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Abstract— This paper presents a new solution to the loop
closing problem for 3D point clouds. Loop closing is the
problem of detecting the return to a previously visited location,
and constitutes an important part of the solution to the
Simultaneous Localisation and Mapping (SLAM) problem. It
is important to achieve a low level of false alarms, since closing
a false loop can have disastrous effects in a SLAM algorithm. In
this work, the point clouds are described using features, which
efficiently reduces the dimension of the data by a factor of 300
or more. The machine learning algorithm AdaBoost is used to
learn a classifier from the features. All features are invariant
to rotation, resulting in a classifier that is invariant to rotation.
The presented method does neither rely on the discretisation of
3D space, nor on the extraction of lines, corners or planes. The
classifier is extensively evaluated on publicly available outdoor
and indoor data, and is shown to be able to robustly and
accurately determine whether a pair of point clouds is from
the same location or not. Experiments show detection rates of
63% for outdoor and 53% for indoor data at a false alarm rate
of 0%. Furthermore, the classifier is shown to generalise well
when trained on outdoor data and tested on indoor data in a
SLAM experiment.

I. INTRODUCTION

Over the past two decades, the Simultaneous Localisation
and Mapping (SLAM) problem has received considerable
attention [1, 2]. A central and highly important part of SLAM

is loop closing, i.e. detecting that the robot has returned to a
previously visited location. In this paper we consider robots
equipped with laser range sensors, and define the problem
of loop closure detection as determining whether or not the
laser point clouds are from the same location. See Figure 1
for an illustration of the problem.

In previous work we showed that the problem of detecting
loop closure from 2D horizontal laser point clouds could
be cast as a two class (either same place or not) classifi-
cation task [3]. By introducing 20 features, we were able
to learn a classifier for real-time loop closure detection.
The classification technique used is based on the machine
learning algorithm AdaBoost [4], which builds a classifier
by concatenating decision stumps (one level decision trees).
The result is a powerful nonlinear classifier which has good
generalisation properties [5, 6].

The main contribution of the paper is the extension of
previous work on 2D horizontal point clouds [3] to full
3D point clouds. 41 features are defined and used to create
decision stumps. The stumps are combined into a classifier
using AdaBoost. We evaluate our approach for loop closing
on publicly available data and compare our results to previ-
ously published results. The loop closure classifier is used
in a SLAM framework using an Exactly Sparse Delayed-state
Filter (ESDF) [7], and is shown to generalise well between
environments.
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Fig. 1: Illustration of the loop closure detection problem. Are
the laser point clouds from the same location? Color is used
to accentuate height.

II. RELATED WORK

This section summarizes previous work on loop closure
detection using range sensors, in both 2D and 3D, as well as
cameras. The detection results are summarised in Table I,
where we compare our results to the results reported in
related work. Neither one of the methods presented here uses
prior knowledge of the relative pose for the data pair that is
compared, however tests were performed in slightly different
manner, making a direct comparison of the results difficult.

TABLE I: Comparison of previous results and our results.
Detection rate (D) for given levels of false alarm rate (FA).

Source FA [%] D [%] Comment

[8] 0 37/48 Images, City Centre/New College

[9] 1 51 2D point clouds

[3] 1 85 2D point clouds

[10] 0 47 3D point clouds

Our results 0 63 3D point clouds

Previously we presented loop closure detection by com-
pressing point clouds to feature vectors which were then
compared using an AdaBoost learned classifier [3]. Detection
rates of 85% were achieved at 1% false alarm rate. The point
clouds were described using 20 rotation invariant features
describing different geometric properties of the point clouds.

A similar classification approach based on point cloud
features and AdaBoost has been used for people detection
[11] and place recognition [12]. For people detection the
point clouds were segmented and each segment classified as
belonging to a pair of legs or not, detection rates of over 90%
were achieved. For place recognition, three classes were used
(corridor, room and doorway) [12], hence the results do not
easily compare to the two class loop closure detection results
presented here.

An example of loop closure detection for 2D point clouds
is the work by Bosse et al [9]. They use consecutive
point clouds to build submaps, which are then compressed
using orientation and projection histograms as a compact
description of submap characteristics. Entropy metrics and
quality metrics are used to compare point clouds to each
other. A 51% detection rate for 1% false alarm rate is
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In order to facilitate comparison of two point clouds from
times tk and tl, the features of both types are compared.
For the first type, elementwise absolute value of the feature
vector difference is computed,

F1
k,l =

∣

∣f1k − f1l
∣

∣ . (2)

The underlying idea here is that point clouds acquired at the
same location will have similar feature values f1k and f1l , and
hence each element of F1

k,l should be small. For the second
type of feature, for each bin size bj the correlation coefficient
for the two corresponding range histograms is computed.
Here, the underlying idea is that point clouds acquired at
the same location will have similar range histograms, and
thus the correlation coefficient should be close to 1. The
correlation coefficients are collected in a vector F2

k,l, and
the comparisons of both types of features are concatenated

in a vector as Fk,l =
[

F1
k,l,F

2
k,l

]

. Fk,l will henceforth be

referred to as the set of extracted features for two point
clouds indexed k and l.

In 2D 20 features were used [3], some of these features
have been generalised to 3D (e.g. area to volume) while
others have been kept as they were inherently in 2D (e.g.
average range). Similar 2D features have been used for
people detection and place recognition [11, 12]. A few of
the utilised features are defined using the range from sensor
to point, thus introducing a depedency on the sensor position
from which the point cloud was acquired. An interesting
implication of this is that the method could possibly be
limited to situations where the robot is following a defined
roadway, e.g. a street or an office hallway, and may not
succeed in a more open area, e.g. a surface mine. In this work
it is shown that the method can detect loop closure from point
clouds with up to 3m relative translation, see Section IV for
experimental results. It remains within future work to fully
evaluate how the method scales against translations > 3m,
i.e. how the method handles point clouds with partial overlap.

Given a point cloud pk, 14 constants need to be specified
for computing the features. The first one, denoted rmax, is
the maximum measurable range, which is determined by the
sensor that was used for data acquisition. For the hann2

and AASS data sets we set rmax = 30m and rmax =
15m respectively. Remaining thresholds need to be specified
manually. For both data sets, the parameters were set to:
gdist = 2.5m, gr1 = rmax, gr2 = 0.75rmax and gr3 = 0.5rmax.
Bins of size 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3 metres
were used for the range histograms. For each point pi, the
range ri is computed as the distance from the origin (sensor
location) to the point. Any point with ri > rmax is translated
towards the origin so that ri = rmax before the features are
computed. The following features are used:

1) - 2) Volume: Measures the volume of the point cloud
by adding the volumes of the individual laser measurements.
Each point is seen as the centre point of the base of a pyramid
with its peak in the origin. Let α and β be the laser range
sensor’s vertical and horisontal angular resolution, and let

li = 2ri tan
(

α
2

)

and wi = 2ri tan
(

β
2

)

be length and width

of the pyramid base, and hi = ri the height at point i.
The volume of the pyramid is vi = liwihi

3 . The volume is

computed as

vmax =
4

3
tan

(α

2

)

tan

(

β

2

)

r3max (3a)

f11 =
1

Nvmax

N
∑

i=1

vi =
1

N

N
∑

i=1

(

ri
rmax

)3

(3b)

The volume is normalised by dividing by the maximum
measurable volume Nvmax, i.e. the volume when all ranges
equal rmax. Notice that the explicit values of α and β do
not matter. f12 is the volume computed using points with
ri < rmax.

3) - 4) Average Range: Let the normalised range be rn
i =

ri/rmax. f13 is the average rn
i for ranges ri < rmax and f14 is

the average rn
i for all ranges.

5) - 6) Standard Deviation of Range: f15 is the standard
deviation of rn

i for ranges ri < rmax and f16 is the standard
deviation of rn

i for all ranges.
7) - 9) Sphere: A sphere is fitted to all points in the cloud

in a least squares sense, which returns the centre of the fitted
sphere pc and the radius of the fitted sphere rc. f17 is rc/rmax,
f18 is the residual sum of squares divided by Nrc,

f18 =
1

Nrc

N
∑

i=1

(rc − ‖pc − pi‖)
2
, (4)

where ‖ · ‖ is the Euclidean norm. f19 is
‖pc‖
rmax

.

10) - 12) Centroid: Let p̄ be the mean position of the
point cloud, computed for all points ri < rmax. f110 = ‖p̄‖,
f111 is the mean distance from p̄ for points ri < rmax and f112

is the standard deviation of the distances from p̄ for points
ri < rmax.

13) - 14) Maximum Range: f113 is the number of ranges
ri = rmax and f114 is the number of ranges ri < rmax.

15) - 17) Distance: Let the distance between consecutive
points be δpi = ‖pi − pi+1‖. f115 is the sum of δpi for
all points. f116 is the sum of δpi, for consecutive points
with ri, ri+1 < rmax. f117 is the sum of all δpi < gdist, for
consecutive points with ri, ri+1 < rmax.

18) Regularity: f118 is the standard deviation of δpi, for
consecutive points with ri, ri+1 < rmax.

19) - 20) Curvature: Let A be the area covered by the
triangle with corners in pi−1, pi and pi+1, and let di−1,i,
di,i+1 and di−1,i+1 be the pairwise point to point distances.

The curvature at pi is computed as ki =
4A

di−1,idi,i+1di−1,i+1
.

Curvature is computed for pi ∈ I, where I = {pi :
ri−1, ri, ri+1 < rmax, di−1,i, di,i+1, di−1,i+1 < gdist}. f119

is the mean curvature and f120 is the standard deviation of
the curvatures.

21) - 22) Range Kurtosis: Range kurtosis is a measure of
the peakedness of the histogram of ranges. Sample kurtosis
is computed for all points ri < rmax as follows

mk =
1

Nri<rmax

∑

i : ri<rmax

(ri − r̄)
k
, (5a)

f121 =
m4

(m2)
2 − 3, (5b)

where r̄ is mean range, and Nri<rmax
is the number of ranges

ri < rmax. f122 is range kurtosis computed for all points in
the cloud.

2091



2092



0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T

 

 

MD

FA

Total

Fig. 4: Error rates for hann2 data for different number of
training rounds T in AdaBoost. Total error level (both MD
and FA) stops declining after T = 50 training rounds.

TABLE II: Best features for loop closing

TEST 1

Training round 1 2 3 4 5
Added feature, hann2 35 1 7 27 20
Added feature, AASS 33 40 32 36 41

TEST 2, hann2

Feature removed 21 8 10 28 35
Total error [%] 1.29 1.15 1.14 1.13 1.13

TEST 2, AASS

Feature removed 41 22 33 32 40
Total error [%] 2.27 2.24 2.16 2.08 2.04

features. For hann2, the resulting total test error rate was
1.10% and for AASS the total test error rate was 1.92%.
We then proceeded to remove each feature one at a time
and train classifiers on the remaining features. By examining
the resulting test error rates, we could determine which
features had the most negative effect on the error rates after
being removed from the set of features. In Table II Test 2
summarises the results for the five most important features
for both data sets.

As can be seen in Table II, for AASS, the features that are
added in early training rounds also have the largest negative
effect when removed. Those features, numbers 33, 40, 32
and 41, correspond to range histograms with bin sizes 0.1,
2.5 and 3 m, respectively, and standard deviation of range
difference for ranges shorter than or equal to gr3 = 0.5rmax.
For hann2, the results are less consistent, however feature
35, corresponding to range histogram with bin size 0.5 m,
appears to be most effective at separating the two classes of
data pairs.

Furthermore, Tests 1 and 2 show that the most important
features for loop closure detection are not the same for the
two data sets. Since hann2 is an outdoor data set and AASS

is an indoor data set, this could mean that the classifier does
not generalise well when trained and tested on data from
different environments. This issue is addressed further in
Section IV-D, where it is shown that the classifier in fact
does generalise well from outdoor to indoor data.

C. Classifier Characteristics

This experiment was conducted to evaluate the classifier
characteristics, i.e. the classifier’s ability to achieve good
levels of D for low levels of FA. For hann2, 10-fold cross
validation was performed for 750 different permutations
of the data pairs. Due to the smaller number of positive
data, for AASS 4-fold cross validation was performed for
10000 different permutations of the data pairs. By varying
the threshold K in (7), different levels of D and FA are
achieved when the validation data is classified. The results

are presented in Table III, and in Figure 5 as Receiver
Operating Characteristic (ROC) curves, where D is plotted
against FA. In the table detection rates are given ± one
standard deviation, and with the maximum and minimum
values that were recorded. As a comparison, results from
related work are included for both data sets [10]. It should
be noted though, that while subsets of the data sets are used
here, results at 1% FA are reported for the entire data sets
in [10]. Thus, the results should be interpreted with care.
In Figure 5, the area under the ROC-curve is approximately
0.999 for hann2 and 0.936 for AASS.
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Fig. 5: ROC-curve showing D for different levels of FA.

TABLE III: Classification characteristics, all numbers in %

Data set FA D Min/Max D [10]

hann2 0 63± 6 28/76 47
1 99± 0.1 98/99 81

AASS 0 53± 14 0/88 70
1 78± 6 56/88 63

As is seen in Table III, 0% was the lowest D for 0% FA
for AASS. This happened in 5 out of 10000 cross validations.
Furthermore, the mean D is lower than related work [10],
and the standard deviation of D is higher than for hann2.
For this data set the number of positive data pairs is low,
compared to the number of negative data pairs (16 vs. 324),
which is an intuitive reason for the worse performance. The
training data is crucial to the AdaBoost learning, and it is
possible that there is not enough positive pairs to be able to
achieve a high degree of class separation.

To test this hypothesis, 16 positive and 300 negative data
pairs were randomly selected from the large set of hann2

data pairs, and a classifier was learned and evaluated using
4-fold cross validation on the subset of data. Out of 1000
such random subsets, 30 gave classifiers with 0% D for 0%
FA (mean D was 72%±19% for 0% FA). While this result
is not sufficient to conclude that the low number of positive
data pairs is the sole reason for the worse results for AASS

compared to related work and hann2, it does support the
hypothesis that the relatively low number of positive training
data has a strong negative effect on the learned classifiers
ability to achieve a good degree of class separation. The
ROC-curve corresponding to this test is labeled hann2 subset

in Figure 5. Comparing to the curve for the full hann2 data
set shows a clear negative effect.
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D. SLAM Experiment

This experiment was conducted for two reasons, one is to
see how the classifier would perform in a SLAM setting, the
other is to see how the classifier performs when it is trained
on outdoor data and then tested on indoor data. The positive
and negative data pairs from hann2 were used to train a
classifier. The classifier was then used to classify data pairs
from the AASS data set.

The implemented SLAM framework is by now well known,
hence only specific design choices are provided. The reader
is refered to the references for exact implementation details.
A delayed state extended information filter, called ESDF [7],
is implemented. The state vector contains a history of 6-
DOF poses, each with (x, y, z)-position and Euler angles
(φ, θ, ψ) representing roll, pitch and heading as the angles
are defined in [21]. Motion and measurement models are
defined using the coordinate frame notation by Smith, Self
and Cheeseman [22]. Robot motion is computed using 3D-
NDT [23], initialised by odometry3. After loop closure is
detected, ICP [24–26] initialised by the estimated relative
pose from the ESDF is used to compute the relative pose.
This is sufficient for the particular data set used here,
however a general solution would require a method which is
independent of the estimated relative pose.

In this experiment each point cloud pk was compared to

all previous point clouds {pi}
k−1
i=1 . In each time step the

pair with highest
∑T

t=1 αtct (Fk,l), is considered a match

if
∑T

t=1 αtct (Fk,l) ≥ K
∑T

t=1 αt, cf. (7). All other pairs
are considered to not be matches. Since the time to compare
two point clouds to each other is constant, comparing to
all previous point clouds results in a linearly increasing
time complexity as more point clouds are acquired. For
the experiments presented here, this has not been a prob-
lem, however for very large data sets this could become
problematic. An alternative to comparing to all previous
data, is to only compare to the subset of data acquired at
locations which are within the current uncertainty ellipsoid,
thus reducing the amount of time needed to compare point
clouds. Doing so is not without problems though, since
inconsistencies in the estimation of trajectory mean and
covariance, e.g. due to linearisation errors, may lead to true
loop closure locations falling outside the uncertainty ellipsoid
[27]. This is typically the case for larger data sets, where
the accrued drift in trajectory estimation can lead to large
estimation errors. Further, an important purpose of any loop
closure detection method is to support the estimation in
exactly such cases, when the estimation of trajectory mean
and covariance is inconsistent. Thus, relying on mean and
covariance to feed candidate pairs to the loop closure method
is inadviceable. As a possible remedy to the linearly increase
time demands of pairwise comparison to all previous data,
global descriptors could be used to obtain a subset of the
pairs [13, 19], for which pairwise comparison can be made.

The result from the experiment is shown as a classification
matrix in Figure 6a. The (k, l)th element of the classification

matrix is
∑

T
t=1

αtct(Fk,l)∑
T
t=1

αt
. The corresponding ROC-curve is

labeled SLAM in Figure 5, with 44% D for 0% FA. There
is a high similarity between Figures 6b and 6c, showing that
the generalisation properties of the features and the classifier
are good. The classifier used in the experiment was trained on

3These transformations are available together with the point clouds.

outdoor data containing 16600 points per cloud, rmax = 30,
and then tested on indoor data containing 112000 points per
cloud, rmax = 15. Figure 6e shows a 2D projection of the
resulting map from the SLAM experiment, with the robot
trajectory overlaid. The robot trajectory is compared to dead
reckoning in Figure 6d. For this part of the experiment, a
minimum loop size of 5 poses was introduced, explaining
why the detected loop closure between poses 28 and 29 in
Figure 6b is not present in Figure 6e.

E. Time complexity

This experiment was conducted to determine the time
complexity of the proposed method. The code used in this
work was implemented in Matlab and run on a 2.83GHz Intel
Core2 Quad CPU with 3.48 GB of RAM running Windows.
It should be noted that the implementation has not been
optimized for speed.

The time to compute the features are 19.34ms and
225.10ms for hann2 and AASS respectively. Comparing
the features takes 0.845ms, and computing c (Fk,l) takes
0.78ms. The times are averages from computing and com-
paring features for the data pairs in each data set. As
expected the time to compute the features is longer for
AASS, which contains on average 112000 points per cloud,
than for hann2, which contains on average 16600 points per
cloud. Computing the 41 features only needs to be performed
once per point cloud. Comparing the features from two point
clouds takes just under 1ms, and classifying a set of extracted
features takes just under 1ms when T = 50 weak classifiers
are used in the strong classifier. Training a strong classifier
for T = 50 iterations takes 15s when the hann2 data pairs
are used.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new machine learning approach to
the loop closure detection problem using 3D laser range data.
41 features were defined and combined into a classifier using
AdaBoost. The classifier shows promising and competitive
results for an outdoor data set, as well as reasonable results
for an indoor data set. Furthermore, the classifier was shown
to generalise well, since it can be trained on data from one
environment and still perform well using data from another
environment.

The tests with subsets of the hann2 data pairs show that
the number of training data is important for the resulting
classifier properties. In future work we plan to investigate
further the dependence on the number of training data for
good class separation. An evaluation of how the method
scales with translation is also needed, especially to address
how the presented method handles partial point cloud over-
lap. Future work also include an investigation of how the
linearly increasing time complexity, due to comparison to
all previous data, can be overcome.
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