts of reactivity: events, responses and connections. It
uses special objects to represent two of these, event objects
and response objects. The third concept is represented by
special statements that can be used from the deliberative parts
of the program.

Event objects encapsulate a condition check, representing
conditions that may occur during program execution. When
an event occurs, its triggered signal is emitted.

Response objects encapsulate behaviour that is executed
when the response is activated, typically by an event oc-

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 994

curring. They have three slot/signal pairs: start, interrupt
and exit. The start slot represents the main behaviour of the
response, and is where execution begins. When the response
is interrupted before completing naturally, execution moves
to the interrupt slot. Execution always finishes with the exit
slot, no matter how the response reaches this point. The start
and interrupt slots emit the started and interrupted signals,
respectively, when they begin execution. The exit slot emits
the exited signal after it completes executing.

The connection statements are used to manage connec-
tions between events and responses, both from deliberative
code and from reactive code. Event expressions are used
to reference events, while response expressions are used to
reference responses. These expressions can define the flow
of data along signals. They are used in conjunction with the
once and whenever statements, which are the core statements
for forming connections between events and responses. They
are used to specify that when an event occurs, the response
slot that it is connected to will begin execution. The once
statement specifies a once-only connection, while the when-
ever statement specifies a persistent connection. Which slot
of a response to connect to is specified by a keyword, start,
interrupt (or until) or exit.

A. Original implementation

The original implementation of the RADAR semantics
used Python threads. A short example of its use shown in
Listing 1. Figure 1 illustrates the objects of this RADAR
implementation.

This implementation instantiated responses as individual
Python threads, using accessor functions with locks to imple-
ment the slots. Each response executed in its own thread of
control, relying on Python’s thread scheduling. A response’s
thread slept on a coordination object, used to indicate that it
had received the start signal and so should begin executing.
Active events were all executed in a single Python thread, in
sequence, within an object known as the “Event Manager”.
Signals between the events, responses and deliberative parts
of the program were implemented in a “Connection Manager”
object. This tracked who was listening for what signals, and
when a signal was emitted, would inform the listeners.

III. OPENRTM-AIST

OpenRTM-aist is a framework for distributed intelligent
systems [5]. Its main feature is software components dis-
tributed over a network. Diverse components, including com-
ponents by different software vendors, can interact and be
combined to produce a larger, more complex robotic system.

The core concept of RT-Middleware is the RT-Component.
Each component contains a state machine with states “inac-
tive,” “active,” and “error.” This state machine is universal,
allowing all components to be controlled at a high level.
Components feature input and output data ports. The choice of
what data ports a component provides is up to the component
designer. Components are connected into networks to form
complete systems. These networks are called RT Systems.

Fig. 1: The objects used by the Python implementation of
RADAR.

Listing 1: A simple RADAR/Python example.
1 response CountUp:
2 i = 0

whi le i < 10:
4 sleep(0.5˜s)

i += 1
6 i n t e r r u p t

on e x i t:
8 r e s t a r t

10 event StartEvent:
sleep (2˜s)

12 t r i g g e r

14 event EndEvent:
sleep (4˜s)

16 t r i g g e r

18 def main:
countUp = CountUp()

20 start_event = StartEvent()
end_event = EndEvent()

22 once start_event s t a r t countUp u n t i l
end_event

OpenRTM-aist was selected for this work because of its
highly-dynamic capabilities not found in many other archi-
tectures, even other modern, component-based architectures.
The ability to externally alter component connections at run
time was key to implementing the RADAR features.

IV. IMPLEMENTING RADAR

Our OpenRTM-aist implementation of RADAR uses dis-
tributed software components directly, as these are the key
elements of OpenRTM-aist. Throughout the design, we have
aimed to have the RADAR semantics create standard RT
Systems using only standard OpenRTM-aist facilities. We do
this in order to evaluate what restrictions the implementation
environment may place on architecture-independent seman-
tics.

995

We have also attempted to maintain the distribution ca-
pability of OpenRTM-aist, as this is a key feature of the
architecture. Although the RADAR semantics do not explic-
itly support distribution of events and responses across a
network, they also do not explicitly prevent it. We investigate
how usable they are in a distributed environment, and what
limitations the distributed environment may place on their use.

A. RADAR objects in OpenRTM-aist

Our design uses RT Components to implement the RADAR
event and response objects. Because RADAR does not ex-
plicitly define how event and response objects exist in a
running system, including on which computing resources and
in which memory spaces, we are able to directly apply the
semantics for them to RT Components. This applies equally
well when we distribute the event and response components
across a network as when they are executing on a single,
local computing resource. We consider this to be an important
benefit of the RADAR semantics.

In the original RADAR implementation, event and response
objects are always created as local objects within the scope
of the deliberative program. There is no support for spreading
events and responses across a network. By contrast, our
implementation, by using RT Components to implement these
objects, gains the ability to distribute them in not just different
programs, but across separate computing resources on a
network. We can instantiate the components as part of the
local program, instantiated by the deliberative code, or rely on
the developer to instantiate them manually on the appropriate
computing resources. This is a benefit of implementing the
semantics in a distributed architecture.

There is no direct support for specifying where components
should execute in the RADAR semantics, so we have imple-
mented this as an option to the preprocessor. A switch chooses
between instantiating all components locally, or generating
them as separate programs that must be executed manually
by the developer on the appropriate computing resources.

The instantiation of event and response objects as local
objects in the original implementation, albeit objects that
utilise separate threads for execution, allows the sharing
of resources. For example, it is possible to copy (either
directly or via a function argument in the signals and slot
implementation) any object from the deliberative code into a
response or a component, or from an event or response into
the deliberative code. As the instantiated objects are part of
the same program and on the same system, this capability
extends to system resources, as well. The deliberative code
can open a network socket, then pass that socket to a response
(via one of its slots) for use during the response’s execution.

We partially lose this capability in our implementation.
Components instantiated as part of the local program, while
they also run in a separate thread, do share memory and so
retain the same capability to pass objects between the delib-
erative code and the events and response objects. However,
components instantiated on separate computing resources
from the deliberative program cannot so easily exchange data
with the deliberative code. The exchange is limited to objects

that can be passed over an OpenRTM-aist connection between
two components (which is itself a CORBA connection). This
prevents, for example, system resources being exchanged. In
addition, the exchange is only one way; it is not possible to
receive data back from an event or response object.

This restriction on data sharing is a direct consequence of
using a distributed environment for implementation, causing
components to exist in separate memory spaces. Distributed
systems that are capable of automatically migrating between
locations based on the resources they require, and sharing
memory across distributed computing resources, do exist [6].
However, this capability is not currently present in OpenRTM-
aist.

1) Implementation: The difference between any two com-
ponents that are used as event components by our imple-
mentation is typically just the code executed to perform the
condition check. Likewise, responses typically differ just by
the code executed in its three slots. To simplify the code
generation for the preprocessor, we followed the lead of the
original implementation and implemented base classes for
events and responses.

These classes define component “patterns” defining the
input and output ports of events and responses. Events feature
just a single output port, corresponding to the “triggered”
signal. Responses have three input ports, one per slot, and
three output ports, one per signal. The preprocessor places
the developer’s code into callback functions that are called
appropriately for event checks and response slots.

Both the event and response objects are self-activating.
Events activate themselves when a connection is made to
them, deactivating again once all connections are removed
(“once” connections being removed automatically by the com-
ponent after the condition check succeeds). This implements
the RADAR concept of events only performing their check
when a connection is present. Responses activate themselves
on construction and remain active until destruction.

There is no support in RADAR semantics for defining extra
signals or slots on events or responses. As a consequence
of this, if the developer wishes for an event or response
component to have additional input or output ports, they must
be added manually. An alternative approach to this would
be for the developer to specify that an event or response
component should inherit from another component designed
by the developer. Unfortunately, the RADAR semantics do
not support inheriting events or responses from other objects.
There is no way for the developer to specify this.

Support for transmitting data with signals is inherent in the
use of OpenRTM-aist. Both signals and OpenRTM-aist’s data
connections are one-way transmissions carrying data. The
RADAR signal concept maps naturally into OpenRTM-aist.
This is a major benefit for the portability of the semantics.

Likewise, the events and responses map quite naturally
onto OpenRTM-aist’s component model, with output ports
for possible signal emissions and input ports for slots.

996

B. Reactive/deliberative interaction in OpenRTM-aist

Interaction between the reactive and deliberative code in
RADAR comes in two forms. The first is managing the
responses of the system to events that occur. The second
is exchanging data between the reactive and deliberative
parts of the system. We have previously described how our
implementation manages this second form in Section IV-A. In
this section we discuss the management of system reactivity.

RADAR’s concept of a connection between a signal and a
slot maps well into OpenRTM-aist. If we treat a signal as an
output port of one component and a slot as an input port of
another component, then a RADAR signal can be represented
by the connection between the input port and the output port
– a core part of OpenRTM-aist’s design.

RADAR’s connection statements create connections be-
tween the signals and slots of its objects. In particular, they
connect the slots of a response to the “triggered” signal of an
event. In the semantics, this connection is not explicitly ex-
pressed as an object, but it does implicitly behave like one due
to the scoping behaviour. The original implementation uses a
Connection Manager to manage connections, recording them
in a list and iterating over that list to look for connections
that have an action to be performed.

Our OpenRTM-aist design treats a connection as its own
object (connections in the OpenRTM-aist implementation are,
in fact, their own object, but this is a separate concept). The
actual connection underlying this object, between the signal
and the slot, is an OpenRTM-aist connection between an
output port and an input port.

RADAR’s semantics specify that connections must obey
program scope; a connection created within a function must
be removed when that function terminates. By creating an
object that represents and manages a single connection be-
tween two components, we are able to implement scoped
connections in a natural way. The connection object is created
when the connection needs to be established and deleted,
destroying the connection, when the connection should be
cancelled.

The connection statements of RADAR are therefore very
useful for managing the component network. We are able to
create and destroy connections between event and response
components as execution moves through the deliberative code.

A side benefit of the definition of RADAR’s semantics
for the “once” and “whenever” statements allows arbitrary
code to be executed in the body of these statements. This
was used in the original implementation to effectively create
anonymous slots in the middle of deliberative code, using
data from that code’s name space. A consequence of our
implementation of connections as connections between two
data ports on components, we are unable to support this
feature of the semantics and still maintain our goal of creating
standard RT Systems using RADAR syntax.

The RADAR semantics allow for objects to be passed from
the deliberative code into slots. Because we use connections
between components for triggering slots, we are unable to do
this. This is partly because a connection can only carry data

from an output port to an input port, and partly because the
slot, being an OpenRTM-aist input port, can only accept one
data type. The original implementation, which used function
calls for slots, could accept an arbitrary number of objects of
any type. Combined with the inability to execute arbitrary
code in response to an event, described previously, our
implementation can only pass data from events to responses.

1) Implementation: An obstacle we encountered during
our implementation is RADAR’s lack of explicit support for a
distributed name space combined with OpenRTM-aist’s lack
of advanced deployment support. This restricted our options
for specifying components that are distributed across the
network from within the deliberative code. Ideally, we would
use a component discovery system. However, OpenRTM-
aist does not currently provide deployment and component
discovery. We considered three alternatives:

• Specify that all distributed components must register on a
single, known CORBA naming service. We would then
be able to look them up by name, allowing the same
method of specification as in the original implementa-
tion.

• Require that the developer specify full CORBA paths to
each component.

• Use the rtfind tool from the rtcshell toolkit, part of
OpenRTM-aist. A form of component discovery could be
implemented, provided the developer specifies to rtcshell
at deployment time which naming services will be used.

We settled on the third option, as it is more flexible.
rtfind is used to search the known naming contexts for a
component matching the name used in the RADAR code. The
resulting full path is used in making connections. This method
was chosen over the first because it is considered to offer
greater flexibility. It was chosen over the second because that
method was considered restrictive as it forced the developer to
know in advance where each component would register, and
also exposed OpenRTM-aist through the RADAR semantics.

The rtcshell toolkit is also used to manage the connections.
rtcon and rtdis are called to make and break connections.
They are passed the full paths in the distributed name space
of the ports to connect. The rtinject tool is used to directly
send a signal to a response’s slot from deliberative code.

V. DESIGN SUMMARY

Some changes in syntax can be expected when implement-
ing RADAR in a new system. A summary of the mapping
from RADAR concepts to OpenRTM-aist concepts used in
our design is given in Table I. The objects that are created
are shown in Figure 2.

VI. EXAMPLE

The example in this section uses two events and one
response. The first event counts up to 5, resets its counter,
and triggers. It sleeps for one second between each count.
The second event is similar, but triggers after 3 seconds. The
response counts for 10 seconds after activating, then exits
normally. It may be interrupted between each count.

997

Feature Support

Event objects Self-activating RT Components with a single
output port.

Response objects RT Components with three input ports and
three output ports.

Signals Connections between input and output ports,
managed by objects in the deliberative pro-
gram.

Creating connections Tools from rtcshell.
waitfor statement No support.
Arbitrary code in
“once”/”whenever”

No support.

TABLE I: Implementations of RADAR concepts in
OpenRTM-aist.

Fig. 2: The objects used by the OpenRTM-aist implementa-
tion of RADAR.

The deliberative code, which controls the connections in
the system, is shown in Listing 2. The code output by the
pre-processor is shown in Listing 3.

Figure 3 illustrates the changes in connections that occur
as the deliberative RADAR code executes. Figure 3a shows
the state immediately before the deliberative code begins
executing. No connections are present. The response is active
even now, as it is active throughout its lifetime.

Figure 3b shows the state after line 5 of Listing 2 (line 6
of Listing 3). The creation of the persistent connection causes
the activation of the first event component. When execution
moves into the called function, a once-only connection is
created, leading to the system state shown in Figure 3c. This
state will remain until the second event triggers or the function
exits, at which point the system will again look like Figure 3b.

VII. DISCUSSION

We first note that the core concepts of RADAR, event and
response objects with connections between them, works well
with OpenRTM-aist as the implementation environment. The
mapping from event and response objects to RT Components,
and the mapping of signals and slots to connections and ports
on components, is very natural. This is despite RADAR not
being designed specifically for OpenRTM-aist. We argue that

Listing 2: Example deliberative part using
RADAR/OpenRTM-aist.
1 import sys
2 from time import sleep

4 def do_loop():
once TestEvent2 i n t e r r u p t TestResponse

6 f o r ii in range(15):
sleep(1)

8

def main():
10 whenever TestEvent s t a r t TestResponse
11 do_loop()
12 whi le True:

pass
14

i f __name__ == ’__main__’:
16 main()

Listing 3: The deliberative part of a simple example, after
processing to standard Python. The connection objects inter-
nally use rtfind to translate the target component name into
a full path.
1 from radar.connection import Connection,

OnceConnection
2 import sys

from time import sleep
4

def do_loop():
6 c2 = OnceConnection(
7 ’TestEvent2:triggered’,
8 ’TestResponse:interrupt’, 2)

f o r ii in range(15):
10 sleep(1)

12 def main():
c1 = Connection(’TestEvent:triggered’,

14 ’TestResponse:start’, 1)
do_loop()

16 p r i n t ’Entering infinite loop’
whi le True:

18 pass

20 i f __name__ == ’__main__’:
main()

this supports the idea of architecture-independent semantics
and the idea that suitably-designed semantics can work across
a range of architecture styles.

Most limitations in the resulting system are on the use of
the semantics, and originate in our choice of implementation
environment, OpenRTM-aist.

• Anonymous slots in “once” and “whenever” statements
are not possible because connections have been imple-
mented purely as OpenRTM-aist connections between
two data ports, and data ports exist on components.

• The waitfor statement is not supported for the same
reason.

• There is limited interaction possible between the deliber-

998

(a) Start-up. (b) Stage 1. (c) Stage 2.

Fig. 3: The state of the event and response components in the example system at different times throughout execution of the
deliberative code.

ative code and reactive code. This is a direct consequence
of using RT Components, which cannot interact with
deliberative code.

We do also note, however, that, just as OpenRTM-aist’s
feature set does not cover all of RADAR, the RADAR
semantics do not cover all of OpenRTM-aist’s features.

• If the developer chooses to distribute components across
the network, they must start them manually, as RADAR
is unable to specify distributed concepts (although it does
not explicitly prevent them, either).

• Connection properties and component configuration val-
ues cannot be used via RADAR.

• Additional ports on the generated components cannot
be specified using RADAR syntax, and must be added
manually by the developer.

These problems are all solvable. We could create a hy-
brid of the original implementation and our OpenRTM-aist
implementation to allow anonymous slots. We could extend
the semantics to provide for inheriting events and responses
from other objects to allow adding ports to the generated
components.

These problems are generic ones that must be solved by
any distributed model implementation of reactive semantics.
The distributed model must provide rich enough components
to enable constructs similar to “once,” “whenever,” and “wait-
for,” and rich interactions between code in different com-
ponents. Component management methods should provide
enough functionality to start components.

RADAR and OpenRTM-aist compare favourably with pre-
vious robot architectures. There is a long history of creating
tiered architectures with an accompanying language. For
example, the TDL language is used to program architectures
that use a task tree [7]. By contrast, RADAR is designed to be
architecture neutral, which this work reinforces. Mainstream
architectures have tended to avoid including a language or
specifying a structure. RADAR is shown in this work to be
able to bring a structure of the programmer’s choosing to a
mainstream architecture (OpenRTM-aist) while still providing
specialised semantics.

VIII. CONCLUSIONS

The RADAR robot programming language features seman-
tics for reactivity. RADAR was designed to have semantics
that are portable across programming languages and robot
software architectures. This brings benefits to programming
by increasing reuse of concepts and so reducing retraining
time for developers moving between different robot software
architectures. We evaluated this claim by implementing the
semantics using the OpenRTM-aist architecture.

Concepts from RADAR map naturally onto OpenRTM-aist
concepts. Event and response objects can be represented by
RT components. Slots can be represented by input ports on
these components. Signals can be represented by one-way
connections between ports. We argue that this shows the
concept of architecture-independent semantics to be sound.

The choice of implementation environment does place
some limitations on the semantics. For example, our imple-
mentation is unable to support as much interaction between
deliberative and reactive code. Conversely, the semantics
may restrict the available features of the implementation
environment. We are unable to, through RADAR syntax,
specify the properties of a connection between an event and
a response, even through OpenRTM-aist supports this. These
short-comings are able to be overcome; we consider this to be
future work. These issues will be faced by other distributed
component implementations of reactive semantics.

This work brings a coordination language to a mainstream
architecture, OpenRTM-aist, that did not previously have one,
validating the architecture-neutral approach of RADAR.

REFERENCES

[1] G. Biggs and B. MacDonald, “Specifying robot reactivity in procedural
languages,” in Proc. IEEE/RSJ Int. Conference on Intelligent Robots and
Systems, Beijing, China, October 2006, pp. 3735–3740.

[2] “Boost.Signals,” http://www.boost.org/doc/html/signals.html, 2006.
[3] “Trolltech - QT Product Overview,”

http://www.trolltech.com/products/qt/index.html, 2008.
[4] G. Biggs, “Designing an application-specific programming language for

mobile robots,” Ph.D. dissertation, The University of Auckland, 2007.
[5] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for component

based rt-system development: Openrtm-aist,” in SIMPAR, 2008, pp. 87–
98.

[6] D. Stewart, R. Volpe, and P. Khosla, “Design of dynamically reconfig-
urable real-time software using port-based objects,” Software Engineer-
ing, IEEE Transactions on, vol. 23, no. 12, pp. 759 –776, Dec 1997.

[7] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, vol. 3, 1998, pp. 1931–1937.

999

