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Abstract—This paper deals with alternative humanoid robot
dynamics modelling, using the screw theory and Lie groups
called the special Euclidean group (SE(3)). The dynamic mod-
els are deduced analitically. The inverse dynamics model is
obtained by the Lagrangian formulation under screw theory,
when the Jacobian manipulator depends on the respective
twist and joint angles; on the other hand, the POE formula
drives a very natural and explicit description of the Jacobian
manipulator without the drawbacks of local representation.
The forward dynamics were solved by propagation method
from an end-effector to the center of gravity (COG) always on
the SE(3). Many tests for reference dynamic walking patterns
have been carried out, which are represented in simulation and
experimental results. The results will be discussed in order to
validate the proposed algorithms.

I. INTRODUCTION

Humanoid robots has been an active area of research in

recent years; proof of this are such current successful projects

as HONDA humanoid robots [1], which have demonstrated

the realibility of dynamic walking and its latest prototype,

ASIMO 2 which can run up to 6km/h; furthermore, it is used

as personal assistant in HONDA labs. Another important

project is the HRP-3 humanoid robot designed by AIST and

Kawada Industries [2]; this humanoid can carry out human

cooperation tasks in outdoor environments, walk on low

friction terrain, is water resistant, and so on. There are other

successful humanoid projects such as Wabian 2 in Waseda

University [13], HUBO in Korea [11], Johnnie in Germany

[12], which cope with the problem of biped locomotion on

flat surface.

The commom well known problems of biped locomotion

need poweful control and modelling algorithms in order to

generate stable walking patterns, by accurate kinematics and

dynamics modelling of a humanoid robot. As a multibody

and redundant robot, humanoid robot modelling is a complex

problem, so it is necessary to develop specific algorithms in

order to reduce mathematical analysis and computation time.

Geometric methods for kinematics modelling considerably

reduce the computation time, but the limitations are: the

complexity of three dimensional motion, the infinity of

solutions and singularities are not avoided. Those problems

have been solved by different methods such as that proposed

by Prof. Y. Nakamura [14], by projections in the null space. It

is a general method for high redundant robots, but it involves
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complex analysis and it does not show the mechanical

properties of the motion.

Thus, in this paper, the screws theory is employed because

kinematics modelling describes the mechanical motion of

the body analyticaly. It is possible, due that with screws,

the rotations and translations are represented by free vectors

in the space, which are located on each degree of freedom

of the robot. Furthermore, internal singularities are avoided,

because no local axis are used, only global axis, as base and

end-effector ones are employed in the analysis.

For dynamics modelling, the Lagrange formulation is

employed, because the Lagrangian analysis relies on energy

properties of mechanical systems to compute the motion

equation, so the equations obtained can be computed in

close form, allowing detailed analysis of the properties of

the system (Ball, R.S. [16], Murray, R.M. et al. [15].) So

inverse dynamics uses the manipulator inertia matrix and

the jacobian manipulator which doesn’t need to derivate;

the jacobian manipulator is obtained by the twist and robot

geometry. This last property simplifies the mathematical

analysis, because it shows a geometric description of the

motion. The forward dynamics modelling is based on the

study of the COG motion with the effect of external wrenches

(gravity and inertial), and uses the propagation method from

the end-effectors (feet, hands) to the COG. The result is the

motion of the free floating base, which is the COG, when the

multibody dynamics is taking into account, (Featherstone et

al. [5].)

This paper is divided in the following sections: section

2 deals with a background of screws, Lie groups and La-

grangian formulation; in section 3, the Rh-1 specifications

are shown. Section 4 outlines the dynamics modelling of

the Rh-1 humanoid robot under Lagrangian formulation with

screw theory, including the forward dynamics by the prop-

agation method. After that, section 5 shows the simulation

results on the Rh-1 humanoid robot; in the next section the

experimental results are described and discussed, and finally

in section 7, the conclusions of this study are summarized.

II. BACKGROUND OF SCREW THEORY AND LIE

GROUPS

There are many choices of methods for the kinematics

and dynamic study of humanoid robots, such as Denavit-

Hartenberg parameters, quaternions, euler angles, screw

theory-based study and others. The selection of the adequate

method depends of the analytical complexity (highly redun-

dant robots), computational cost and intrinsic problems of
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the mathematical and physical modelling (i.e., singularities,

analytical and closed solutions).

Murray et al. [15] espouse the elegance of the “product of

exponential” (POE, a sequence of screw products) formula

against the Denavit-Hartenberg parameterization for robot

kinematics (Barrientos et al. [17]). It is that author’s opinion

that the power of POE formulation lies in its geometric

foundation. As such, it allows more freedom in reduction

of the complexity of the transformation matrices. The POE

construction is straightforward since the user does not have to

remember a set of rules relating consecutive joint parameters.

The directions of the axis rotations or displacements are

simply taken in accordance with the spatial station frame.

In addition, the user works with physical link lengths rather

than distances between coordinate axes. The biggest practical

advantage is that the POE formulation uses only two frames

to describe the forward kinematics as opposed to n frames

for the Denavit-Hartenberg parameterization, so the POE

does not suffer from singularities due to the use of local

coordinates. Finally, the POE approach likely provides a

better platform for determining an analytical solution for the

inverse kinematics because the screws describe the rigid body

motion in a geometric way. Beyond that, many similarities

exist between the two approaches. In each case, the user

must work with a set of 4 x 4 matrices. From a calibration

standpoint, characteristics that affect the accuracy of the

Denavit-Hartenberg (D-H) parameterization enter into the

POE formulation in similar ways. Ultimately, both methods

provide the same information with similar amounts of com-

putational complexity. The Denavit-Hartenberg parameteri-

zation has been the standard in robotics for many years, and

it appears the switch to the POE formulization is slow in

coming.

A. Screw motion

Fig. 1. Screw motion of “p”.

The Chasles theorem says that every rigid body motion

can be made by a rotation around an axis combined with

a translation parallel to that axis. This is a “screw motion”.

The infinitesimal version of a screw motion is the Lie algebra

se(3); this is a TWIST ξ̂.

The screw theory has the following advantages:

• It allows a global description without singularities due

to the use of local coordinates (e.g., Euler angles,

Denavit-Hartenberg). It is possible to use only two

coordinate frames, the base “S” and the end-effector

“H” ones.

• A truly geometric description of rigid motion to facili-

tate the kinematics analysis. A very natural and explicit

description of the “Jacobian Manipulator” which has

none of the drawbacks of the local representation of

the traditional Jacobian.

• The same mathematical treatment for the different robot

joints: revolute and prismatic types.

For the above reasons, the “Screw theory” is used for

kinematics and dynamics modelling.

B. Lagrangian for dynamics modelling in SE(3)

Thus, the Lagrange formulation (Lagrangian) under the

lie groups and screw theory has been developed, because it

gives us a natural description of a Jacobian manipulator and

accurate dynamic computation. Future improvements will

be included, by the Boltzmann-Hamel equations for non-

holonnomic systems (Bloch, A.M. et. al ’09, [19]), our first

approach doesn’t cover the control optimization aspects.

Fig. 2. Rh-1 humanoid robot on the hall, and hardware distribution.

III. RH-1 HUMANOID ROBOT

The Rh-1 humanoid robot developed in the Roboticslab

of the University Carlos III of Madrid (Fig. 2) is about

1.35m tall and weight 50 Kg (Fig. 3). It has 21 degrees

of freedom (see Table I) distributed in its legs, arms and

waist. The joint angular ranges of the Rh-1 humanoid robot

are quite similar to human, except for some range due to

mobility requirements. Cantilever type structure is used on

the hip joints to obtain wide range motion. The structure

is designed with aeronautical aluminium, which is a strong,

yet light material. The mechanical transmission system is

composed of a flat harmonic drive and belt transmission in

order to create a compact design. It has onboard hardware,

inertial sensors, a camera including batteries, and a wireless

connection with the work station; its autonomy is about 30

minutes and it can perform with an external supply. The

software is custom-designed for integrating the hardware

devices, which include communications, sensor management

and control system. The cover was designed mainly to hide

and protect the hardware, and also to improve the aesthetics

of the humanoid robot. This first prototype can walk up

to 0.7 Km/h, as we will show in the experimental results.

Furthermore, it can respond to voice and gesture commands
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by using a USB microphone and a camera placed on its head.

Its camera can compute the orientation and distance of the

user, in order to compute the suitable motion for approaching

him. The Rh-1 can speak to the user saying things, such as

greeting him or saying his name; recognize the user by the

vision system, which interacts with a face database.

Fig. 3. Rh-1 humanoid robot dimensions.

TABLE I

RH-1 HUMANOID ROBOT DEGREES OF FREEDOM.

Link Number of DOF Total

Head - -

Waist 1 (Yaw) 1

Arm 4 4x2

Shoulder 1 (Pitch)

1 (Roll)

Elbow 1 (Pitch)

Wrist 1 (Roll)

Leg 6 6x2

Hip 1 (Yaw)

1 (Roll)

1 (Pitch)

Knee 1 (Pitch)

Ankle 1 (Pitch)

1 (Roll)

21

IV. DYNAMICS MODELLING

Multibody dynamics modelling in robotics is a complex

and high cost computation problem. Hence, the robotics

researchers have proposed few approaches, such as Feath-

erstone et al. [5], Kwatny et al. [6], Murray et al. [15], Park

et al. [7]. The Lagrangian formulation gives an approach at

the energy level, so it includes all the system properties. On

the other hand, multibody dynamics is analized in order to

solve the forward dynamics. These approaches under screw

theory describe the robot motion geometrically and solve

the dynamic problem analitically. In this section, the inverse

and forward dynamics approaches are described in the case

of high redundant robots, that is, in a humanoid robot.

Fig. 4. Rh-1 mass distribution for inverse dynamics modelling.

A. Inverse dynamics

In order to compute the joint torques and dynamics

constraints, a dynamic model is proposed [23].

With the frame attached to the COG of the link “i”, we

define the coordinates with respect to the “S” frame as (see

Fig. 4):

T1 =





t1x

t1y

t1z



 , T2 =





t2x

t2y

t2z



 , . . . , T12 =





t12x

t12y

t12z





(1)

After that, the system for analysis is as follows:

gst1 (0) =

[

Id T1

0 1

]

gst2 (0) =

[

Id T2

0 1

]

...

gst12 (0) =

[

Id T12

0 1

]

(2)

And the generalized inertia matrix for each link ”i” being

as follows:

Mi =









mi.Id 0
Ixi 0 0

0 0 Iyi 0
0 0 Izi









(3)

When the intentity (3x3) matrix is denoted by Id. Next,

the Jacobian body manipulator is expressed by:

J1 = Jb
st1 (0) , J2 = Jb

st2
(0) , . . . , J12 = Jb

st12 (0) (4)

The inertia matrix of the humanoid robot could be com-

puted as:

Mm (θ) = JT
1

.M1.J1 + JT
2

.M2.J2 + . . .+ JT
12

.M12.J12 =
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





M11 . . . M112

...
...

...

M121 . . . M1212






(5)

With the last computations, it is possible to compute the

inertial generalized torque vector (Γ′′) as:

Mm (θ) .θ̈ = Γ′′ (6)

On the other hand, the potential effect could be computed

by:

V (θ) = m1.g.h1 (θ) +m2.g.h2 (θ) + . . .+m12.g.h12 (θ)
(7)

Where, hi (θ) is the vertical component of COGi for any

set of ”θ” joint angle configuration.

gsti (θ) = eξr

x
∧θr

x .eξr

y
∧θr

y ...eξ1∧θ1 .eξ2∧θ2 ...gsti (0) (8)

And the potential generalized torque (Γ′) for all the joints

is expressed by:

N
(

θ, θ̇
)

=
∂V

∂θ
=















N1

N2

N3

...

N12















= Γ′ (9)

Finally, the total joint torques are obtained with the sum

of inertial generalized torque vector (“Γ′′ ”, eq. 6) plus

the potential generalized torque (“Γ′ ”, eq. 9), such as the

following:

Γ = Γ′′ + Γ′ (10)

Fig. 5. Rh-1 mass distribution for forward dynamics modelling.

B. Forward dynamics

To solve the forward dynamics, the motion (translation

and rotation like a “screw”) of the COG is obtained from

the following actions (see Fig. 5):

1) External forces

2) Inertial and gravitational effects

3) Internal interactions

So, at first the objective is to compute:

1) The link’s spatial acceleration (ai)

2) The link’s angular acceleration (εi)

3) The joint’s angular acceleration (αi)

After that, by integrating the above accelerations (i.e.

Euler, Runge Kutta methods) the spatial, joint and COG

motion patterns are obtained.

Now the link motion is analized as following. We define in

the COG the base frame free floating. The legs and arms are

trees from the base frame. The spatial and angular velocity

of each link (“i”) can be computed as:

wi = wCOG +RCOG.ωi.q̇i (11)

vi = vCOG + pi ×RCOG.ωi.q̇i (12)

Being RCOG the attitude matrix of the COG with respect

to the world frame (3x3).

In order to build the generalized inertia matrix, its com-

ponents can be computed as following:

At first, the component due to the rotational effect is

summarized by “Iww i”.

Iww i = Ia
ww +mi.ĉ

a
i .ĉa

i

′

(13)

Where:

Ia
ww = Ri.Ii.R

′

i

ca
i = Ri.ci + pi

Being Ri the attitude matrix (3x3), and ci the center of

gravity of the link “i” (3x1); thus, ca
i is the center of gravity

of link “i” with respect to the world frame.

Next, the component due to the translational effect is

summarized by “Ivv i”.

Ivv i = mi.Id (14)

Where “Id is the identity matrix (3x3).

Finally, the component due to the translational and rota-

tional effect “Iwv i”.

Iwv i = mi.ĉ
a
i (15)

In the other hand, as we have used a free floating model,

with base in the COG, the reaction wrench from the floor

and gravity effect must be taken into account. Those effects

are modeled by the total wrench on each link as:
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Fi =

(

wi × Pi

vi × Pi + wi × Li

)

−

(

fg i

τg i

)

−

(

fr i

τr i

)

(16)

when “Pi” and “Li” are the linear and angular momentum

of the i-th link. The gravity and reaction wrenches are:

(fg i, τg i)
T , (fr i, τr i)

T .

Thus, the linear and angular momentum of each link “i

can be computed as follows:

Pi = mi. (vi + wi × ca
i )

Li = mi.c
a
i × vi + Iww i.wi

The gravity effect:

fg i =





0
0

−mi.g





τg i = ca
i × fg i

The reaction floor effect, from a given stifness of floor

“Kf” and damper “Kd” coefficients is computed as follow-

ing:

fr i =



































−Kd.vx i

−Kd.vy i

−Kf .pz i −Kd.vz i



 ∀ pz < 0





0
0
0



 ∀ pz > 0

τr i = pi × fr i

An special attention should be taken into account, when

the robot is walking, about the force reaction on its soles.

The reaction floor effect on each foot during walking is

a critical fact for controlling the humanoid robot, so this

reaction is modelled with the previous equations when the

i-th link corresponds to the left or right foot.

Now, the generalized inertial matrix of the robot is the

following:

Itot i =









k
∑

2

(Ivv i −Hv i)
k
∑

2

(Iwv i −Hwv i)
′

k
∑

2

(Iwv i −Hwv i)
k
∑

2

(Iww i −Hw i)









(17)

Being Hv i, Hwv i and Hw i inertial matrices projected

on angular and linear velocity directions, that is on “ωi ”

and “pi ×ωi ”

The generalized acceleration vector (atot i of dimension

(6x1)) is obtained by:

atot i = − Itot i\Fi (18)

Finally, the joint (αi) and link (ai, εi) accelerations are:

αi =
Γi −H ′

v i.aCOG −H ′

w i.εCOG

Hdi

(19)

When:

Hdi = f(H ′

v i,H
′

w i)

ai =



















a11

tot i

a21

tot i

a31

tot i



 ∀ i = 1

aCOG + v̄i + ṽi.αi ∀ i 6= 1

(20)

And:

v̄i =
d

dt
(ṽi) .q̇i

ṽi = RCOG.ωi

εi =



















a41

tot i

a51

tot i

a61

tot i



 ∀ i = 1

εCOG + w̄i + w̃i.αi ∀ i 6= 1

(21)

Being:

w̄i =
d

dt
(w̃i) .q̇i

w̃i = pi ×RCOG.ωi

V. SIMULATION RESULTS

Fig. 6. Rh-1 dynamics simulation, without references, under the gravity
field.

The whole body dynamics simulation allows us to design

the robot structure, and to set up the control parameters,

[23]. Because, the real robot performance is simulated by

taking into account the mass, inertial properties, and external

wrenches, (that is, the gravity field, the force and torque

reactions.) We obtained link geometry and inertial parame-

ters, from the CAD data. As an example shown in Fig. 6,

the Rh-1 humanoid robot, without any joint reference (i.e.

torques, joint patterns), falls down under the gravity field.

As shown in the last snapshot, the contact points taken into

account are between robot and floor, and not between robot
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covers. Thus when the robot falls down, each cover could

overlap other one. In Fig. 8, the some tests of dynamic

walking are shown. In this case, the control parameters have

been tuned for the next control levels: local joint control

and the whole body control, because the dynamic model

give us humanoid realistic behaviour such as, actual robot

attitude, Zero Moment Point (ZMP), surface wrench reaction;

and the control loop is tuned to compensate their deviations

from the reference patterns. So, stable walking motion is

obtained and it is tested previously in the dynamic simulator.

This simulation is achieved by integrating the accelerations

from the equations (20), (21), (19). Forward dynamics and

integration by the Euler method takes around 16 seconds, and

with the Runge-Kutta takes around 40 sec, running Matlab in

PC: AMD Athlon(tm) 64 Processor 3200+, 2.02 GHz, 1.00

GB RAM. In the table II is summarized the computation

time of forward dynamics, that is for Rh-1 humanoid robot

(21 DOFs) and PUMA robot (6 DOFs), in order to compare

the effectiveness of our approach.

TABLE II

TIME COST COMPUTING FORWARD DYNAMICS

Method / N
o DOF Time (sec)

Screws+Euler / 21 DOF 16

Screws+Runge-Kutta / 21 DOF 40

D-H+Runge-Kutta / 6 DOF 30

Fig. 7. Humanoid robot walking and turning.

As shown in Fig. 7, walking and turning motion is

developed. Smooth patterns are successfully tracked, because

the accurate dynamic model approaches to the robot perfor-

mance, so the control parameters could be tunned and them

compensate the wholebody dynamics effects, during walking

motion.

Fig. 8. Rh-1 walking forward simulation and real tests.
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Fig. 9. Horizontal view of walking patterns. The ZMP reference (black
line), actual ZMP (red dotted line) and the COG (blue dashed line) are
shown. In the single support phase, the dynamic walking pattern allows us
to fix the ZMP around the middle of the support foot, while the COG is
near the foot boundary.

VI. EXPERIMENTAL RESULTS

A dynamic walking pattern is tested and validated, because

the ZMP is inside of the support polygon while robot is

walking (Fig. 8, 9.) In this feature, the joint patterns obtained

remain the predicted stability, with the action of the whole-

body control loop. The control loop compensates additional

terrain imperfections and structural robot elasticity.

The reference walking patterns are computed from a

preview controller of ZMP, which is proposed by Kajita

et al. [10]. It is robust and it performs well in our robot

too. The proposed dynamic model allow us to predict the

reference joint patterns, in order to avoid humanoid falling

down. At this stance our approach is successfully validated

in the Rh-1 humanoid robot platform. The theorical proof is

shown in the Fig. 9, where the actual ZMP (red dotted line)

tracks the reference ZMP (black bold line) in an acceptable

stability range. That is, the actual ZMP remains in the

support polygon during the single support phase.

In Fig. 10, the simulation and actual measuring of surface

reaction forces, are shown, for both right and left feet while

the humanoid is walking. Except by the small differences

between simulation and actual measures, due to the sen-
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Fig. 10. Surface reaction forces while walking. Right foot reaction and Left
foot reaction obtained from dynamic model (blue line), actual measuring
(red line). Similariy on plots validate the proposed algorithms.

sors noise, and non-linearities; our proposed approach is

validated, towards to obtain stable dynamic walking taking

into account mulibody dynamics. The approach is applied

at simulation level, that is off-line only for tunning the

control parameters. Also, this approach could be used in

more complex robots, with more degrees of freedom, or

human models.

VII. CONCLUSIONS

We propose and validate the dynamic modelling of hu-

manoid robots using the screw theory and Lagrange formu-

lation, which have the following advantages:

• To compute the Jacobian is not necessary to derivate,

only a set of matrix transformations is needed (including

the twists).

• The Lagrange method allows us to solve the equations

in a closed form and it is possible to make detailed

analyses of the system’s properties.

The forward dynamics have been solved by screws too.

The propagation method, (from contact point to COG),

allows us to preview the dynamic performance of the robot

with free floating base.

The force reaction was modelled and validated sucessfully,

by both simulation and experimental tests. That is, suitable

walking paterns and control parameters could be tuned with

the proposed multibody dynamic model.

Current works are focused on increasing the contact points

to improve the multibody dynamics, in the other hand,

optimal control of mechanical systems will be included in

our improvents.
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