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Abstract—An estimation algorithm of operational intentions
in the machine operation is presented in this paper. State tran-
sition relation of intentions was formed using Self-Organizing
Map (SOM) from the measured data of the operation and
environmental variables with the reference intention sequence.
Operational intention was estimated by stochastic computation
using a Bayesian particle filter with the trained SOM. The
presented algorithm was applied to the remote operational task,
and qualitative and quantitative analyses were performed. As
a result, it was confirmed that the estimator could classify the
types of intentions as similarly as the human analyst discerned.
Further, several issues, such as difficulty in preparation of
objective normative data, and necessity of consideration of
scenario / causality, are discussed.

I. INTRODUCTION

Estimation of human intention is quite practical for various

applications such as marketing and designs of man-machine

interfaces. Recently, development of various clustering meth-

ods such as a support-vector-machine and a k-nearest neigh-

bor method make it possible to realize applications of the

intention estimation such as a web search engine and the

customer trend analysis. There are many other systems that

will be enhanced if such estimation techniques is embedded

into them. A human-machine system like vehicles that human

operator manipulates is one of them. In such system, not only

improvement of the safety and efficiency but also enhance-

ment of driver’s ability can be expected [2]. Estimation of

intentions in the human-machine system is, however, more

difficult than the successful examples mentioned above. The

followings are the reasons.

I1) It is difficult to identify the information types

which are utilized for the decision making.

I2) It is difficult to establish a sensitive human-

model that can predict operator’s action under time-

varying circumstance.

Issue I1 appears to come from two points: 1) it is difficult for

a machine to measure all types of environmental information

that was perceived by human, and 2) the machine recognition

of causality of events is hard since many factors and events

affect each other. For a general machine operation, as shown

around the right area in Fig. 1, three types of statuses, that
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are the machine status (M-status, say, qM ), the environment

status (E-status, qE), and the task substance (T-status, qT ),

can be considered [3]. It is not easy to determine which

status is a reason or a result since these statuses influence

one another.

Concerning the issue I2, a discrete event modeling is

proper to describe human cognitive behavior, and several

effective methods such as GOMS [4] and Therblig [5] were

developed. It is, however, unexpectedly difficult to embed

time factors into a frame of these discrete models. As

attempts to solve this issue, many researchers proposed a

wide variety of hybrid systems. Suzuki et al. presented the

stochastic switched ARX model, and they applied the method

to identification of driver’s behavior [6]. The model consists

of continuous-time linear subsystems, and the switching

probabilities of the subsystems are trained using an EM-

algorithm. Kawashima et al. proposed a hybrid system in-

volving a finite state automaton and multiple liner dynamical

systems [7]. They applied it to a segmentation of multimedia

timing structure of human speech using the lip image and

voice. Kawashima’s approach would be able to be utilized

for human intention estimation. Although effectiveness of

those methods were demonstrated, the applicable conditions

are limited: specifically, the number of the discrete modes

were small; the continuity of the discrete state transition

was implicitly demanded. Additionally, those methods just

classified discrete chunks from the input-output data of

the human system, that is, those existing methods did not

estimate human internal status that caused the state transition

of the discrete modes. The human internal status itself is

intention, and it is an essential factor for decision of user’s

action; however, true estimation of intention is difficult.

Omori et al., alternatively, presented an approach for human-

robot interaction without intention estimation [8]. There, the

self agent (= a machine) actively approaches another agent (=

a human) to induce actions by creating a sequence of actions

that are easy to be interpreted by the other. Although such

studies are interesting, the internal status, intentions, should

be able to be estimated to achieve advanced machines to

support human operators.

Therefore in the present paper, a new method to estimate

operator’s intention is proposed without modeling the human

thinking process and discrete event framework. Issue I1 is

settled by Self-Organizing Map (SOM) which is an effective

clustering method for large data. Since the SOM technique

can compress multi-dimensional information into two dimen-

sional map by keeping original topological information, the

topological information can be utilized as Bayes probability.

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2249



And, transition of intentions is computed probabilistically by

the particle filtering technique with the Bayesian probability

embedded in the SOM.

The main contribution of the present paper is to propose

an algorithm of such intention estimator using Bayes filtering

with the SOM technique. The effectiveness of the presented

intention estimator was verified by applying to a remote

operational task. And second purpose of this paper is to

obtain findings to improve the presented intention estimator

through the experimental verification.

An organization of this paper is as follows. Section II

explains a structure of the intention estimator and preliminary

explanation of the Bayes filter. In Section III, a particle filter-

ing algorithm to implement the proposed intention estimator

is presented. In Section IV, a remote operation experiment

system and its test are mentioned. Section V shows analyses

of the applied example and discusses the results. Last Section

V is conclusion and discussion.

II. BASIC CONCEPT OF THE INTENTION ESTIMATOR

A human model is assumed in this paper as follows.

zt = f(zt−1, st) (1)

ρt = g(zt), (2)

where the subscript t ∈ N is a time counter, the function

f is a state transition function describing change of the

intention z, and the function g corresponds to selection of

operational commands based on the intention z. Referring

spotlight models explaining consciousness in psychology,

mathematical expression z is defined as a vector z ∈ Rnz of

which element corresponds to one intention strength of one

operation action. According to the spotlight models, several

types of consciousness exist simultaneously inside human

brain, and one of them floats from unconsciousness level

as a conscious awareness [9]. An origin of the name comes

from circumstance on the stage where only actors (or actress)

who is lighted by a spot light can be seen from spectators.

Since there are several operational modes in case of a general

machine operation, the vector-form expression of intentions

can fit a concept of spotlight models. Another merit of the

vector style is feasibility that enables to analyze dynamically

each type of transition.

Considering above-mentioned discussion, probabilistic

distribution bel(z), that is a belief of the intention z, will

be estimated using a technique of the Bayes filtering. Basic

algorithm for estimation of bel(z) is explained below.

Algorithm 1 : Bayes filter

bel(zt) =
∫

p(zt|st, zt−1) · bel(zt−1) dzt−1 (3)

bel(zt) = η · p(ρt|zt) · bel(zt) (4)

This algorithm is defined with iterative equations that are

computed from time t = 1 to the final time T . p(zt|st, zt−1)
corresponds to a probabilistic distribution of a transition

of intention from zt−1 to zt given input st. p(ρt|zt) is

the conditional probabilistic distribution of judgment that

outputs ρt if the intentions zt happens to be true. Eq.(3) is a

prediction to obtain a belief bel(zt) at the time of t. Eq.(4) is

called measurement update and adjusts the prediction bel(zt)
by considering a probability p(ρt|zt). Via this update, a new

belief bel(zt) at time t is obtained. η is a so-called Bayes

normalization constant. In the proposed approach, mapping

relations shown below are acquired approximately with a

SOM technique.

zt ← SOMf (zt−1, st) (5)

ρt ← SOMg(zt) (6)

Figure 1 shows a block diagram to explain an operator model

and the intention estimator. As shown at the upper left area

in the figure, prediction bel(z) is computed through SOMf

using input s, the prediction is updated through SOMg

by referring ρ, and bel(z) was obtained. Finally estimated

intention ẑ is derived.

Fig. 1. Block diagram involving a human model and the intention estimator

III. IMPLEMENTATION BY PARTICLE FILTER ALGORITHM

Bayesian computation described by Eqs.(3)(4) is imple-

mented using the particle filtering technique [10]. Assuming

the number of particles is M , the m(= 1, · · · , M) th particle

of the belief bel(zt) at time t is described as Bz
[m]
t . As a

preparation to generate their particles, standard derivations

σi (i = 1, · · · , ns) of the sequence data {s} ∈ Rns×T in

each element are computed, where ns is the size of vector

s. Next, SOMs (5) and (6) are trained using normative data

of certain identified intentions. Specifically, SOMf for the

state transition function f is trained using the input vector

sequence including time-series data {s} and {z}, and then

the SOM reference vectors fξi(i = 1, · · · , Lf) are obtained,

where Lf is the number of all nodes in SOMf . Similarly,

training the SOMg for the measurement function g by using

sequences {ρ} and {z}, the other SOM reference vectors
gξi(i = 1, · · · , Lg) are obtained, where Lg is the number

of all nodes in SOMg . Here, {s} and {ρ} are made from

the experimental logging data, and {z} is prepared by an

analyst who monitors the record of the expert’s operation.

The analyst differed from the participant who performed the

experimental task. The details will be explained in section

IV-B.

Processes of computations in the SOM particle filtering

algorithm are explained below by a pseudo-code. The
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algorithm consists of two phases: phase I for predictive

computation and phase II for measurement updating.

Below, notation Zt is used to express a set of particles as

Zt := {Bz
[1]
t , Bz

[2]
t , · · · , Bz

[M ]
t }.

Algorithm 2 : SOM particle filter

1: initialize Z1, prepare {s} and {ρ}
2: for t = 2 to T do
3: Zt = ∅

phase I

4: for m = 1 to M do
5: extract Bz

[m]
t−1 from Zt−1

6: generate B z̄
[m]
t ∼ p(zt|st,

Bz
[m]
t−1) by SOMf

7: w
[m]
t = p(ρt|B z̄

[m]
t ) using SOMg

8: endfor m

phase II

9: for i = 1 to M do
10: draw m′ with probability ∝ w

[m]
t

11: add B z̄
[m′]
t to Zt

12: endfor i

13: endfor t

At the phase I, a best-matching-node (BMN) that is close

to a combination of the input st and the particle Bz
[m]
t−1 is

searched from SOMf , and the predicted particle B z̄
[m]
t at

time t is picked up by the BMN index (line 6). At this

step, the predicted belief is expressed by a set consisting

of M nodes generated by adding perturbation into input

st, and this perturbation technique is similar to normal

particle filtering approach. Measurement probability w
[m]
t

corresponding to these predicted particles is computed using

SOMg for next re-sampling process on after-mentioned

phase II (line 7). At the phase II, a particle number m′ is

chosen in proportion to the measurement probability w
[m]
t

of each particle (line 10), and the predicted B z̄
[m′]
t which

is indicated by the chosen number m′ is picked up into a

new set Zt as a next time particles. Then, new M particles

are re-sampled according to the measurement probability

w
[m]
t . Repeating phase I and phase II till the final time T ,

{bel(zt)}, that is a time-series {Zt} of the belief of the

intention z, are obtained. Below, main parts of the details

of Algorithm 2 are explained.

Line 6: Prediction

L6-1: Preparation of perturbation input

Random sample point Δst that obeys a standard

deviation σi around st is computed for all m(=
1, · · · , M). Specifically, using a random value Δ,

the sample point is computed as

Δs
[m]
t = st + Δ (7)

Δ := rand([−1, 1], σ),

where rand([−1, 1], σ) is a function that yields

pseudo-random value in the range of [−1, 1] under

standard deviation σ [11].

L6-2: Search of most likelihood node

Using reference vectors fξ of the SOMf , the BMN

of a particle m, that is f c
[m]
t ∈ {1, · · · , Lf}, is

found as

f c
[m]
t = arg min

i

{∥∥∥∥∥
[

Δs
[m]
t

Bz
[m]
t−1

]
− fξi

∥∥∥∥∥
}

.

L6-3: Extraction of prediction state

A candidate of an intention involved in the particle

that corresponds to prediction bel(zt) is extracted

from a reference vector of the BMN predicted at

the L6-2 step:

Bz
[m]
t ⇐ fξi(ns + 1 : ns + nz), i = f c

[m]
t ,

where an operation described by a parenthesis in

the above RHS indicates an extraction of elements

of the vector components.

Line 7 : Computation of measurement probability

Finding a BMN of Bz
[m]
t by using SOMg , reference vectors

that belong to certain region around the BMN on the SOMg

plane map are investigated. The number of nodes whose

reference vectors correspond to the measured command ρt

appears to be proportional to the post-measurement proba-

bility; hence, the measurement probability is computed from

the number of such nodes. For the re-sampling process at

after-mentioned phase II, an information of such nodes is

registered into a roulette array W . Numbering of particles is

recorded in the array, and the number of the numbering is

determined in proportion to the amount of the corresponding

nodes. Followings are the details.

L7-1: Initialization

Reset the roulette array as W = ∅.
L7-2: Search of most likely node

Using the reference vectors gξ of SOMg , a node
gc

[m]
t that is most close to the measured ρt and

predicted status B z̄
[m]
t is found by

gc
[m]
t = arg min

i

{∥∥∥∥
[

ρt

B z̄
[m]
t

]
− gξi

∥∥∥∥
}

.

L7-3: Investigation of region around the most likely node

Computing a coordinate value (uc, vc) of the node
gc

[m]
t on the SOMg plain map, reference vectors

gξi′ of nodes that locate inside a square-like region

R
gc

[m]
t

are investigated, where the length of side

and the center of R
gc

[m]
t

are (2Lr +1) and (uc, vc),
respectively. Extracting from ξi′ an element that

corresponds to operation command, its element is

described as ρ̂(i′), that is

ρ̂(i′) ⇐ gξi′(1 : nρ), i′ ∈ R
gc

[m]
t

.

L7-4: Registration to the roulette array

The number of the variables that belong to ρ̂(i′) (∈
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R,
∑

i′ ≤ (2Lr + 1)2) and are close to ρt(∈ I) is

counted as follows, and the number is defined as l.

l =
{∑

i′ | round(|ρ̂(i′) − ρt|) = 0
}

Next, ’the number, m’ is registered l times into the

array W additionally.

W ⇐ W + {m}l

Line 10: Selection

Since the numbering of particle that holds higher measure-

ment probability has been registered in W more times, such

particles are re-sampled again with high rate by random

selection. Hence, generating a random integer r within a

range of {1, · · · , nW}, a number m′ that was registered on

the r-th element of the array W is drawn, where nW is a

length of W .

m′ = W (r) (8)

r = rand({1, · · · , nW }).
Line 11: Reentry

m′-th particle is re-registered as one of new particles for next

step as

Bz
[m]
t ⇐ B z̄

[m′]
t .

Algorithm 2 yields M particles Bz
[m]
t every iteration time.

Since the belief is expressed by a distribution of those M
particles, an estimation of intention, say ẑ, is defined by

averaging these M particles as a representative variable to

show the time transition of estimated belief:

ẑt =
1
M

M∑
m=1

Bz
[m]
t .

Conceptual diagram of the SOM-Bayes filtering is shown in

Fig. 2.

Fig. 2. Diagram of the SOM-Bayes filtering

IV. REMOTE OPERATION OF RADIO CONTROLLED

CONSTRUCTION EQUIPMENTS

A. Experimental set up

An experimental system with radio-controlled model con-

struction machines [12] was devised as a human-operation

test for verification of the proposed method. The task is a

basic soil excavation. Wireless cameras on the excavator and

the truck captured video images, and displayed on monitors

for the operator, as shown in Fig. 3 (a). The operator

manipulated both the excavator and the truck at one’s own

discretion. The operator read the instruction manual for the

usage of the controllers and for the purpose of task before the

examination, and started the operation without watching any

other person’s operation. Figure 3 (b) shows the overview of

the work area. The field consists of the motorable road, the

restricted area, three drilling sites, and one unloading site.

The excavator and truck were put at their starting position

at the beginning of trial. The operator moved the machines

to the drilling site, collected the sample pieces with the

excavator, loaded the pieces on the truck bed, and carried

them to the unloading site by the truck. Written consent and

ethical approval of the participant (aged 21) were obtained

before the examinations. Three trials were repeated for three

days, hence the total were 9 trials.

restricted
area

starting  point of truck
& unloading site

drilling
sites

starting point
of excavator

motorable
road

(a) (b)

Fig. 3. Remote operation console (a), and overview of the work area (b).

B. Preparation for the SOM-Bayes intention estimator

Crawler velocities for the excavator and the truck

were controlled by two sliders with hands. The

velocity commands were converted into the crawler

operation mode κc as κc = {0 (stop), 1 (forward),
2 (left f. steer), 3 (left pinwheel),
4 (right b. steer), 5 (backward), 6 (left b. steer),
7 (right pinwheel), 8 (right f. steer) }, where

“f.” and “b.” are abbreviations of “forward” and

“backward”, respectively. The bucket arm is manipulated

by two cross levers, and the operator commands

consisted of the superstructure rotation mode;
eκr := {0 : stop, 1 : left rotation, 2 : right rot.}, the arm

mode; eκa := {0 : stop, 1 : arm bend, 2 : arm stretch},
and the bucket mode; eκb := {0 : stop, 1 : boom up, 2 :
boom down}, respectively. All operation modes, that consist

of the truck crawler modes, the excavator crawler modes

and the excavator shovel operation mode, were summarized

into one variable ρ ∈ {1, · · · , 42} [12] as

ρ := 1 + tκc + (eκc ∧ 1)(eκc + 8) + (eκh ∧ 1)(eκh + 16).
(9)

Vectors of the machine and environmental status (i.e., qM

and qE) were chosen by considering position, posture, and

geographical relation of the drilling sites and the equipments.

The task status qT was defined as qT := {0 : no payload, 1 :
payload on bucket, 2 : payload on truck bed } using the

payload status. Refer [13] for details about selection of these
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status. Time series sequence {s} were obtained by combining

qM , qE and qT , and the size of vector s became as ns = 28.

Sequence of reference intentions {z′} was made through

video analysis by a participant who watched the recorded

video of the expert’s operation. Types of the remote op-

erations for construction equipments and the definitions of

elements (z1, · · · , z15) in intention vectors z are summarized

in Table I. The operation modes are classified into three

groups: approaching (z1 ∼ z6), positioning (z7 ∼ z12),
and special operations (digging, loading, and transporting;

z13 ∼ z15). To get rid of any preconceived ideas, this

intention analysis was asked a participant who did not know

the remote-operation experiment at all. The analyst discerned

the operator’s intention, as classified in Table I, by watching

the video recorded from the ceiling camera, and tried to find

the timings of each operation, then sequence {z} was made

by putting 1 to the corresponding element zi at the time of

the found timing.

TABLE I

CLASSIFIED OPERATIONAL INTENTIONS, THEIR VARIABLES, AND

LABELS

variable label meanings

z1 ∼ z3 T/A-* truck approach to the *-drilling site
z4 ∼ z6 E/A-* excavator approach to the *-drilling site
z7 ∼ z9 T/P-* truck positioning around the *-drilling site

z10 ∼ z12 E/P-* excavator positioning around the *-drilling site
z13 E/D excavator digging
z14 E/L excavator loading of the payload
z15 T/T truck transport with the payload

(*=a,b,c : identifier of the drilling site )

Computation of the SOM training was performed using

SOM PAK [14]. Each component of the input vectors was

normalized into the [−1, 1] range by using the maximum and

minimum values of the time series data. Since it is preferable

for the horizontal and vertical sizes of the rectangular map

of SOM to be chosen in proportion to the ratio of two square

roots of the first and second maximum eigen-values of the

covariance matrix of input vectors [15], the sizes of the SOM

lattice (udim, vdim) were decided as (50, 25) and (80, 20)
for SOMf and SOMg , respectively. Hence, the number of

nodes Lf and Lg are 1250 and 1600, respectively. A bubble

type was chosen for a neighborhood kernel function. On the

learning process, a fine tuned computation was performed

after the rough tuned one was computed. The learning rate

& learning length were specified as 0.05 & 2000 and 0.02 &

1.5 million, respectively, so as to meet such requirement that

the learning length is more than 500 times of the number of

nodes [16].

Initial state of particles were specified as Bz
[m]
1 =

[ 0 0 0 1 0 · · · 0 ]T for all m since it was obvious that

an initial operation in the experiment was E/A-a (that means

‘excavator approach to the a-drilling site’). The number of

particles were specified as M = 1000.

V. ANALYSES

Concerning the intention discerned by a human analyst,

say z̃, and the other intention estimated by the proposed

SOM-Bayes method, ẑ, the transitions are shown in Fig. 4.

Each graph shows the change of each intention mode from

T/A-a (z1) to T/T (z15). z̃ and ẑ are drawn by the blue and

red lines, respectively.

A. Qualitative analysis

Investigating the overlap, timing, strength, and types of

the intention qualitatively by comparing ẑ against z̃, the

following tendencies were found.

1) Concerning approaching, both case of the truck

and the excavator (T/A-*, E/A-*) were identified

correctly.

2) Concerning truck transport (T/T), starting timing

of the estimation was delayed.

3) Periods identified as truck positioning (T/P) were

longer.

4) Periods identified as excavator loading (E/L) were

also long, and their level were strong.

Fig. 4. Transitions of estimated intentions (red) and discerned ones (blue)

For easier understanding correspondence between graphs

and above-mentioned results, numbering of items in the

results were written in Fig. 4. Reason for the success of

result 1 appears to come from large change in machine’s

state. The reason of delay indicated by result 2 is that

analyst discerned early the initiation of T/T, in short, the

analyst regarded the end of E/L action (that occurred before

the T/T action) as a start of T/T. Result 3 was found by

investigating which status changed at the same timing of

E/D in ẑ (that were about 85[s], 255[s]). Specifically, timing

detected by the estimator was synchronized with vertical
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change of the bucket while analyst’s z̃ was changing from the

bucket operation in a front-back direction before the vertical

manipulation. This insights give us thinking that judgement

of human analyst might be inadequate and that the estimator

by the machine algorithm appears to identify operator’s

intention more objectively. From result 4, the estimator seems

to indicate that truck’s positioning during the payload loading

operation includes the E/L operation. Such interpretation of

’T/P is a part of E/L’ can be acceptable. From a different

angle, this result highlights difficulty such that criterion to

classify intentions is ambiguous.

B. Quantitative analysis

Computing the matching ratios using z̃ and ẑ by the

following indexes, the timing and strength of the estimated

intentions were investigated.

Ra|e :=
all t′∑

z̃/

all t∑
z̃, t′ = {t | ẑt > 0.3 } (10)

Re|a :=
all t′∑

ẑ/

all t′∑
z̃, t′ = {t | z̃t = 1 } (11)

The constant 0.3 in Eq.(10) is a threshold parameter. Ra|e is

a ratio of time that the analyst found same type of intention

against a time period of the other intention identified by the

estimator. Re|a shows how strongly the estimator can identify

same type of intention during the period recognized by the

analyst. Values of these indexes are written at the right side

in each graph shown in Fig. 4. Although a weak tendency

of Ra|b > Rb|a can be found, there is not discriminative

difference depending on types of intentions between these

two indexes. Hence, difference of two indexes were not cared

but the differences from the types of intentions were checked.

Then, the following results was found.

5) Estimated ẑ for T/P-a and E/P-a were not detected.

6) The matching ratios of E/D (Ra|b = 0.176, Rb|a =
0.16) was small compared to the others.

Reason of result 5 might come from a geographical

dependency of the drilling site A. Actually, the truck passed

through the road around the site A six times while the

excavator reached there once; hence, a probability of the

excavator’s emergence was low and the excavator’s operation

might be difficult to be classified. Since result 6 arises from

festinate discretions of the analyst, as explained in result 3,

the estimation was not necessarily inaccurate. On the other

hand, since the matching ratios for E/L are as high as 0.88
and 0.86, respectively, an existence of an inclusion relation

such as E/D < E/L are shown. These facts also support

the qualitative result 4.

C. Discussion

From afore-mentioned analyses, drawbacks of the pro-

posed algorithm and the estimated results are summarized

as the following findings.

F1) Classification of intentions based on individual

sense and experience on human analysis is am-

biguous. We should think that such ambiguousness

cannot be removed clearly on the classification

work. It is required to verify believability of the

normative data of intentions.

F2) Estimation of intention is strongly affected with

factors for foreseeing; a scenario of whole task and

causality of events should be considered to improve

the proposed algorithm.

F3) At the stage of the SOM training, the input data

should be modified to enhance a fixation of the

related network in the SOM structure for significant

but rare events.

Finding F1 is a corollary from result 4. It was indicated

that types of intentions shown in Table I were not perfectly

adequate classification and that their types contained certain

inclusive relation. The present authors rediscovered that it

was difficult to make normative data for an intentions estima-

tion. F2 indicates a drawback of the proposed method, and is

obtained from results 2 and 3. That is, a prediction by Eq.(7)

utilizing stochastic perturbation was insufficient. Problem

shown in F3 was deduced from result 5. The proposed

algorithm is a so-called frequentism method consisting of

Bayes estimation; hence, events with low frequency are

difficult to be classified. At the learning phase for SOM, an

adjustment of input data for learning is required according

to significance level of each event.

It might be thought that the presented SOM-Bayes esti-

mator may identify not operational intention but operational

sequence; however, it is misunderstanding. The SOM-Bayes

identifies stochastically the inner status which determines the

output commands, and such inner status is called intentions.

We considered a simultaneous existence of intention modes

by using multiple variables. These points are the biggest

difference between the SOM-Bayes estimator and existing

estimators of operational sequence.

VI. CONCLUSION

A new method to estimate operator’s intention was pre-

sented by utilizing the SOM clustering technique and the

Bayes estimation. Characteristic of this method is to form

a state transition relation of intentions by using SOM. In

the presented method, troublesome preparation to specify

informations in human cognitive activity on machine opera-

tions is not necessary. Applying the presented method to the

remote operation task, the effectiveness was verified through

qualitative and quantitative analyses, and several issues and

benefits were confirmed. As a result, the following findings

were obtained: 1) objective attention should be paid to the

classification of reference intentions for the SOM training, 2)

it is desirable to take a scenario of events and the causality

into consideration to predict state transition on the Bayes

filtering computation, and 3) an input data for the SOM train-

ing should be modified according to meanings of events and

actions. Consideration and improvement concerning these

issues are the remained work in the future.
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