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Abstract— In this paper, we propose a novel concept of move-
ment primitives called Stylistic Dynamic Movement Primitives
(SDMPs) for motor learning and control in humanoid robotics.
In the SDMPs, a diversity of styles in human motion observed
through multiple demonstrations can be compactly encoded
in a movement primitive, and this allows style manipulation
of motion sequences generated from the movement primitive
by a control variable called a style parameter. Focusing on
discrete movements, a model of the SDMPs is presented as an
extension of Dynamic Movement Primitives (DMPs) proposed
by Ijspeert et al. [1]. A novel learning procedure of the SDMPs
from multiple demonstrations, including a diversity of motion
styles, is also described. We present two practical applications
of the SDMPs, i.e., stylistic table tennis swings and obstacle
avoidance with an anthropomorphic manipulator.

Index Terms— Stylistic Dynamic Movement Primitives,
SDMPs, Imitation Learning, Human Motion Styles, Humanoid
Robotics

I. INTRODUCTION

In humanoid robots, motor learning and control remain
among the most challenging tasks. Most difficulties are
caused by the huge number of Degrees-of-Freedom (DoFs)
associated with a large number of joints in humanoid robots,
i.e., the curse of dimensionality. The learning from demon-
stration (or imitation learning, learning by watching) can be
anticipated as one of the key frameworks for solving the
curse based on the structural similarity between humans and
humanoid robots [2]. In such a scenario, a human motion
sequence is observed as a seed of a movement primitive for
learning.

In the literature on computer graphics and animation of
human motion, it has been recognized that a human motion
sequence has motion-sequence-specific features called style.
A diversity of motion styles can be observed among several
individuals. Even for the same behavior by an individual, its
motion sequences captured by a motion capture system have
a certain variation. In other words, each motion sequence has
a distinct choreography, i.e., style [3], [4], [5], [6], [7], [8].

The style is a vital component for human-like animation
because it significantly affects not only quantitative differ-
ence in joint angle trajectories, but also its impressions
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Fig. 1. Sequential snapshots of stylistic table tennis swing movements.
The subject performs the same behavior (forehand) in many trials with
different virtual balls as a target for a via-point. Such difference affects joint
trajectories and resulting styles in each motion sequence while preserving
its contents as a forehand movement.

on the audience. In general, in several human behaviors,
much swinging of arms and legs could represent happiness
(or anger) while less swinging might represent sadness (or
calmness). Several techniques for the synthesis of human-like
computer graphics and animations with various styles have
been explored in [3], [9], [10], [4], [5], [6], [7], [8]. Most
approaches commonly involve separating styles from the
content of motion sequences, i.e., style content separation,
inspired by a pioneering study by Tenenbaum et al. [11].
Since such approaches basically lead to a two-factor model
that consists of independent control variables for style and
content, it can be a useful tool for many applications of the
character animation synthesis.

Meanwhile, in a more functional sense for motor control,
the style of human motion can be interpreted as a result
of encoding the environmental situations in the motion
sequence. Two illustrative examples are taken up in this
paper. The first example is a table tennis swing as illustrated
in Fig. 1. The subject performs the same behavior in many
trials (forehand swings with almost the same initial and
goal postures), but imagines different positions of the virtual
ball as a target for a via-point in the swing motion. Such
difference largely affects joint trajectories and resulting styles
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Fig. 2. Sequential snapshots of stylistic reaching movements. The subject
performs the same content of motion (point-to-point reaching) with different
obstacles to be avoided. Such difference largely affects joint trajectories and
resulting styles in each motion sequence while preserving its content as a
point-to-point movement.

in motion sequences. Another illustrative example is obstacle
avoidance as depicted in Fig. 2. The subject performs the
same behavior (point-to-point reaching with the same initial
and goal states); however, different obstacles are put between
the points. Different obstacles require the subject to use
different avoidance trajectories according to their heights,
and result in different styles in motion sequences. In these
examples, motion styles have functional roles (hitting balls or
avoiding obstacles) for solving tasks in the real environment.
Therefore, the motion style is a significant factor not only
for emotional graphics and animations, but also for motor
control of humans and humanoids to solve several tasks in
the real environment; however, not much attention has been
paid to this so for.

In this paper, we propose a novel concept of move-
ment primitives called Stylistic Dynamic Movement Primi-
tives (SDMPs) for motor learning and control in humanoid
robotics. In the SDMPs, a diversity of motion styles in
human behavior observed by multiple demonstrations can
be compactly encoded in a movement primitive, and this
allows the style manipulation by a control variable called
a style parameter in the generated motions. Focusing on
discrete movements, a model of the SDMPs is presented as
an extension of the DMPs proposed by Ijspeert et al. [1].
The SDMPs have a fascinating characteristic:

• Manipulability of motion style by a style parameter.

This scalability makes the applicability of the movement
primitives much wider in real environmental tasks. Note
also that all advantages of the DMPs compared with other
motor primitive (human motion) models [12], [13], [14]
are maintained in the SDMPs, i.e., asymptotic and global
stability, robustness for disturbances and temporal and spatial
scalability [1], [15]. With these features, the SDMPs are
more suitable stylistic models for motor control in humanoid
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Fig. 3. Trajectories of a discrete (reaching) movement generated by (a)
Ordinal dynamic movement primitives and (b) Stylistic dynamic movement
primitives. DMPs have two control variables, where g denotes the goal
position and τ denotes the temporal scaling factor as illustrated in (a).
SMDPs have an additional variable s called a style parameter as a control
variable of style of movement. and the effect of the style parameter is
illustrated in (b). The increase of s1 gradually changes the approach of the
trajectory to the goal point, i.e., style of motion is manipulated.

robotics than previously proposed stylistic models such as
[3], [9], [10], [4], [5], [6], [7], [16], [8]. A motion library
based approach, proposed by Gams et al. [17], could also
allow to synthesize novel motion styles in DMP framework;
however, it requires to execute the learning process for DMPs
at every motion synthesis trial because the processes of
motion synthesis and learning DMPs are separated. In our
approach, once a SDMP is learned from multiple demon-
strations, the synthesis of motion style can be achieved by a
style parameter even in motion.

A novel learning procedure of the SDMPs from multiple
demonstrations is also described. The concept of the learning
procedure is to learn a parametric-attractor landscape in the
movement primitive from multiple demonstrations, which is
parametrized by the style parameter. We call this stylistic
attractor landscape. Thus, we can manipulate the shape
of attractor landscapes by the style parameter to become
suitable for imitation of a specific (or novel) demonstration
with a specific motion style. Figure 3 illustrates our SDMPs
for discrete movements with a 2-DoFs motor system. In
addition to the scalability of DMPs in goal position g and
time constant τ as in Fig. 3 (a), we can smoothly manipulate
the style (approach the goal) of the generated motions by
changing the style parameter as shown in Fig. 3 (b).

In both cases of table tennis swing and obstacle avoidance,
it is useful to model a set of motion sequences as a SDMP.
By combining the SDMPs with a mapping between the style
parameter and perceptual feedback of the ball position or ob-
stacle’s height, proper forehand skill and obstacle avoidance
strategy in both a natural-looking and functional sense can
be compactly achieved. This paper aims to develop a novel
framework for learning such stylistic movement primitive
models from multiple demonstrations rather than trying to
solve specific tasks. Recent progresses in each task can be
founded for table tennis in [18], [19], [20]. and for obstacle
avoidance in [21], [22].

The organization of this paper is as follows. In section
II, we first briefly introduce the DMPs and the learning
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procedure focusing on discrete movements along with the
description in [1], [15]. We then propose a model of the
SDMPs, and a novel learning procedure with an illustra-
tion through simple application. Section III describes the
experimental settings and obtained results. We present two
practical applications of the SDMPs, i.e., stylistic table tennis
swings and obstacle avoidance with an anthropomorphic
manipulator. Section IV concludes this paper.

II. LEARNING STYLISTIC ATTRACTOR LANDSCAPES

A. Dynamic Movement Primitives [1], [15]

We briefly explain the definition of DMPs focusing on
discrete movements. Assume that we have a point attrac-
tive system as a control policy of one-DoF motor system
described by the second order dynamics as:

τ ż = αz (βz (g − y) − z) (1)

τ ẏ = z + f (2)

where g denotes a known goal position, αz , βz are time
constants, τ is a temporal scaling factor. y, ẏ correspond to
the desired position and velocity generated by the policy
1. For appropriate settings of parameters αz, βz with the
constraint f = 0, these equations have a global stability
with a unique point attractor g, i.e., y converges to g after a
transient from any initial conditions.

In the DMPs, the above dynamics is applied for a learning
from demonstration scenario by introducing an additional
dynamical system of state x as

τ ẋ = −αxx (3)

and following nonlinear function f as

f(x) =
∑N

i=1 Ψi(x)wix∑N
i=1 Ψi(x)

, (4)

Ψi(x) = exp (−hi(x − ci)) (5)

where Ψi(x) is a nonlinear kernel function, ci and hi are
the center and bandwidth parameters. We call the system in
eq(3) a canonical system as one of the most basic dynamic
systems available to create a point attractor. With this, the
nonlinear dynamical system in eqs(1) and (2) is called output
system, and the system including both is called the Dynamic
Movement Primitives (DMPs). If the initial condition of x
is 1 and αx is properly set for the system to be stable,
x(t) ∈ [0, 1] is considered as a phase variable for f(x)
because Ψi(x) put on the point ci is defined in the space
of phase variable x, and x also acts as a gating term
for f(x). Assuming the boundness of the weight wi, y
asymptotically converges to the unique point g because the
nonlinear function term f vanishes with the convergence of
phase x to 0 through time evolution in the canonical system.

Learning parameter w = [w1, · · · , wN ]T to form the
attractor to become a landscape suitable for imitation of

1For simplicity, we insert the function f in eq(2) rather than in eq(1) so
that imitation is focusing on positions and velocities as in [1].
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Fig. 4. Illustrative example of SDMPs for a one-DoF motor system
from multiple demonstrations. (a) Ten trajectories ydemo(t) as multiple
demonstrations. A SDMP is then learned from the multiple demonstrations.
Since the difference between all motions is in the amplitude of the wave,
the specific style of the motion can be considered as the specific value of
amplitude. (b) Trajectories generated from the learned SDMP with several
goals. (c) Trajectories generated from the learned SDMP with several
temporal scaling factors. (d) Trajectories generated from the learned SDMP
with several style parameters. The amplitude of the wave, i.e., style in
motion is manipulated by the style parameter.

a given trajectory {ydemo(tc)}, tc = c∆t, c = 1, · · · , C
with its duration T = C∆t can be accomplished by a
supervised learning algorithm. The target trajectory is given
as ftarget(tc) = τ ẏdemo(tc) − zdemo(tc) in eq(2), where
zdemo(tc) is obtained by integrating eq(1) with ydemo(tc)
instead of y(tc). Its input is corresponding phase value
x(tc). We use a vector representation of each trajectory
as ydemo = [ydemo(t1), · · · , ydemo(tC)]T for short. It is
also applied for ftarget = [ftarget(t1), · · · , ftarget(tC)]T and
x = [x(t1), · · · , x(tC)]T .

In the original study [1], Locally Weighted Learning
(LWL) was applied for solving this, i.e., for determining the
kernel functions Ψi and weight wi for all i. The learned DMP
has an attractor landscape to generate similar trajectories
to the demonstration by time evolutions. Temporal scaling
and modification of goal position can be achieved easily by
manipulating g and τ .

Note that for a multi-DoFs motor system, the output sys-
tem eq(1) and eq(2) must be set for every DoF independently.
The canonical system can be shared across all DoFs if they
are coordinated.

B. Stylistic dynamic movement primitives (SDMPs)

In the learned DMPs above, a motion trajectory given as
a demonstration can be encoded. Since a human motion
sequence implicitly has motion-sequence-specific features
called style in motion, the DMPs can be interpreted as
the style-fixed motor primitive, and they do not have any
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control variable of style. Also, it is impossible to learn motor
primitives separately for all possible motion sequences with
a diversity of motion styles. Our solution for avoiding such
an explosion of the number of primitives is to redefine a
motor primitive as a one-step higher level representation.
If the DMPs have an another control variable that can
manipulate the style of motion independently to other control
variables as time scaling τ and goal position g, the range of
applications would be significantly spread for various tasks in
the real environment (two practical applications from among
many possibilities are shown in this paper). This motivates
us to propose a novel concept of movement primitives
called stylistic dynamic movement primitives (SDMPs). The
SDMPs have three independent control variables of time
scaling τ , goal position g and style parameter s ∈ RJ . The
style parameter s determines the style of motion sequence
generated by the primitives through time evolution indepen-
dently of the effect of other variables.

A model of SDMPs for a one-DoF motor system is
proposed as follows:

τ ż = αz (βz (g − y) − z) (6)
τ ẏ = z + f̃ (7)

and

τ ẋ = −αxx (8)

f̃(x; s) =

 J∑
j=1

∑N
i=1 Ψji(x)wjisj∑N

i=1 Ψji(x)

 x

(9)
Ψji(x) = exp (−hji(x − cji)) (10)

where W = [w1, · · · ,wJ ] is parameter matrix, s =
[s1, · · · , sJ ] is style parameter, Ψji(x) is nonlinear kernel
function, cji and hji are its center and bandwidth param-
eters, respectively. The SDMPs have the style parameter
s additionally from the DMPs. The f̃ is a bilinear model
of W and s. Since the style parameter s only affects the
nonlinear attractor dynamics through the term f̃(x; s), it is
obvious that the style parameter s controls the shape of
attractor landscapes to represent a diversity of motion styles
independently to time scaling τ and goal position g. Thus,
f̃(x; s) represents the stylistic-attractor landscapes. By fixing
the value of s, the style of the generated motion sequence is
specified. Note that the global stability with a unique point
g is preserved in the SDMPs as well as the DMPs if the we
assume the boundness of the weight wij and sj for all i and
j.

C. Algorithm for learning stylistic-attractor landscapes
The learning of W in SDMPs can be accomplished with

multiple demonstrations of the same behavior (e.g., forehand
swing) including a diversity of motion styles. Focusing on
one-DoF motor system again, we propose a novel learning
procedure with the following four steps:

(i) Alignment of demonstrations as a preprocessing for
next steps. Assume that we have M sets of trajec-
tories as multiple demonstrations {ym

demo(t
m
c )}, m =

1, · · · ,M , tmc = c∆t, c = 1, · · · , Cm, where the
duration of each demonstration is given as Tm =
Cm∆t. After selecting a nominal trajectory indexed
by n ∈ {1, · · · , M}, other trajectories are time-scaled
by the ratio T n

T m so that all trajectories can be represent
as the same size of vector as ym

demo ∈ RCn×1 for all
m.

(ii) Calculation of target fm
target for each demonstration

ym
demo separately along with the same process used

in the DMPs as presented in the previous subsec-
tion. By applying this process for all demonstrations
{y1

demo, · · · ,yM
demo}, we obtain {f1

target, · · · , fM
target}.

(iii) Extraction of basis targets {f1
basis, · · · , fJ

basis} from
targets {f1

target, · · · , fM
target} so that any target fm

target is
approximately represented as fm

target =
∑J

j=1 sjf j
basis,

where typically J ¿ M . The basis targets can
be extracted by a matrix factorization with Sin-
gular Value Decomposition (SVD). Let Fall

target =
[f1

target, · · · , fM
target]

T be an M × C matrix. Then,
SVD for this matrix leads to the following factorial
representation as

Fall
target = UΣVT ≈ SFbasis. (11)

We define the style parameter matrix S =
[s1 · · · sM ]T ∈ RM×J to be the first J(≤ M)
rows of U, and the basis target matrix Fbasis =
[f1

basis · · · fJ
basis]

T ∈ RJ×C to be the first J columns
of ΣVT . The dimension J can be determined with the
singular value spectrum.

(iv) Learning W is achieved by supervised learning with
f j
basis and corresponding phase vector x separately for

each j ∈ {1, · · · , J} as

w∗
j ←

arg min
wj

Cn∑
c=1

(
f j
basis(tc) −

∑N
i=1 Ψji(x(tc))wji∑N

i=1 Ψji(x(tc))
x(tc)

)
.

(12)

The optimal parameter w∗
j with a proper supervised

learning algorithm leads to a stylistic-attractor land-
scape parametrized by style parameter s as f̃(x; s) to
form the SDMPs.

The interpretation of learning f̃ is that each attractor land-
scape to a target trajectory is identified by style parameter s
spanned by {f1

basis, · · · , fJ
basis}. Typically J ¿ M if target

trajectories are correlated, i.e., even with the increase of
the number of demonstrations M , the dimension of style
parameter J could be relatively small. This property leads
to a compact representation of the SDMPs from multiple
demonstrations. While the supervised learning problem in
(iv) is often solved by standard least-square techniques such
as LWL, in this paper, we utilize the Gaussian process regres-
sion [23] for the algorithmic simplicity and generalization
performance.
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D. Application to synthetic data for one-DoF system

Before application to complex motor systems, we exper-
imentally illustrate the proposed technique for a discrete
movement of a one-DoF motor system. As multiple demon-
strations with different styles for motion sequences, we
sampled ten trajectories ym

demo(t) = (1 + 0.25m) sin(2πt −
π/2) + (1 + 0.25m) for m = 1 to 10. Each trajectory was
observed for 0.0 to 2.0sec, where initial state was y(0) = 0.0
and goal position was g = 0.0. Since the difference among
all motions is in the amplitude of the wave, the specific style
of the motion can be considered as the specific value of
amplitude.

Figure 4(a) shows multiple demonstrations for imitation.
Temporal scaling factor τ was determined so that x was less
than 0.05 when the output was terminated as suggested by
[1]. Time constant parameters were determined as αz = 1.5,
βz = 1.5 and αx = 0.2. Along with the steps in the learning
procedure of SDMPs from multiple demonstrations as de-
scribed in the previous subsection, Fall

target was successfully
prepared. According to the spectrum of singular values of
Fall

target through SVD, one basis target as f1
basis was extracted

and the corresponding style parameter matrix S was also
estimated. Note that, in this case, a SDMP representing
ten stylistic demonstrations was obtained as a significantly
compact form.

Examples of time evolution of the SDMPs for motion
generations are illustrated in Fig. 4(b)-(d). The time evolution
of y represented the features of the demonstration very well
(a bimodal shape), and it converged to the goal position
g = 0.0 with a transient. As with the DMPs, both the goal
position and temporal scaling of the time evolution were
independently controlled by changing g and τ as shown in
(b) and (c). The style of the trajectory was controlled by s
as shown in (d) where the amplitude (style) of the trajectory
was changed while time scaling and goal position were fixed.

The feasibility and usefulness of the SDMPs is further
investigated with an anthropomorphic manipulator through
two practical applications, i.e., stylistic table tennis swings
and obstacle avoidance.

III. EXPERIMENTS

In this section, we present results for two practical appli-
cations of the SDMPs, i.e., stylistic table tennis swings and
point-to-point reaching with obstacle avoidance for imple-
menting on an anthropomorphic manipulator.

A. Stylistic Table Tennis Swings

In this experiment, stylistic table tennis swings are learned
as a SDMP from multiple demonstrations, and it is im-
plemented on and demonstrated by an anthropomorphic
manipulator in Fig. 5(a). As shown in Fig. 1, the subject
performed the forehand swings roughly from the same initial
postures to goal postures. In each motion, the subject imag-
ined different virtual balls as a target for a via-point. Such
difference affects joint trajectories and resulting styles for
motion sequences while preserving its contents as a forehand
movement. Fifteen motion sequences were observed by a

(a) Manipulator (b) Motion
capture

Fig. 5. Experimental instruments. (a) Anthropomorphic manipulator. (b)
Gyro-type motion capture system.

gyro-type motion capture system as in Fig. 5(b). In order
to adapt human’s joint trajectories to the manipulator, the
joint trajectories in the right arm of a human were translated
in the manipulator’s four-DoFs joint space (three for the
shoulder, one for the elbow) through the inverse kinematics
technique. The objective function of the inverse kinematics
was coordinated by the position and orientations of end-
effector and elbow. The obtained trajectories were set as
ym

demo(m ∈ {1, · · · , 15}) for the learning procedure of the
SDMPs.

As a result of the SVD in the learning procedure (ii),
we extracted three basis targets and fifteen style parameters
each of which represents the style of each demonstration. For
learning the SDMP from extracted basis targets, parameters
were set as J = 3, αz = 1.5, βz = 1.5 and αx = 1.0,
τ = 0.03 and g = [2.83, 1.51,−3.57, 0.03], respectively.

The learned SDMP was successfully implemented on the
manipulator. The demonstrations of the forehand skill on the
manipulator with different style parameters are presented in
Fig. 6. The style parameter was set from S by selecting one
column for each case, i.e., s = [−0.24, 0.43, 0.38]T (top),
[−0.20, 0.15, 0.31]T (middle) and [−0.12,−0.16,−0.15]T

(bottom), respectively. All demonstrated swings were the
forehand swing in table tennis with the same initial posture
and goal position, but styles (trajectories to the goal) were
largely different from each other to hit different positions of
the ball suspended by a string during the swing as presented
in Fig. 6.

By changing the style parameter s arbitrarily, we could
synthesize a novel style of forehand swing. The duration of
motion and goal position are also changed by manipulating
τ and g as with DMPs.

B. Obstacle Avoidance

In this experiment, a motor skill of point-to-point reaching
movements with an obstacle avoidance strategy is learned as
a SDMP from multiple demonstrations, and it is implemented
on and demonstrated by an anthropomorphic manipulator as
shown in Fig. 5(a) as the swings in the previous subsection.
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Style 2
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Time

Fig. 6. Sequential snapshots of stylistic table tennis swings on an anthropomorphic manipulator. With the setting g = [2.83, 1.51,−3.57, 0.03]T and
τ = 1.2, the style parameters were set as s = [−0.24, 0.43, 0.38]T (top), [−0.20, 0.15, 0.31]T (middle) and [−0.12,−0.16,−0.15]T (bottom). All
swings are the forehand swing in table tennis with the same initial posture and goal position, but, styles (trajectories to the goal) are largely different. Balls
in different positions indicated by the box were successfully hit with properly selected style parameters by hand. Note that the ball was suspended by a
string. The velocities of motions were set to be slower than actual strokes by human players because the focus of this experiment was in the synthesis of
motion styles in forehand swing.

As shown in Fig. 2, the subject performed the point-to-point
reaching with different heights of the obstacle to avoid them
from over. Such difference largely affects joint trajectories
and resulting styles for motion sequences while preserving
its contents as the point-to-point reaching.

Fifteen motion sequences were observed by the motion
capture system. The trajectories of a human right arm joint
space were translated to the manipulator’s four DoFs joint
space, and they were set as ym

demo(m ∈ {1, · · · , 15}) for the
learning procedure of the SDMPs.

As a result of the SVD, we extracted three basis targets
and fifteen style parameters each of which represents the
style of each demonstration. For learning the SDMP from
extracted basis targets, parameters were set as J = 3, αz =
1.5, βz = 1.5, αx = 0.5 and τ = 0.3 , respectively. The goal
for each joint were as g = [−0.55,−0.97, 0.54,−1.42].

The learned SDMP was successfully implemented on the
anthropomorphic manipulator as well as the swing case.
The demonstrations of the reaching on the manipulator
with different style parameters are presented in Fig. 7. The
style parameter was set from S by selecting one column
for each obstacle, i.e., s = [−0.06,−0.12,−0.38]T (top),
[0.12,−0.28, 0.00]T (middle) and [0.27,−0.23, 0.50]T (bot-
tom), respectively. Each style parameter corresponded to
an obstacle avoidance strategy for a specific height of the

obstacle. In the experiment, several obstacles were success-
fully avoided with properly set style parameters by hand as
presented in Fig. 7.

IV. DISCUSSION

In this paper, we proposed a novel concept of move-
ment primitives called Stylistic Dynamic Movement Prim-
itives (SDMPs) for motor learning and control in humanoid
robotics. In the SDMPs, a diversity of styles in human
behavior observed through multiple demonstrations can be
compactly encoded in a movement primitive, and it allows
the style manipulation of motion sequences generated from
the movement primitive by a control variable called a style
parameter. Focusing on discrete movements, a model of
the SDMPs was presented as an extension of the Dynamic
Movement Primitives (DMPs) proposed by Ijspeert et al. [1].
A novel learning procedure of the SDMPs from multiple
demonstrations including a diversity of motion styles was
also described. We presented two illustrative applications of
the SDMPs among various possibilities, i.e., stylistic table
tennis swings and obstacle avoidance with an anthropomor-
phic manipulator.

By combining the SDMPs with a mapping between the
style parameter and perceptual feedback of the ball position
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Fig. 7. Sequential snapshots of point-to-point reaching with obstacle
avoidance strategy on an anthropomorphic manipulator. With the setting
g = [−0.55,−0.97, 0.54,−1.42]T and τ = 0.6, the style parameters were
set as s = [−0.06,−0.12,−0.38]T (top), [0.12,−0.28, 0.00]T (middle)
and [0.27,−0.23, 0.50]T (bottom). All motions are the reaching movement
with the same initial posture and goal position, but, styles (trajectories to
the goal) are largely different. In the experiment, several obstacles were
successfully avoided by properly selecting style parameters.

or obstacle’s height, proper forehand skill and obstacle avoid-
ance strategy in both a natural-looking and functional sense
could be compactly achieved, which would be addressed as
a part of our future work.

While the SDMPs presented in this paper are based on
the DMPs as in [1], it is easily combined with recently
developed several extensions and modifications as in [21],
[22]. With a different motivation, some studies have explored
generalizations of the DMPs as in [24], [17]; however,
compact representations of movement primitives are not
obtained, unlike the SDMPs.

Our future work also includes extending the SDMP to
rhythmic movements. Another work would be to apply
it to a human-size whole body humanoid robot [25] for
complex motor learning and control with several styles. For
the purpose, several concerns such as joint limits and self
collision should be managed in our approach.
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