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Abstract— In this paper, stable hopping of a one-legged,
articulated robot with a flat foot is investigated. The robot
has a special feature that before taking off, it goes through
an underactuated phase in which the foot rotates about the
unactuated toe on the ground. By having the underactuated
phase, the robot can perform stable human-like hops with
longer hopping distances. To devise a systematic trajectory
design methodology for the robot, its dynamics including the
ground-foot impact and the hopping constraints are carefully
studied. An optimization procedure is then proposed to plan
the feasible actuated trajectories which not only meet specific
performance requirements but also attain certain optimality
with respect to actuation energy. The hopping strategy and the
optimal trajectories are verified by simulations and hardware
implementation. Experiments indicate that the robot not only
can stably perform hops with different hopping distances on the
level ground but also can successfully hop up/down staircases.

I. INTRODUCTION

Through hopping and jumping, legged robots can demon-
strate their dexterity and mobility. During 1980’s, Raibert et
al. first developed one-legged [1] and two-legged [2] hopping
robots. These robots had telescopic legs, point feet, and used
pneumatic or hydraulic cylinders for actuation. They were
also equipped with control algorithms for controlling forward
velocity, hopping height and body attitude. Recently, to
achieve stable jumping or hopping, there has been a growing
interest in incorporating articulated legs and flat feet to the
robots. With the flat feet, the robots can maintain dynamic
stability in the support/stance phase by controlling the zero-
moment-point (ZMP) to be within the non-negligible foot
area. For instance, the authors in [3] developed a 7 DOF,
one-legged robot with an actuated toe joint. By solving the
discretized ZMP equations in real time, the robot can hop
with a maximal height of 4 cm and turn around by rotating
the hip in the yaw direction during the flight phase.

In normal human jumping, right before the takeoff, there
is an underactuated phase that the foot rotates around the
passive toe joint. To explore underactuation feature of human
jumping, Kajita et al. added passive toe joints with torsional
springs to the HRP-2LT [4] robot. The ZMP trajectory is
pre-specified that the ZMP starts from the foot center, then
gradually moves to the toe link to initiate underactuated
rotation in the passive toe joint, and finally moves and stays
at the toe tip to initiate another underactuated rotation around
the toe tip before the robot completely takes off. Regardless
that it was validated in simulations that the robot can achieve
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more effective jumping and running with added toe joints and
springs, only a preliminary experiment on vertical hopping
was shown.

In this research, an articulated, one-legged robot with
two actuated joints and a flat foot is developed to perform
stable hop. Although for simplification the developed robot
does not have the toe link, similar to the work in [4],
the hopping of the robot also undergoes an underactuated
phase as in the normal human jumping. For fully exploiting
the dynamics for the specific hopping characteristics of
the robot developed, an optimization procedure is proposed
to systematically determine the actuated joint trajectories
throughout the hopping process. By carefully considering
all the possible constraints including impact minimization
and motor specifications, the procedure can lead to feasible
actuated trajectories which are directly ready for experimen-
tal implementation. The rest of the paper is devoted to
analysis and hardware implementation of a one-legged robot
peforming stable hops.

II. DYNAMICS FOR THE ONE-LEGGED HOPPING ROBOT

The photo of the one-legged robot and its schematic model
are shown in Fig. 1. The robot contains three links which
respectively correspond to the foot, the leg and the torso.
There are an ankle joint connecting the foot and the leg,
and a hip joint connecting the leg and the torso. Each of
the two joints is actuated by an electrical motor with gear
transmission.
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Fig. 1. The photo and the schematic model of the one-legged robot with
definitions of critical varibles for dynamic analysis.

In Fig. 2, the stick diagrams of the one-legged robot
performing stable hop in a cycle are shown in the sagittal
view. One hopping cycle consists of six consecutive postures
1~6: Initially, at posture 1, the robot stands statically and
prepares to crouch down for hopping. Its foot is flatly in
contact with ground and the center of pressure (CoP) of the
foot-ground contact force is located around the center of the
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Fig. 2. Stick diagrams of the one-legged robot in a hopping cycle.

foot. At posture 2, the CoP just moves to the toe, and the
foot is about to rotate about the toe to raise the center of mass
(CoM) further forward and upward. At posture 3, the foot
has rotated, and the foot-ground contact force just vanishes
that the foot is about to leave off the ground completely. At
posture 4, the foot has been lifted off the ground and the
robot is flying in the air. At posture 5, the foot just flatly
lands on the ground, and impact occurs between the foot
and the ground. The superscripts − and + for this posture
respectively represent the instants just before and right after
foot-ground impact. Finally, at posture 6 the robot recovers
its initial posture and stands statically again.

Let ti denote the time instant while the ith posture occurs.
From t1 to t2 and from t5 to t6, which are respectively
referred to as the stance phase and the recovery phase, the
robot’s foot flatly stays on the ground without any sliding
and rotation. The robot has 2 DOF and is fully actuated in
these phases. From t2 to t3, the foot rotates freely about
the toe which itself can be viewed as a free joint, so the
robot has 3 DOF. With only two actuated joints, such a
duration is referred to as the underactuated phase. From t3
to t5, the robot is completely lifted off the ground and is
referred to be in the flight phase. In this phase, other than
three rotational DOF, translations in the y and the z axes also
occur, so totally the robot has 5 DOF.

For generality, all the five possible DOF motion is con-
sidered in the model shown in Fig. 1. Among the symbols
depicted, mi (i = 0, 1, 2) represents the mass of link i, Ii
is the associated moment of inertia about the center of mass
of the link, θ2, θ1 and θ0 respectively denote the hip angle,
the ankle angle, and the angle around the toe, y0 and z0 are
the translational displacements of the toe respectively along
the y and z axes, and finally (yc, zc) is the coordinates for
the CoM of the robot.

Using q =[y0 z0 θ0 θ1 θ2]
T as generalized coordinates,

the 5 DOF motion of the proposed robot can be described
by the following equation:

M(q)·q̈+C(q, q̇)·q̇+ g(q) = τ + J(q)T ·fg . (1)

In this equation, M is the inertia matrix, C is a matrix
related to the Coriolis and centrifugal effects, g is the
gravitational torque vector, and τ =[0 0 0 τ1 τ2]

T is a
controlled torque vector, in which τ1 and τ2 corresponding
to the torques respectively generated by the ankle and the hip
motors. Finally, fg is the vector representing the interaction
force/moment between the foot and the ground with J(q)
being the associated Jacobian matrix. Note that except for
fg = 0 in flight phase, the interaction point of fg must

be located inside the support area of the foot (during the
stance phase and the recovery phase) or at the toe (during
the underactuated phase).

By the special structure in τ , (1) can be partitioned as
follows:

Mu(q)·q̈+Cu(q, q̇)·q̇+ gu(q) = 0+ Ju(q)T ·fg (2)
Ma(q)·q̈+Ca(q, q̇)·q̇+ ga(q) = τ a . (3)

In the above two equations, the subscripts u and a re-
spectively denote the unactuated and actuated parts of the
vector/matrix, τ a = [τ1 τ2]T , and q is implicitly composed
of qu = [y0 z0 θ0]

T and qa = [θ1 θ2]
T . Note that

since fg must acts on the ground surface, the associated
Jacobian should vanish along the direction of qa, or J(q) =
[Ju(q) 0].

The robot has 2 DOF actuation, so the trajectory of qa,
if feasible in terms of the constraints discussed in the next
section, can be directly controlled. On the other hand,
qu, which constitutes the unactuated part of the generalized
coordinates, is the result of the dynamic interaction between
the controlled trajectories and the mechanism dynamics. In
the following, the solution of qu(t) to a given feasible
trajectory of qa(t) in different phases is studied.
• Stance phase: During this phase, the foot flatly stays

on the ground without sliding and rotation, so qu is
motionless or can be simply written as

qu(t) =
£
0 0 0

¤
, t ∈ [t1, t2] . (4)

• Underactuated phase: During the underactuated phase,
it is assumed that the foot rotates freely about the toe
and the toe does not slide. This leads to the condition
that for t ∈ [t2, t3], the third component of Ju(q)T ·fg
in the equation of (2) vanishes, and y0(t) = z0(t) = 0.
Therefore, given a feasible qa(t), the third equation in
(2) can be numerically integrated to solve for θ0(t),
consequently qu(t). Here an operator Γq23 is used to
denote the functional dependency between qu and qa
during the underactuated phase, or

qu(t) = Γq23(qa(t)) , t ∈ [t2, t3] . (5)

• Flight phase: During the flight phase, no external
force except gravity is exerted on the robot, so the
dynamics follow the conservation of linear and angular
momentums as⎧⎨⎩ ẏc(t) = ẏc(t3)

żc(t) = żc(t3)− g(t− t3)
HCoM (t) = HCoM (t3)

, t ∈ [t3, t5] (6)

where g is the gravitational acceleration, and HCoM (t)
is the angular momentum about the CoM of the robot.
In these equations, by kinematic analyses ẏc, żc, as well
as HCoM can be represented as functions of q and q̇.
Thus (6) can be written in the following form:

H (q(t)) q̇(t)=H (q (t3)) q̇(t3)+[0 g(t3 − t) 0]
T (7)

where H is a 3× 5 matrix that relates the generalized
velocity q̇ to ẏc, żc, and HCoM . Since qa(t) is given

4923



and q (t3) and q̇(t3) can be obtained as the final states
of the underactuated phase, (7) can be integrated to
numerically solve for qu(t). Here an operator Γq35
is used to denote the functional dependency between
qu and qa, or

qu(t) = Γq35(qa(t)) . (8)

• Recovery phase: In this phase the foot flatly stays on
the ground without sliding and rotation as the stance
phase but the foot could be placed at a different location.
In this case qu is written as

qu(t) =
£
l h 0

¤
, t ∈ [t5, t6] . (9)

where l denotes the hopping distance, h is the final
hopping height with h > 0 for hopping up and h < 0
for hopping down.

According to the above analysis, qu(t) is either constant
or functionally dependent on qa(t). Consequently, qa(t)
alone dictates the dynamics of the one-legged robot. Using
(2), one can directly compute the contact force/torque fg in
terms of q(t), thus qa(t). An operator Γfg is used to denote
the functional dependency of fg on qa(t), or

fg(t) = Γfg(qa(t)) . (10)

Similarly, an operator Γτa can be applied to show the
functional dependency of the actuation torque τ a on qa(t),
or

τ a(t) = Γτa(qa(t)) . (11)

III. CONSTRAINTS FOR ACHIEVING A STABLE HOP

One main purpose of the paper is to devise a feasible solu-
tion for qa(t) so that the robot can perform stable hop with
some optimality with respect to the use of actuation energy.
To do so, constraints on the trajectories are investigated. The
constraints will be incorporated into the numerical procedure
subsequently to determine the feasible solution for qa(t).
Basically, there are seven types of constraints. They are:

1) Constraints for initial and final postures: For a hopping
cycle, the initial and final postures of the robot are
specified by

q(ti) = q
i
d and q̇(ti) = 0 , for i = 1, 6 , (12)

where qid is a given joint angle/position vector at time
ti.

2) Constraints for continuity and discontinuity: According
to Fig. 2, transitions between phases occur at posture 2,
3, and 5. At these postures, the degrees of freedom of
the robot change. Regardless of the change in DOF,
except for posture 5, both the positions/joint angles
and the corresponding velocities in the generalized
coordinates should be continuous at the associated time
instants. In other words,½

q(t−i ) = q(ti) = q(t
+
i )

q̇(t−i ) = q̇(ti) = q̇(t
+
i )

, for i = 2, 3 (13)

At posture 5, foot-ground impact occurs, so the conti-
nuity only holds in the positions and joint angles, or

q(t−5 ) = q(t5) = q(t
+
5 ) . (14)

Particularly, to avoid successive impacts, it is assumed
that at t−5 the foot angle θ0 has already been slewed
to zero degree that (9) also holds for t = t−5 . As for
the velocities, they are discontinuous at the moment
of impact. Assuming the impact is purely plastic,
the linear velocities and the angular velocity of the
foot should vanish. Moreover, if both sides of (3)
are integrated from t−5 to t+5 , by the continuity in
joint angles and the actuator torques (τ a), and the
instantaneous nature of the impact, we have

q̇u(t
+
5 ) = 0 and Ma(q(t5))·

¡
q̇(t+5 )− q̇(t−5 )

¢
= 0,

(15)
which constitute the discontinuity constraint for the
velocities at posture 5. One can directly compute the
after-impact velocity, q̇(t+5 ), from the before-impact
velocity, q̇(t−5 ), using these two equations.

3) Constraints for clearance: During the underactuated
phase, the heel clears from the ground and the foot
rotates about the toe. This is equivalent to

θ0(t) > 0 , for t ∈ (t2,t3] . (16)

On the other hand, during the flight phase, the foot
should clear from the ground to avoid the foot-ground
interference. Such a constraint is given by

z0(t) > 0
z0(t) + lfoot sin θ0(t) > 0

, for t ∈ (t3,t5) , (17)

where the second inequality limits the height of the
heel, and lfoot denotes the length of the foot.

4) Constraint for minimizing impact: Ideally, to eliminate
the foot-ground impact at touchdown for reducing
energy loss, one can simply slew the foot velocities
(ẏ0, ż0, and θ̇0) to zero right before the impact, or
q̇u(t

−
5 ) = 0. However, because the motions in ẏ0, ż0

are quite substantial during the shortly flight phase, it
requires quite significant actuator authority to achieve
ẏ0(t

−
5 ) = ż0(t

−
5 ) = 0. Here, as a compromise between

the capacity of the motor used and the energy loss due
to impact, we simply set the constraint

θ̇0(t
−
5 ) = 0 . (18)

5) Constraints for the contact force (fg): While the foot is
in contact with the ground, two constraints for contact
force need to be satisfied to hop in a stable manner.
One is that sliding should not occur between the foot
and the ground. Such a constraint is relevant to fg,
which has three components: a force in y direction
((fg)z), a force in z direction ((fg)y), and a moment
in x direction ((fg)x). To prevent the foot from sliding,
we should have

|(fg)y| ≤ μs(fg)z , t ∈ [t1, t3] and t ∈ [t5, t6] (19)
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where μs is the coefficient of static friction. Equation
(19) also implicitly restricts (fg)z to be non-negative,
which comes from the uni-directionality of the ground
reaction.
The other constraint about fg is imposed for the foot
to flatly contact with the ground (θ0(t) = 0) during the
stance phase and the recovery phase, but rotate about
the toe during the underactuated phase. This constraint
is equivalent to limiting the CoP associated with fg
to be strictly inside the foot during the stance phase
and the recovery phase, and to limiting the CoP to
be exactly located at the toe during the underactuated
phase. These constraints are analytically given as

0 ≤ (fg)x
(fg)z

≤ lfoot , t ∈ [t1, t2) (20)

l ≤ (fg)x
(fg)z

≤ l + lfoot , t ∈ (t5, t6] (21)

(fg)x = 0 , t ∈ [t2, t3] (22)

6) Constraints for the CoM motion: When the robot is in
flight, the only external force acting on it is gravity.
The CoM should follow the projectile motion that the
resultant trajectory is parabolic and is dependent on the
initial speed and the projection angle. In order for the
robot to achieve a maximal hopping distance with least
energy, we require the take-off velocity of the CoM to
have identical horizontal and vertical components, or

ẏc(t3) = żc(t3) > 0 , (23)

7) Constraints for motors: The two DC motors used
should obey some constraints. First, the gear reduc-
tions associated with the motors do not allow the joints
to rotate continuously but limit the joint angles as

θmin ≤ θi ≤ θmax , for i = 1, 2 (24)

where θmin and θmax respectively represents the lower
bound and upper bound of the joint angle. Secondly,
considering that if the electrical time constant of the
motor is ignored, part of the input voltage to the motor
coil is to counteract the back emf proportional to the
motor speed, and the rest of the voltage is to generate
motor torque via electro-mechanical interaction, the
following constraint is imposed:

R

km·n |τ i|+ (ke·n)
¯̄̄
θ̇i

¯̄̄
≤ v , for i = 1, 2 (25)

where km is the motor constant, ke is the back emf
constant, n is the gear reduction ratio, R is the coil
resistance, and v is the maximum input voltage.

IV. AN OPTIMIZATION PROCEDURE FOR DETERMINING
JOINT TRAJECTORIES

To minimize the actuation energy in a hopping cycle, the
performance index J =

R t6
t1
kτ a(t)k2 dt is defined. In a

DC motor, torque is proportional to current, so the electrical
power is proportional to the square of the current.

By (11), the performance index can be expressed in terms
of qa(t). In this section, an optimization procedure is
proposed to determine feasible qa(t) to minimize such a per-
formance index under the seven constraints listed previously.
Because the robot experiences change in DOF at postures 2,
3 and 5, qa(t) in the optimization is assumed to be a concate-
nation of four smooth Bèzier polynomials qa_12(t), qa_23(t),
qa_35(t) and qa_56(t) respectively defined in [t1, t2], [t2, t3],
[t3, t5] and [t5, t6]. A typical Bèzier polynomial θ(t) is in
the form of θ(t) =

mP
i=0

m!
i!(m−i)! t

i(1 − t)m−i·xi, where m

is the order of the polynomial, and m!
i!(m−i)! t

i(1 − t)m−i is
referred to as a basis function with xi being the associated
control point. The polynomials for actuated trajectories can
be generally parameterized as

qa_ij(t) = Aijh(t), for t ∈ £ti, tj¤
where (i, j)=(1, 2), (2, 3), (3, 5) and (5, 6), h(t) = [(1 −
t)m mt(1 − t)m−1 · · · tm]T , and A(·)’s are matrices
constituted by control points of the associated polynomial.
The optimization problem can be cast as

min
A12,A23,
A35,A56

(
R t2
t1
kΓτa(A12h(t))k2 dt+

R t3
t2
kΓτa(A23h(t))k2 dt

+
R t5
t3
kΓτa(A35h(t))k2 dt+

R t6
t5
kΓτa(A56h(t))k2 dt)

(26)
subject to (12)~(25)

in which the constraints, although are expressed in terms of
q(t) (= [qu(t)

T qa(t)
T ]T ), fg and τ a originally, can be

expressed in terms of qa(t) alone by (4), (5), (8), (10) and
(11).

The discrete form of the optimization problem is in a
standard format for nonlinear, constrained optimization in
MATLAB

R°
Optimization Toolbox, so the function fmincon

in this package is used to solve the problem numerically.
When the fmincon function is used to solve for the op-
timal A(·)’s, it is found that due to the vast numbers of
parameters and constraints involved, convergence of the
numerical optimization is not easy to achieve. In order
to obtain a convergent solution for the relevant parameters
but still maintain their optimality to certain degree, three
modifications are made to the optimization problem.

First of all, instead of solving for the four A(·)’s matrices
simultaneously, the four integrals in (26) are divided into
two parts and minimized separately in a sequential manner.
One of the two parts consists of the first two (stance
and underactuated) phases before take-off, and the other is
composed of the flight phase and the recovery phase. The se-
quential optimization is conducted in the way that qa_23(t3)
(= A23h(t3)) and q̇a_23(t3) (=A23ḣ(t3)) obtained from
minimizing the first two integrals are substituted as initial
conditions for the optimization of the other two integrals.
With such a modification, one has to deal with only two of
the four A(·)’s matrices in each optimization.

Secondly, as observed from human hopping, during the un-
deractuated phase the actuation is most intensive. Similarly
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in (26), the cost associated with the underactuated phase is
less penalized in order for the optimization to generate more
intensive control authority during this phase. Therefore, the
cost function for computing A12, A23 is modified as

min
A12,A23

³R t2
t1
kΓτa(A12h(t))k2 dt+ γ

R t3
t2
kΓτa(A23h(t))k2 dt

´
(27)

where 0 < γ < 1 is a weighting factor.
The third modification is to further restrict the solution

space so as to speed up the convergence of the numer-
ical scheme. This is achieved by additionally imposing
lower bound and upper bound on the CoM’s take-off speed
(=
√
2żc(t3) due to (23)) and take-off angular momentum

(HCoM (t3)) during optimization. By the analog of projectile
motion and (23), to reach a hopping distance of l, the take-off
speed should be close to

q
gl
2 . To avoid excessive rotation

during the flight phase, the magnitude of HCoM (t3) should
be small. Taking these two observations into account, appro-
priate bounds for żc(t3) and HCoM (t3) can be determined.

The flow chart of the final optimization procedure is
depicted in Fig. 3. In this flow chart, the parameters and
initial conditions needed for the optimization procedure are
q1d, q6d, (t2− t1), (t6− t5). While the selections for (t2− t1)
and (t6−t5) are quite flexible since the robot is fully actuated
by motors, q1d and q6d are selected to achieve a desired
hopping distance (l) and a hopping height (h) and have the
same standing posture mimicking a person bending his/her
body to prepare for a jump. For q1d and q6d, the projection of
the CoM is designed to locate around the center of the foot to
assure the stability. Finally, once the flow chart produces a
convergent solution, the actuated trajectories associated with
the solution guarantee to achieve stability and the desired
hopping distance.
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1 212 23
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3 3

min ( ) ( ) ,
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Fig. 3. The flow chart of the optimization procedure.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

The 3-link, one-legged robot depicted in Fig. 1 is used to
verify the optimization results. In the robot, the mechanical
links are made of aluminum alloy, and at the ankle and the
hip joints, DC servo motors (Dynamixel RX-64) are used
as the actuators. Except for a gear reduction, each of the

motors also integrates a potentiometer, a PID type servo-
controller, and a motor driver as one module. Specifically,
for verification purposes, two mechanical touch switches are
respectively installed at the toe and at the heel to detect the
foot-ground contact condition. A gyro sensor is attached
to the foot to measure its absolute inclination angle derived
by integrating the angular velocity signal. There are also
Hall-effect current sensors in series with the motor coils to
measure the motor currents, thus the motor torques.

A. Simulations
The optimization procedure is applied to the one-legged

robot model with parameters listed in Table I, which are
indentical to the geometric dimensions and the inertial prop-
erties of the robot. The position/joint angles at postures
1 and 6 are selected as q1d = [0, 0, 0, 0.98, 1.28]T and
q6d = [0.2, 0, 0, 0.98, 1.28]

T , which implie that the robot hops
on the level ground along the y direction with l = 0.2m,
h = 0. The coefficient of ground friction (μs) is chosen to be
3. As for the constraints in (24) and (25), θi,min = 20π

180 rad,
θi,max =

155π
180 rad, R

km·n = 2.50
V
Nm , (ke·n) = 2.84 V srad and

v = 27V are obtained from the motor specifications.

TABLE I
KINEMATIC PARAMETERS OF THE ONE-LEGGED ROBOT

1 1,m I

2 2,m I

0 0,m I
1l

2l

al

footl

,1cyr

,1czr

,2cyr

,2czr

,0cyr

fl
,0czr

To initiate the optimization, the trajectories of actuated
joints are assumed to be Bézier polynomials of order 7.
The durations (t2 − t1) and (t6 − t5) are respectively
chosen as 0.4 s and 0.8 s. The weighting factor (γ) for
the underactuated phase is set to 0.1. Executing the flow
chart in Fig. 3 leads to the optimal A(·)’s, consequently the
optimal qa(t). Besides, the grid search for durations of the
underactuated phase and the flight phase gives t3−t2 = 0.1 s
and t4 − t3 = 0.185 s.

The corresponding stick diagrams of the one-legged hop-
ping robot calculated by the optimization procedure are
plotted in Fig. 4(a), and the trajectory of the CoM is also
plotted in Fig. 4(b). According to the figures, the robot
starts statically from posture 1, in which the projection of
the CoM is located around the center of the foot. During
the stance phase the robot bends its torso gently to lower
its CoM. Then it rapidly stretches the torso and enters the
underactuated phase. With the rapid stretching in this phase,
a large forward and upward reaction force from the ground
is generated, so the CoM is quickly accelerated along the
direction of the reaction force to initiate the takeoff. After
takeoff, the CoM moves along a ballistic trajectory. In the
flight phase, the robot first quickly retracts its leg to leave off
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Fig. 4. (a) The consecutive stick diagrams of the optimal hop. (b) The
trajectory of the CoM.

Fig. 5. (a)The histories of signals of the two touch sensors as well as the
inclination angles of the foot in simulation and experiment. (b)The histories
of the motors’ torques in simulation and experiment.

the ground. Then the leg is extended slightly and the foot
is slewed horizontally to prepare for the touch-down. After
touching down, in order to support the body and prevent the
robot from falling, the motions of the actuated joints produce
an upward and backward reaction force from the ground so
that the CoM is quickly decelerated in the vertical direction
but stays around the top of the center of the foot. Finally the
robot gradually recovers toward the original static posture.

B. Experiments for Stable Hop
The qa(t) calculated by the optimization procedure is

directly adopted as the reference trajectories for the motors’
servo controllers. Experimentally, the one-legged robot can
perform stable hop with a hopping distance of about 20 cm
as the simulations. The video demonstration of the robot
continuously performing three hops can be found in the
website http://ldsc.pme.nthu.edu.tw/files/Hopping.

Fig. 5(a) shows the histories of signals of the two touch
sensors as well as the inclination angles of the foot in
simulation and experiment. In the stance phase, the foot is
flatly in contact with the ground, so both touch sensors are
switched off that two voltage signals are low. At about 0.4 s,
the foot starts to rotate about the toe, and the heel is lifted off
the ground that the corresponding touch sensor is switched
on. After a duration of about 0.09 s, the foot is completely
lifted off the ground that the robot is in flight for about
0.19 s. Then at about 0.7 s, the robot lands on the ground and
both touch sensors are switched off again. Furthermore, the
motors’ torques in simulation and experiment are recorded in
Fig. 5(b). Clearly, the experimental torques roughly follow
the trend as the simulations.

C. Further Applications of the Optimization Procedure
Besides designing the actuation trajectories for the robot

to perform stable hopping of 20 cm on the level ground,
the proposed optimization procedure can be used to devise
different hopping gaits, such as hopping with different dis-
tances or hopping up/down staircases. For example, using
the computed trajectories, the robot can be demanded to
hop for 10 cm on the level ground. Furthermore, for the
robot to hop up/down staircases, the joint trajectories also
can be obtained by the optimization procedure but with a
modification to the constraint for clearance in (17). In order
for the foot to circumvent the corner of a staircase, the
constraint is modified as

z0(t)

½
> 0, if y0(t) < ys
> zs, else

z0(t) + lfoot sin θ0(t)

½
> 0, if y0(t) + lfoot cos θ0(t) < ys
> zs, else

, for t ∈ (t3, t5),

where (ys, zs) is the coordinates of the corner of the staircase.
The inequalities listed respectively guarantee that both the
toe and the heel do not collide with the staircase in flight.
Note that the hopping height h now equals the height of
the staircase zs. Using the optimization procedure with the
modified constraints, the solutions for the robot hopping up
a staircase with (ys, zs) = (7, 3) cm and down a staircase
with (ys, zs) = (3,−3) cm are computed. These three
cases of hopping were verified by simulation and experiment.
The animations of the simulations and the video demonstra-
tions of the experiments can be also found in the website
http://ldsc.pme.nthu.edu.tw/files/Hopping.

VI. CONCLUSIONS

In this paper, a one-legged robot with two actuated joints
and a flat foot is developed to perform stable hop. The
hopping contains a special feature that before taking off,
the robot goes through an underactuated phase in which
dynamic stability is violated. To exploit underactuation
for effective hopping, an optimization procedure is used to
systematically design the actuated joint trajectories. The
feasibility of the hopping strategy and the optimal joint
trajectories for stable hopping is verified by simulation and
hardware implementation. Experiments indicate that the
robot not only can consecutively hop on the level ground
with different hopping distances but also can successfully
hop up/down staircases.
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