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Abstract— We present a probabilistic localization and ori-
entation estimation method for mobile agents equipped with
omnidirectional vision. In our appearance-based framework, a
scene is learned in an offline step by modeling the variation
of the image energy in the frequency domain via Gaussian
process regression. The metric localization of novel views is
then solved by maximizing the joint predictive probability of
the Gaussian processes using a particle filter which allows to
incorporate a motion model in the prediction step. Based on the
position estimate, a synthetic view is generated and used as a
reference for the orientation estimation which is also performed
in the Fourier space. Using real as well as virtual data, we show
that this framework allows for robust localization in 2D and 3D
scenes based on very low resolution images and with competitive
computational load.

I. INTRODUCTION

Omnidirectional cameras are very popular sensors for

various kinds of mobile agents. Visual sensors are necessary

for many tasks involving interaction with the environment

as well as for tele-operation. It is therefore desirable to use

visual information also for localization. In previous work,

various methods have been developed that solely rely on

image data in order to determine the relative position of the

camera, i.e., the mobile agent, and simultaneously build a

model of the environment (e.g. [1], [2]). This is known as

structure-from-motion in the vision community and is closely

related to the problem of SLAM. The work of Nistér et al. [3]

also relies on an implicit geometric modeling of the scene,

yet focusing on the ego-motion estimation.

In contrast, we deal with the problem of localization in

a known environment, where we estimate the position and

orientation of the mobile agent. In general, this environment

can be given as a metric map or as in our case, as a

database of sensor measurements with associated metric pose

information, in contrast to purely topological approaches,

where the associated information is of semantic nature.

First, in an offline step, we record panoramic images at

known positions. Using a frequency domain representation

of the omnidirectional images not only leads to a compact

description of the image data but also allows us to use the

energy of the signal as a similarity measure that is invariant

under rotations.

We use the statistical framework of Gaussian process

regression to model the variation of the image energy in the

environment, where we train the model with the prerecorded

images. Since the image energy is computed for different
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frequency bands independently, we use multiple Gaussian

processes to account for the multivariate outputs of the

model. To solve the localization problem, we apply a particle

filter and use the joint predictive probability of the Gaussian

process model to rate the particles based on their positions

and the actual view.

The same model is used to synthesize a reference view

from which we estimate the orientation of the mobile agent

with regard to the most likely position. This is performed

in Fourier space as well, using normalized cross-correlation

as similarity measure and applying a second particle filter to

solve for the most likely orientation.

In the following subsection we shortly review relevant

previous work and in Section II the techniques employed in

our algorithm are introduced. Based upon this, Section III

describes our novel methods for position and orientation

estimation. Results from several experiments using virtual as

well as real data sets are presented in Section IV, followed

by a conclusion in Section V.

A. Related Work

In many existing approaches, the entry in the database

which is most similar to the new measurement is retrieved

and its associated position is taken as a hypothesis for

the current location. For this task, various different image

signatures and similarity measures have been proposed. For

example, Menegatti and colleagues [4] use global image

descriptors, whereas Andreasson et al. [5] employ sets of

descriptors of local image features for topological, as well

as for metric localization in conjunction with odometry

readings [6]. Similarly, but purely image-based, Sim and

Dudek [7] solve this problem by using generative models of

the appearance of local feature neighborhoods with regard to

varying viewpoints.

Omnidirectional images can efficiently be represented in

their spherical harmonics basis, i.e. as Fourier transforms on

the sphere. Friedrich et al. [8], [9] use these descriptors to

localize a robot in 2D. They search for the nearest neighbor

in terms of the L2-norm of the coefficients on an interpolated

grid of reference views. Contrarily, we perform regression in

the frequency domain, using Gaussian processes that allow

for a metric localization. On other modalities, Gaussian

processes have been used for metric localization before.

Schwaighofer et al. [10] apply this framework in order to

localize cell phones, based on measurements of the signal-

strength from multiple base stations. Similarly, Ferris and

colleagues [11] used Gaussian process latent variable models

for SLAM in WiFi networks.
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II. PRELIMINARIES

A. Harmonic Analysis on the Sphere

Omnidirectional images can be considered as a function

f(θ, φ) = f(ω) on the 2-sphere, where θ ∈ [0, π] denotes

the colatitude and φ ∈ [0, 2π) denotes the azimuth. Driscoll

and Healy [12] showed that the spherical harmonic functions

Y m
l form a complete orthonormal basis over the unit sphere

and that any square-integrable function f ∈ L2(S2) can

be expanded as a linear combination of spherical harmonic

functions (Spherical Fourier Transform, SFT)

f(ω) =
∑
l∈N

∑
m∈Z,|m|≤l

f̂m
l Y m

l (ω), (1)

where f̂m
l ∈ C are the complex expansion coefficients. The

spherical harmonic function Y m
l of degree l and order m is

given by

Y m
l (θ, φ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Pm

l (cos θ)exp(imφ), (2)

with Pm
l denoting the associated Legendre polynomials.

Our input data, the spherical functions f , are defined on a

uniformly sampled equiangular grid. A perfect reconstruction

from a 2B × 2B grid is possible when bandlimiting f to B.

Since rotating a spherical function does not mix coef-

ficients of different degrees l, i.e., of different frequency-

bands, the norms of these subgroups of coefficients are

invariant under arbitrary 3D rotations of the signal [13].

Therefore, the bandwise L2-norms can be considered as a

kind of energy spectrum e = (e1, ..., eB)T , where

el =
√ ∑

|m|≤l

|f̂m
l |2. (3)

This compact, rotationally invariant representation can be

used when comparing pairs of spherical signals.

Kostelec and Rockmore [14] presented a method to esti-

mate the alignment of images defined on the sphere using

cross-correlation as a similarity measure. They showed that

the correlation between two images g and h as a function

C(R) =
∫

S2
g(ω) Λ(R)h(ω) dω (4)

of rotations can efficiently be evaluated in the Fourier do-

main. Here, Λ denotes the rotation operator corresponding

to the rotation R = R(α, β, γ) where α, β, γ are the Euler

angles (in ZYZ representation) defining the rotation. Further,

the spherical harmonic functions Y m
l form an orthonormal

basis for the representations of SO(3) and the SO(3) Fourier

transform (SOFT) coefficients of the correlation of two

spherical functions can be obtained directly by calculating

the bandwise outer product (denoted by �) of their individual

SFT coefficients. Taking the inverse SOFT,

C(R) = SOFT−1
(
ĝ � (ĥ)�

)
, (5)

where (ĥ)� denotes the complex conjugate of ĥ, yields the

correlation C(R) evaluated on the 2B × 2B × 2B grid of

Euler angles G and its maximum value ideally indicates

the rotation separating the two images. The accuracy of

the rotation estimate R̃ = arg max(α,β,γ)∈G C(R(α, β, γ))
is directly related to the resolution of the likelihood grid

which in turn is specified by the number of bands used in

the SFT. Given images of bandwidth B, the resolution of the

likelihood grid implicates an inaccuracy of up to ±( 180
2B )◦ in

α and γ, and ±( 90
2B )◦ in β. The cubic computational cost

when evaluating the grid, in practice, restricts this method to

bandwidths up to B = 256.

When acquiring omnidirectional images, typically, the

sensors do not cover the whole sphere and the images

have limited support. In our previous work [15] we show

that the spatially normalized cross-correlation (NCC) of

two spherical images can be expanded in terms of simple

correlations and therefore can be computed with multiple

applications of the inverse SOFT transform. In the remainder

of the paper we use this function as a similarity measure

when estimating the orientation.

B. Gaussian Process Regression

Gaussian processes provide an elegant and powerful

framework for probabilistic regression. We very briefly re-

view the basics of Gaussian process regression. For further

details, please refer to the comprehensive treatise by Ras-

mussen and Williams [16].

A Gaussian process (GP) can be used to model the

underlying function f̃ of a set of observations

yi = f̃(xi) + ε, i = 1, . . . , m, f̃ : R
D → R, (6)

that are corrupted by white Gaussian noise ε ∼ N (0, σ2
n). In

Gaussian process regression, one estimates a posterior distri-

bution over functions f incorporating the training data D =
{(xi, yi)}m

i=1. Assuming that function values at different

positions xi are correlated, one models the covariance of

the function values as a function of the inputs:

cov (f(xi), f(xj)) = k(xi, xj). (7)

The posterior process F , which models the predic-

tive distribution p(y|x∗, D), is completely specified by

its mean and covariance functions. Denoting the vector

[k(x1, x
∗), . . . , k(xm, x∗)]T by k(x∗) and (y1, . . . , ym)T by

y, for a new position x∗, we can derive these functions

as [16]

μ(x∗) = k(x∗)T K−1y, (8)

and

σ2(x∗) = k(x∗, x∗) − k(x∗)K−1k(x∗), (9)

where K is the m × m data covariance function, such that

Kij = k(xi, xj) + δijσ
2
n.

The model selection and learning consist of choosing a

suitable covariance function k and adjusting the so-called

hyperparameters Θ. Consistently, we experienced the best
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Fig. 1. Gaussian process models of the energy coefficients e1 (left) and
e11 (right) of the “Virtual Lab (2D)” scene with values of the reference
samples depicted by black nodes. Note the more approximative nature at
the higher degree.

results with a Matérn covariance function (of fixed smooth-

ness parameter ν = 5
2 , according to [16]),

k(xi, xj) = k(r) = σs

(
1 +

√
5r +

5
3
r2

)
exp

(
−
√

5r
)

,

(10)

where r = ‖M−1(xi − xj)‖2 and the characteristic length-

scale matrix is given by M = diag(). This covariance func-

tion implements automatic relevance determination (ARD,

[17]), i.e., it determines the scaling and accordingly the

relevance of each dimension independently.

To adjust the hyperparameters Θ = (, σs, σn), which

identify the length-scale , the signal variance σs and

the prediction noise σn, we use the marginal likelihood

log p(y|D,Θ) as the optimization criterion.

III. LOCALIZATION

In this section, we describe the proposed localization

algorithm. Additionally, a short summary is given in Table I.

A. Offline Learning Stage

To localize a mobile agent in a given environment, we

learn the appearance variation in an offline training stage.

Therefore, we record a set of images I at known posi-

tions X = {xk}k=1,...,m and with orientations Q. These

images are stored as compact SFT coefficient vectors (we

use bandwidths up to B = 64) along with their poses.

Additionally, the set of rotationally invariant energy vectors

E = {e(k)}k=1,...,m is precomputed. For each degree l of

the energy representation, we independently learn a Gaussian

process Fl as the generative model p(el|x∗,X , E), i.e., we

learn a mapping from position x to energy vector coeffi-

cient el. In Figure 1, examples of learned models for different

energy coefficients are shown, where for better understanding

we used a 2D scene. The adaptation of the hyperparameters

is done using gradient descent on the negative log marginal

likelihood.

B. Position Estimation

Due to the rotationally invariant energy representation

of the images, it is possible to estimate the position in a

first step, independently of the orientation. The model of

the appearance variation consisting of the Gaussian pro-

cesses Fl, l = 1, . . . , B allows us to compute the probability

of a measurement ẽ conditioned on the position. Assuming

statistical independence across the entries of the energy

vectors, we get

p(e|x∗,X , E) =
∏

l=1,...,B

p(el|x∗,X , E)

=
∏

l=1,...,B

N (
el; μl(x∗), σ2

l (x∗)
)
.(11)

Since we assume a smooth trajectory of the mobile agent,

we use a particle filter approach to estimate the most likely

position x̂(t) at each time step t conditioned on all previous

measurements ẽ(1:t),

x̂(t) = arg max p
(
x(t)|ẽ(1:t)

)
. (12)

Using the Sampling Importance Resampling (SIR) algo-

rithm [18], this is accomplished computing the weight update

according to Equation 11 and accounting for the motion

model in the prediction step by drawing new positions x
(t)
i ∼

p
(
x(t)|x(t−1)

i

)
for all particles pi, i = 1, . . . , n.

C. Orientation Estimation

The orientation of the mobile agent at a given time t can

be determined using the technique described in Section II-A.

Namely, the normalized cross correlation between the actual

view and a reference view is evaluated for a grid of possible

rotations using SOFT. As the reference view, one could

choose one of the prerecorded image samples of the set I,

e.g., the nearest neighbor. However, in general, these samples

are not dense enough, so that a robust orientation estimate

is infeasible since the image content can vary significantly

due to the translational offset.

Therefore, we use the generative model from Equation 11

to synthesize an SFT vector ∗f̂ that resembles the appearance

at this position. Given the most likely position x̂(t) of the

mobile agent and extending Equation 8 to the set of Gaussian

processes {Fl}l=1,...,B , an energy vector can be synthesized:

ê =

⎡
⎢⎣

ê1

...

êB

⎤
⎥⎦ =

⎡
⎢⎣

μ1(x̂(t))
...

μB(x̂(t))

⎤
⎥⎦ =

⎡
⎢⎣

k1(x∗)T K−1
1 E1

...

kB(x∗)T K−1
B EB

⎤
⎥⎦ , (13)

where El denotes the vector (e(1)
l , . . . , e

(m)
l )T . This can

also be formulated as a linear combination of the training

samples,

êl =
∑

k=1,...,m

a
(k)
l e

(k)
l , (14)

with al = (a(1)
l , . . . , a

(m)
l )T = kl(x∗)T K−1

l , for every

degree l. The same weights can be used to synthesize the

elements of the SFT vector ∗f̂ as linear combinations

∗f̂m
l =

∑
k=1,...,m

a
(k)
l (f̂m

l )(k), (15)

where the f̂ (k), k = 1, . . . , m denote the spherical har-

monics representation of the training samples. This can

be interpreted as an approximation of the variation of the
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SFT vectors, restricting the complexity to B instead of B2

Gaussian processes. The approximation would exactly hold

if, across the scene, the f̂m
l for a fixed l varied proportionally

to ‖(f̂−l
l , . . . , f̂ l

l )
T ‖2 = el.

To account for the temporal coherence and to compensate

the quantization effect of the SOFT-based orientation esti-

mates, we apply a second particle filter on these estimates

as described in our previous work [19].

0. Offline Stage
- record images with associated poses

- for each degree l:

- train Gaussian process Fl as a mapping from x to el

1. Online Localization
- loop:

- acquire new image

- transform to Fourier space (Eq. 1)

- compute energy vector e (Eq. 3)

- position estimation

- predict particle filter positions x
(t)
i

- for each particle pi

- compute weight w
(t)
i = p(e|x(t)

i ,X , E) (Eq. 11)

- output position x̂ of particle with maximum weight

- resample particles

- orientation estimation

- synthesize ∗ f̂ for given position x̂ (Eq. 15)

- compute NCC grid of actual view and ∗ f̂ (cf. [19])

- apply particle filter as in [19]

TABLE I

Summary of the localization algorithm.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our proposed localization

technique, we conducted experiments on virtual as well

as real data sets of different scales using different com-

binations of reference views and bandwidths and present

the results in terms of root mean squared error (RMSE)

in Table II. Our prototype implementation is realized in

Matlab and makes use of the GPML toolbox published

with [16] and of MEX-files as interfaces to C-routines of

the S2Kit [20] and the SOFT library [14]. For numerical

reasons we normalize the dimensions of the energy vectors

such that e(1) = 1 and center the set of training outputs

El for each Gaussian process Fl. As reference we tried

to localize by weighting the particles with the distance to

the nearest neighbor reference sample in terms of energy

similarity. However, this weighting scheme performed very

poorly, therefore no quantitative results are included in the

table. We used 400 particles for the two-dimensional and

600 particles for the three-dimensional position estimation

with particles initialized at random positions to account for

a “kidnapped robot” scenario. Orientation estimation was

performed according to [19] using grid-based sensing with

500 particles followed by averaging in the exponential chart

without further numerical optimization. Note, that using a
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Fig. 3. Contributions of the single bandwise models p(el|x∗,X , E), l =
1, 2, 3, 8 to the joint predictive probability (Eq. 11).

regular grid of reference views leads to poor results when

estimating the position, since the learning of the covariance

functions is affected by aliasing. Therefore, we sampled the

scene randomly which leads to a better distributed set of

inter-sample distances r which is used to learn the covariance

function.

A. Virtual Scenes

To acquire photorealistic image data along with ground

truth position information we created omnidirectional views

from CAD models using a rendering software based on

global illumination. We evaluated the performance on two

virtual scenes, one used for localization in 2D (“virtual lab”)

that is challenging due to strong symmetries in image content

and a second one for 3D localization (“virtual living room”).

The estimated trajectory can be seen in Figure 2a and 2b.

B. Real Scenes

We acquired omnidirectional images at approx. one frame

per second using a LadyBug2 spherical camera system and

recorded the reference poses as well as the trajectory of the

camera with an optical motion capture system [21]. Note, that

the system does not provide explicit error bounds, however,

the data is evidently not noisy and typically measurements

performed with such systems are precise in relation to

the expectable self-localization performance. All recordings

were performed under similar lighting conditions. Differing

illumination could be compensated for to a certain degree

by normalizing the SFT vectors with regard to their overall

length. Note, that in the 2D case the camera was moved

at fixed height above ground, but no additional prior in-

formation was taken into account to restrict the position

estimates to a plane or to limit the rotation estimation to

two dimensions, respectively. Plots depicting the estimated

trajectory can be seen in Figure 2c and 2d.

C. Discussion

The results show that our localization technique leads to

robust and accurate localization estimates in two and three

dimensions for both virtual and real scenes even for very

low resolution images (a bandwidth of, e.g., 16 corresponds

to panoramic images of size 32 × 32 pixels). It can be

observed in all scenes that using less reference views, the

position estimation quality slightly degrades. Due to the

lower sampling density, energy coefficients for higher de-

grees are less distinctive. Using higher bandwidths, however,
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Scene # reference views # frames Bandwidth RMSE [m] RMSE [deg] runtime/frame [sec]

Virtual Lab (2D) 36 200 8 0.58 6.33 0.32
4.5m × 11.0m × 3.7m 36 200 16 0.56 3.77 0.56

36 200 32 0.65 4.48 2.13

78 200 8 0.18 5.38 0.38
78 200 16 0.17 3.10 0.68
78 200 32 0.22 3.89 2.52
78 200 64 0.24 4.85 14.67

Virtual Living Room (3D) 64 200 8 0.26 5.58 0.57
6.0m × 8.0m × 3.0m 64 200 16 0.32 4.02 0.73

64 200 32 0.30 4.84 2.77
64 200 64 0.70 7.60 15.08

125 200 8 0.16 5.30 0.51
125 200 16 0.14 3.22 1.07
125 200 32 0.15 4.18 2.96
125 200 64 0.16 5.15 17.29

Real Scene (2D) 50 100 8 0.04 5.99 0.40
5.0m × 5.2m × 2.8m 50 100 16 0.03 3.75 0.81
(capture volume: 1.1m × 0.7m) 50 100 32 0.04 3.41 2.41

50 100 64 0.05 4.04 15.08

100 100 8 0.03 5.46 0.50
100 100 16 0.03 3.96 0.89
100 100 32 0.04 3.30 2.78
100 100 64 0.05 3.88 15.89

Real Scene (3D) 100 50 8 0.12 13.68 0.65
5.0m × 5.2m × 2.8m 100 50 16 0.10 10.98 1.04
(capture volume: 1.6m × 2.0m × 1.3m) 100 50 32 0.14 11.01 3.07

100 50 64 0.15 10.54 16.01

200 50 8 0.12 12.63 0.89
200 50 16 0.10 9.58 1.72
200 50 32 0.08 9.00 4.43
200 50 64 0.13 9.25 19.26

TABLE II

Standard Error (RMSE) w.r.t. ground-truth (virtual scenes) and motion capture data (real scenes). The runtime is measured using a non-optimized Matlab

implementation on a standard quad core machine. The restricted capture volume is due to the motion capture setup.

does not necessarily improve the results, since the number

of reference views and in turn the sampling density might

be too low to yield distinctive energy coefficients for the

upper bands and overfitting might occur. This effect can be

seen, e.g., when examining the results of the real 3D scene,

where the best position estimation performance is achieved

using a bandwidth of 16 for 100 reference views, whereas

when using 200 reference views the optimum is achieved

using 32 bands. Figure 3 exemplarily shows the different

contributions of the single bandwise models to the joint

predictive probability. This explains the fact that even for

small bandwidths the model is distinctive and we obtain

a good localization performance since most information is

kept in the lower band models. Naturally, the accuracy

of the orientation estimation improves when using higher

bandwidths but is limited by the quality of the synthesized

energy vector ∗f̂ that depends on both the sampling density

and the accuracy of the position estimation. A video showing

the results of the different experiments is included in the

proceedings and can also be found at http://www.gris.

uni-tuebingen.de/people/staff/huhle/iros2010.

V. CONCLUSIONS

We have presented a novel method to localize a mobile

agent comparing an omnidirectional image taken at its cur-

rent location with a precomputed model of the variation of

the image energy across the scene in different frequency

bands. As image representation we use the spherical har-

monics coefficients and their bandwise norms that provide a

rotationally invariant description of the image. This allows

us to estimate the location independently of the orientation

and estimate the latter in a second stage that makes use of

the location hypothesis and the same model of the image

variation across the scene. This model is built using Gaussian

process regression, where for each of the frequency bands

a separate process is trained independently. For both the

position and orientation estimation, we feed the likelihood

estimates into separate particle filters. This allows us to

integrate a motion model and to solve for the most likely

state according to their posterior distributions.

Due to the statistical learning approach, the whole system

does not depend on any user-specified parameters apart

from the motion model. Therefore, it can be applied to

various different scenes without any modifications. We have

investigated the performance of the system and experienced

very robust and precise estimates in virtual as well as real

scenes of two and three dimensions, with orientation varying

in three degrees of freedom. The performance has proven

to decay extremely slowly with decreasing resolution of

the input images. This fact renders the method especially

interesting for scenarios where only low resolution images

are available.
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(d) Real Scene (3D): 100 reference views and 50 test frames.

Fig. 2. Plots of the test scenes along with ground truth position information (red), estimated trajectory (green) and positions of the reference views (black
circles/dots). The bandwidth was set to 16.
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