
Image-Based Flexible Endoscope Steering

Rob Reilink, Stefano Stramigioli, and Sarthak Misra
University of Twente, Enschede, The Netherlands

Abstract— Manually steering the tip of a flexible endoscope to
navigate through an endoluminal path relies on the physician’s
dexterity and experience. In this paper we present the realiza-
tion of a robotic flexible endoscope steering system that uses
the endoscopic images to control the tip orientation towards the
direction of the lumen. Two image-based control algorithms
are investigated, one is based on the optical flow and the
other is based on the image intensity. Both are evaluated
using simulations in which the endoscope was steered through
the lumen. The RMS distance to the lumen center was less
than 25% of the lumen width. An experimental setup was
built using a standard flexible endoscope, and the image-based
control algorithms were used to actuate the wheels of the
endoscope for tip steering. Experiments were conducted in an
anatomical model to simulate gastroscopy. The image intensity-
based algorithm was capable of steering the endoscope tip
through an endoluminal path from the mouth to the duodenum
accurately. Compared to manual control, the robotically steered
endoscope performed 68% better in terms of keeping the lumen
centered in the image.

I. INTRODUCTION

Flexible endoscopy is a minimally invasive medical pro-
cedure to examine the internal body cavities. Common pro-
cedures include gastroscopy, the inspection of the esophagus
and the stomach via the mouth (Fig. 1), and colonoscopy
which involves the inspection of the colon via the rectum.
During endoscopy, the physician holds the proximal end of
the flexible endoscope that contains the control wheels, and
uses this to steer the tip. The tip contains a camera and
a light source that allow the physician to investigate the
gastrointestinal (GI) tract via his/her monitor.

During clinical procedures, the endoscope is first inserted
up to the required length and then the inspection is per-
formed while slowly retracting the endoscope. The insertion
requires spatial reasoning and dexterity, therefore it may
take significant time and effort. The physician needs one
hand to maneuver the flexible tube, while his/her other hand
has to operate the control wheels that steer the tip. The
control is not very intuitive, since the two degrees of freedom
(left-right and up-down) are controlled by two concentric
wheels. Experience is required to manipulate the controls
to steer the endoscope in the appropriate direction [1]. This
makes the steering difficult, especially for less experienced
physicians. A robotic system can be used to improve the
performance of the physician and the clinical outcome of
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Fig. 1. Conventional gastroscopy: The physician uses the endoscope
control handle to steer the endoscope through the patient’s gastrointestinal
tract while observing the endoscopic images on the monitor.

the procedure [2]. Controlling a robotic flexible endoscopy
system will require computing the desired tip orientation.
Using a purely mechanics-based approach to compute the
required tip orientation to steer the endoscope through the GI
tract would require an accurate model of the endoscope as it
interacts with the soft tissue. This is realistically not possible
since the in vivo patient-specific elastic properties of the soft
tissue are not known a priori. An alternative approach to
compute the required tip orientation is to use the endoscopic
images. An overview of vision algorithms that process en-
doscopic images is given by Liedlgruber [3]. Related work
in flexible endoscopy includes lumen detection [4], [5] and
polyp detection [6], [7]. However, these algorithms were not
designed for use in the feedback of a control loop. As such,
their performance in terms of robustness and latency may not
be sufficient under all conditions. Another approach based on
the image gradient is proposed by Gomez et al. [8]. Although
they claim this approach is suitable for real-time processing,
they do not show experiments where the algorithm is actually
used in a feedback control loop.

This research presents a method to robotically steer the
endoscope using the endoscopic images i.e., a visual servoing
approach [9]. In order to provide the physician with a
clear image, our goal is to keep the furthest part of the
lumen centered in the endoscopic image. We investigate two
vision algorithms to find the preferred endoscope direction:
(i) An optical flow-based and (ii) an image intensity-based
method. Both algorithms were first implemented and tested
in simulation. Subsequently, an experimental setup was con-
structed that allowed a commercially available endoscope to
be controlled by the vision algorithm. This setup was used
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to steer the endoscope through the GI tract of an anatomical
model up to the duodenum (Fig. 1).

This paper is structured as follows: In Section II, the use of
optical flow to infer depth information from the images will
be discussed, while in Section III, the use of the intensity
distribution of the images to acquire this information will
be described. Section IV will provide simulation results that
indicate that both approaches can be used to control an
endoscope through the lumen in a rendered environment.
Section V will describe the experimental setup that was
developed to test these approaches on an anatomical model.
Section VI will discuss the experiments that were done with
this setup and the results. Finally, Section VII concludes and
provides possible directions for future work.

II. OPTICAL FLOW-BASED IMAGE PROCESSING

The first approach to finding the direction of the lumen
that we have investigated is based on optical flow, which
is the perceived motion of the environment as observed by
a camera [10]. By comparing two subsequent images taken
from a camera, it is possible to estimate the optical flow.
The resulting optical flow field has been used to steer mobile
robots away from obstacles and through corridors [11],[12],
and for the control of aerial robots [13]. We have investigated
this approach since the task of steering the endoscope
through the lumen is similar to steering a mobile robot
through a corridor. In the following two subsections we will
discuss the theory of depth estimation from optical flow and
an implementation that we have used to process endoluminal
image sequences.

A. Depth estimation from optical flow

The key feature in the optical flow-based approach is
dependency of the optical flow on the distance of the
perceived features. If the depth of the scene can be estimated,
we can steer away from nearby objects. The dependency of
the optical flow on the distance of the environment is most
easily described using a spherical camera model, M , that
projects points, p ∈ R3, onto a sphere, S2 (Fig. 2(a)), [13]:

M : R3 → S2; p 7→ p
|p|

. (1)

Note that the actual camera can have a ‘usual’ flat image
plane though, its perceived image may be mapped onto a
sphere. For each point, q := M(p), we define

λ(q) : S2 → R , (2)

as the distance from p to the camera optical center. If
we have a camera moving within a static environment, the
optical flow, θ(q), is the sum of a rotational part, θR(q), and
a translational part, θT(q):

θ(q) := −Ω× q︸ ︷︷ ︸
θR(q)

+
−1
λ(q)

(
I− qqT

)
V

︸ ︷︷ ︸
θT(q)

, (3)

where V denotes the translational velocity of the optical
center and Ω the rotational velocity around the optical center.
The depth information is contained in θT(q). A common
approach to obtain θT(q) is to cancel the rotational optical
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(a) Point q ∈ S2 is obtained by
projecting point p ∈ R3 onto a
unit sphere. The optical flow θ(q)
is defined in the tangent space of
S2. The central part C is used to
estimate camera rotation.
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(b) Optical flow balancing uses the
difference between mean optical
flow in the left (L) and right (R)
sections to control rotation around
the x axis. I shows the part of S2

covered by the camera image.

Fig. 2. Schematic representation of the spherical camera model used for
optical flow processing.

flow, θR(q), by estimating Ω using odometry (e.g., [11],[12])
or inertial motion sensor data (e.g., [13]). However, there
does not exist a sensor to obtain this data in an endoscope.
Estimating Ω from the control inputs using a kinematics
model is not considered feasible, since the kinematics of
the tip are highly dependent of the overall shape of the
endoscope. Therefore, a method was chosen that solely uses
the optical flow as its input.

In order to estimate the camera motion we use the central
region of the image as a reference (C in Fig. 2(a)). In this
region, the translational velocity, V, is approximately in the
direction of the camera optical axis. Therefore, in C, q will
be approximately in the same direction as V. This makes
(I − qqT)V small since it is the projection of V on the
plane orthogonal to q. Aditionally, since the environment
in the center of the image will be the far away from the
camera, 1/λ(q) will be small. Therefore, in C, θT(q) ≈ 0
hence θ(q) ≈ θR(q) = −Ω × q. So, θ(q) can be used to
estimate Ω.

The Ω that is obtained can be used to calculate only the
translational part, θT(q), from the optical flow in the entire
camera image. This can then be used to steer the camera
away from points that are near i.e., whose observed θT(q)
is large. We will now describe the implementation of this
method for the processing of a sparse optical flow field
acquired from an endoscopic image sequence.

B. Implementation

A Lucas-Kanade optical flow algorithm [14] was used to
obtain the sparse optical flow field from two subsequent
camera images. Each of the n flow vectors that are found
is represented as a vector pair (ui,vi) ∈ S2 × S2, where
subscript i denotes the i-th vector pair (i = 1 . . . n). ui and
vi represent approximately the same physical point in the
previous and the current frame, respectively. For the pairs
where vi falls within central region C, the rotation from
ui to vi is computed. These rotations are represented as
quaternions and averaged, resulting in an estimation of the
camera rotation between the frames [15]. This rotation is
expressed as rotation matrix R. Using R, the translational
flow vector belonging to each vector pair (ui, vi) can be
computed, which we define as

θTi :=
1

∆t
(R−1vi − ui) , (4)
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(a) Image from the stomach showing
the target as a dark area and the dark
corners (indicated by ×) caused by
the inhomogeneous lighting.

A
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(b) Image (a) equalized and in-
verted showing the circular ROI A
and the corresponding centeroid c.

Fig. 3. The intensity-based algorithm finds the dark target in the image
by computing the centroid of the equalized and inverted image over the
circular region of interest (ROI).

where ∆t is the frame time. In (4), R−1vi is vi compensated
for the camera rotation.

An optical flow balancing controller [16] is used to control
the camera orientation. This controller uses the computed
optical flow vectors, θTi, to compute the desired camera
rotational velocity, ω. Separate controllers are implemented
for the left/right (pan) and the up/down (tilt) motion. For the
pan control, the image is separated in a left (L) and a right
(R) region (Fig. 2(b)). The mean left flow, φL, and the mean
right flow, φR, are defined as

φL := mean({||θTi||2 | vi ∈ L}) , (5)
φR := mean({||θTi||2 | vi ∈ R}) . (6)

The desired rotational velocity of the camera around the x-
(pan) axis is ωx and is computed from (5) and (6) as

ωx = K(φR − φL) , (7)

where K is a constant gain. Rotational velocity around the
y-(tilt) axis is ωy and is computed similar to (7) using the
image separated in top and bottom regions.

III. INTENSITY-BASED IMAGE PROCESSING

Endoscopic images from the GI tract might have insuf-
ficient texture in some regions. Texture is required for the
optical flow-based endoscope steering algorithm to work
appropriately [10]. In order to provide reliable steering in
the presence of limited image texture, we also considered an
intensity-based approach, which is described in this section.

The arrangement of the light source and the camera in
the tip of the endoscope cause the part of the lumen that
is furthest away to appear as a dark area in the image
(Fig. 3(a)). This has been exploited to extract an accurate
description of the lumen wall contour, which may be used
to find polyps e.g., [6], [7], [17]. In this body of research,
adaptive thresholding was used to obtain a binary image
which was then processed to obtain the lumen wall shape.
In [4] and [5] the dark area in the image is used to find
the lumen position. This is also done by processing a binary
image that is obtained by thresholding.

For our purpose of finding the direction of the lumen,
we are not so much interested in the actual shape of the
wall, but more in a robust estimation of the center of the
lumen. This robustness is required since the results will
be used as feedback in the control loop. Therefore, we

propose to use a method based on the intensity centroid.
This algorithm will be described in the remainder of this
section. Its implementation in simulation and experiments
are described in Section IV and V.

The input to our system is the grey-scale image, I(x, y),
that is captured from the endoscope video system, where
x and y are the horizontal and vertical pixel positions,
respectively. x=0, y=0 is the center of the image. I(x, y)
is an 8-bit image with 0 representing black and 255 repre-
senting white. In order to obtain robustness against contrast
and intensity variations, histogram equalization is applied
which normalizes the brightness and increases the contrast
of the image. This is done using the OpenCV function
cvEqualizeHist [18].

In order to find the direction of the lumen we will calculate
center of the dark region in the image, which we define as
the centeroid c of the inverted image. This inverted image,
I ′′(x, y), is defined as

I ′′(x, y) := 255− I ′(x, y) , (8)

where I ′(x, y) is I(x, y) with histogram equalization applied.
The centroid is computed over a circular region of interest
(ROI) A. This ROI is centered in the image and has a
diameter equal to the image height (Fig. 3(b)). Using a cir-
cular ROI makes the algorithm invariant to camera rotations
around the optical axis. It also prevents undesired influence
from the dark corners that may appear in the image due
to inhomogeneous lighting (Fig. 3(a)). The centroid c, is
computed as

c =
[
cx
cy

]
=

∑
A

[
x
y

]
· I ′′(x, y)

∑
A I
′′(x, y)

, (9)

where
∑
A denotes summation over the area A.

The desired rotational velocity of the camera, ωx around
the x-axis and ωy around the y-axis, are computed as[

ωx
ωy

]
= −K

[
cx
cy

]
, (10)

where K is a constant gain. This rotates the camera such
that the center of the dark region will be in the center of the
image. Thus, the camera is rotated to look in the direction
of the lumen.

IV. SIMULATION OF FLEXIBLE ENDOSCOPIC PROCEDURE

The optical flow-based and the intensity-based vision
algorithms were tested in simulation before applying them in
an experimental setup. For both vision algorithms, the closed
loop behavior of the system was verified in a simulation
of a flexible endoscopic procedure. This was done using
a custom-built simulation environment using Blender [19].
Blender is used to render an image of the virtual environ-
ment. This image is processed using the vision processing
algorithm under consideration. The results are used to update
the virtual camera position. The interaction between the lu-
men and the endoscope was not considered in this simulation.
The lumen was modeled as a rigid body.

Fig. 4 depicts the virtual environment and the path that
the virtual camera followed in the simulation. In order to
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Fig. 4. Simulated robotically steered flexible endoscopy: The camera
follows the path through the lumen using two different vision algorithms:
the intensity- and the optical flow-based methods. Right: View from the
camera inside the lumen.
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Fig. 5. Experimental setup used for steering the endoscope: The steering
is based on images which are captured through the endoscope camera.

assess the performance of the two algorithms, we consider
the root mean square (RMS) distance between the camera
position and the center line of the lumen. This is 21% of
the lumen width for the optical flow-based algorithm, and
24% of the lumen width for the intensity-based algorithm.
Fig. 4 also shows that the deviations from the lumen center
were largest in the bends, where the camera trajectory ‘cuts
the corner’. This is due to the fact that the camera has a
limited field of view i.e., the algorithm only perceives the
environment in front of the camera and will therefore keep
the lumen ahead of the camera centered.

Using this simulation setup, the vision algorithms were
tested with varying light conditions. The light intensity was
increased to up to 400% of the intensity as used for the
simulations shown in Fig. 4. The RMS difference between
these trajectories was less than 5% of the lumen width. This
indicates that for the simulated conditions, both algorithms
are capable of steering the camera through the lumen.

V. EXPERIMENTAL SETUP

A motorized endoscope setup was developed to test the
endoscope steering algorithms. Fig. 5 shows an overview of
this setup. Except for the mechanical connection to the en-
doscope, all components are common of-the-shelf products.
The endoscope that is used is a EG-2930K gastroscope (Pen-
tax, Tokyo, Japan). Images from the endoscope are captured
by an ADVC55 video capture device (GrassValley, Conflans
St. Honorine, France) and transferred via FireWireTM into
the computer (MacBook Pro, Apple, Cupertino, CA, USA)
that does the image processing. The control algorithm uses

Motors

Toothed belts
Driven pulleys

Driving
pulleys

(a)

Monitor

Setup
Model

(b)

Fig. 6. Realization of the setup:(a) Various mechanical parts are attached
to the endoscope, including motors, pulleys, and a toothed belt drive. (b) A
robotically steered gastroscopy was performed on an anatomical model to
evaluate the setup.
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Fig. 7. The image-based look-and-move structure is used to control the
center of the lumen to be in the center of the image.

the data obtained from the images to compute setpoints
for the motor positions. These setpoints are sent to the
servo amplifiers via a CANUSB interface (Lawicel, Tyringe,
Sweden). The Elmo Whistle servo amplifiers (Elmo Motion
Control, Petach-Tikva, Israel) control the motors, which are
fitted with encoders for position feedback. The S2326 motors
(Maxon, Sachseln, Switzerland) are coupled to the controls
of the endoscope, allowing control of the orientation of the
tip in two dimensions. The following subsections will discuss
the mechanical interface that connects to the endoscope and
the control architecture that is used to control the system.

A. Design

A mechanical interface was constructed such that it can be
fitted to the proximal end of a commercially available flexible
endoscope (Fig. 6(a)). The base that supports the two motors
is mounted to the shaft of the endoscope. A toothed belt drive
couples the motors to the endoscope. The driven pulleys are
press-fitted over the control wheels of the endoscope.

B. Control architecture

The implemented control method is of a dynamic image-
based look-and-move structure [9], as shown in Fig. 7. This
structure has a joint space control loop inside an image-based
control loop. The feature to be controlled is the position
of the center of the lumen. Since the task of steering the
endoscope does not require a high bandwidth, a simple
integral controller Cf = K/s was implemented as feature
space control law, with K a constant gain. More sophisticated
controllers could be used as well (e.g., incorporating friction
and backlash compensation). The gain was tuned manually
on the actual setup.
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VI. EXPERIMENTS AND EVALUATION

In order to test the robotically steered endoscope, an
anatomical gastroscopy model (OGI Phantom CLA 4,
Coburger Lehrmittelanstalt, Coburg, Germany) was used.
Fig. 6(b) shows the experimental setup in use. During initial
experiments, it appeared that the endoscopic images from
some regions of the GI tract did not contain enough texture
for the optical flow algorithm to work reliably. Therefore,
only the intensity-based algorithm was evaluated on the
anatomical model.

During the experiment, the endoscope was manually fed
into the model. When the end of the duodenum was reached,
the endoscope was retracted while the image-based steering
system ensured that the lumen was kept centered.

In order to evaluate the performance of the system, we
have compared the output of the vision algorithm, denoted
ca, with a reference, denoted cr. cr was obtained by man-
ually analyzing the images that were recorded. For each
image, the center of the lumen was marked.

The performance of the robotically steered endoscope
was compared against ten manual gastroscopies. These were
performed on the same anatomical model by five Technical
Medicine1 students (1 male, age 22 years and 4 female, aver-
age age 22 years). All subjects had done flexible endoscopy
training and had previous experience on the anatomical
model that was used. The subjects were asked to try to keep
the lumen well centered and to focus on accuracy rather than
speed. They manipulated the endoscope control wheels while
an assistant fed the endoscope into the anatomical model.
The following subsections will discuss the performance of
the lumen detection, the overall system performance, and
the comparison of the overall system performance against
the manually performed gastroscopies.

A. Intensity-based vision algorithm performance
In fig. 8(a) and (b) we compare the position of the center

of the lumen as determined by the algorithm, ca, and the
reference, cr. ca and cr are expressed in mm, and computed
as

pmm = ppix ·
wmm

wpix
, (11)

where wmm and wpix are the width of the monitor in mm
and in pixels, respectively, and pmm and ppix denote a point
expressed in mm and in pixels, respectively. Fig. 8 shows
that in the mouth and the throat, the deviations between ca

and cr are larger than in the other sections. These deviations
are caused by the fact that there are more irregularities like
the palate and the tongue (Fig. 9(a)).

As a performance measure for the vision algorithm, we
define for every frame

ev := ||cr − ca||2 , (12)

as the error of the vision algorithm. This measure is shown in
Fig. 8(c). This graph also shows clearly that the performance
of the algorithm is better in the esophagus, stomach, and

1Technical Medicine is a Master’s level program at the University of
Twente where students study to integrate advanced technologies within the
medical sciences to improve patient care.
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Fig. 8. Evaluation of the intensity-based vision algorithm and the
overall performance: The algorithm is well capable of tracking the lumen
center in the esophagus, the stomach, and the duodenum. In the mouth and
throat the deviations are larger.
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Fig. 9. Endoscopic images during gastroscopy: (a) In the mouth, the
target is less clear which decreases the performance of the vision algorithm.
(b) In the stomach, the target is not always completely in view, but the
intensity-based algorithm finds the correct direction.

duodenum than in the mouth and the throat. In the stomach,
the intensity-based vision algorithm is able to find the correct
direction, even when the exit point is not visible (Fig. 9b).
Over the entire experiment, the RMS of the error, ev , was
42 mm, which equates to 10% of the width of the image.

B. Overall system performance
In order to assess the overall system performance, we

define for every frame the position error

ep := ||cr||2 , (13)

as the overall system performance measure. This is the
Euclidian distance between the center of the lumen, cr, and
the center of the image. This measure is shown in Fig. 8(d).
The system preforms best in the esophagus and during the
retraction in the stomach. In the other sections of the GI
tract, the system performance reduces due to the following:
• In the stomach during insertion, the endoscope is in a

large open space. Therefore, the endoscope position is
not well constrained and the endoscope may curl inside
the stomach. This makes the control more challenging.
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This is an inherent difficulty in gastroscopy, which is
also observed in manually conducted gastroscopies.

• In the mouth and the throat, the reduced performance
of the vision algorithm degrades the overall system
performance. The system performance may be improved
by adapting the vision algorithm to cope with the
structures found in the mouth and the throat.

• In the duodenum, the endoscope needs to make a
sharp turn. Since there is no feed-forward path in the
controller, an error in the feature space is required to
get the required motion output. Adding a feed-forward
path in the feature space controller may improve this.

Over the entire experiment, the RMS of the position error,
ep, was 66 mm, which is 16% of the width of the image.

C. Comparison of robotic steering with manual steering

Like in the robotic steering experiment, for each manually
conducted gastroscopy the recorded endoscopic images were
analyzed manually. Again, for every image the position of
the center of the lumen was marked as a reference, cr.
The same performance measure (13) was used. For each
experiment, the RMS of the position error was computed.
The average RMS position error over all ten experiments
was 110 mm (standard deviation 10 mm). This equates to
27% of the monitor width. This error is 68% higher than in
the robotically steered experiment.

VII. CONCLUSIONS AND FUTURE WORK

This study presented a system that is capable of controlling
a flexible endoscope through an endoluminal path from the
mouth to the duodenum. Two approaches for detecting the
lumen position from endoscopic images were investigated,
one was based on optical flow, the other on image intensity.
Using both approaches, an endoluminal path was followed
during a simulated endoscopy. The RMS distance to the lu-
men center was 21% of the lumen width for the optical flow-
based algorithm and 24% for the intensity-based algorithm.

The intensity-based algorithm was used to steer
a conventional flexible endoscope robotically in an
experimental setup. This setup was evaluated using an
anatomical model. In this experiment, gastroscopy was
performed where the GI tract was followed with an RMS
error of 16% of the screen width. As a comparison, the same
experiment was done using a manually steered endoscope
by five Technical Medicine students. The robotically steered
endoscope performed 68% better than the manually steered
endoscope in terms of keeping the lumen centered in the
image. The results indicate that the intensity-based vision
algorithm has the potential to improve flexible endoscopy
over conventional manual control.

Future directions within this research project will focus on
improving system performance. This could be accomplished
by using the intensity-based vision algorithm in a shared
control system that uses virtual fixtures [20]. A physician
and the vision algorithm would share the control of the
endoscope. The physician would use a haptic device to steer
the endoscope, while being guided by a force that directs

the endoscope towards the virtual fixture (i.e., center of the
lumen). This way, the physician stays in full control, while
his/her performance is improved by the haptic guidance.

Overall system performance could be also improved by
incorporating a more sophisticated feature space controller.
This controller, that uses the output of the vision algorithm
to steer the endoscope, should account for the endoscope’s
inherent properties (e.g., friction, backlash, and joint compli-
ance). Simulation studies have shown that the optical flow-
based algorithm can be used to estimate depth in endoluminal
images, and to steer an endoscope. As part of our future
work, we will investigate using an optical-flow algorithm
that is adapted to work under insufficient texture conditions.
Future studies will also include evaluating the performance
of the system under more realistic operating conditions.
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