The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

Stereo Vision Based Swing Angle Sensor for Mining Rope Shovel

Li-Heng Lin, Peter D. Lawrencédylember IEEE Robert Hall

Abstract— An easily retrofittable stereo vision based system the upper revolvable shovel house and lower carbody about
for quick and temporary measurement of a mining shovel's the shovel's vertical rotation axis. This work focuses on a

swing angle is presented. The stereo camera is mounted aa5rement subsystem for the shovel swing angle.
externally to the upper swingable shovel house, with a clear

view of the shovel’s lower carbody. As the shovel swings from Ap |mp0rtar_1t design 903' of the sensors is the.‘t they _are
its 0° swing angle position, the camera revolves with the shovel €asily and quickly retrofittable and removable, without- sig
house, seeing differing views of the carbody. In real-time, the nificant modification to the shovel and without interference
camera position is tracked, which in turn is used to calculate the to existing shovel systems. The reason is that there is no
swing angle. The problem was solved using the Simultaneous yegicated research shovel. A shovel is only available for
Localization and Mapping (SLAM) approach in which the . . .

system learns a map of 3D features on the carbody while several_hours each time it is down for scheduled mam_tenance
using the map to determine the camera pose. The contribution at @ mine. Sensors are removed after each experiment. A
includes a locally maximal Harris corner selection technique set of easily retrofittable and removable sensors proviges t
and a novel use of 3D feature clusters as landmarks, for flexibility of quickly working with any available shovel at

improving the robustness of visual landmark matching in an oy mine Several options have been explored for obtaining
outdoor environment. Results show that the vision-based sensor .
the swing angle:

has a maximum error of +/- 1° upon map convergence.
|. INTRODUCTION A. Tracking Swing Motor Shaft Rotations with an Encoder

A key process at open-pit mines is the digging of mineral With this method, a custom-made stub shaft with a smaller
rich earth and the loading of the earth into haul trucks bghaft diameter must be first connected to the motor shaft,
large electric rope shovels (Figure 1). Two types of callisi then the encoder can be attached to the stub shaft. The
can occur during this process: 1) the shovel bucket hittingstallation is highly time-consuming. The shovel swing
the haul truck and, 2) the bucket hitting the shovel’s owrnotor must be taken apart and the stub shaft must be trued
protruding tracks. to minimize wobble when the motor spins. A re-design may

also be needed for each shovel model due to the mechanical
R R 10 XY A SO e A differences between models. Nevertheless, an encoder was
e : ; installed on one shovel to use as a reference in measuring
the accuracy of the swing angle sensing system reported here

B. Counting Swing Gear Teeth with Inductive Sensors

There is a large swing gear sandwiched between the house
and the carbody, that is fixed to the carbody. A less intrusive
way of measuring swing angle is to count the number of
swing gear teeth that have passed by as the shovel house
revolves. This can be done using a pair of inductive sensors
mounted underneath the house, separat&dphase apart in
terms of a tooth cycle. However, the immediate area near the
swing gear is difficult to work in. Also, the inductive sensor
must be adjusted as closely to the gear teeth as possible,

Fig. 1. Haul truck loading by a shovel. and be placed preciseB0° degrees phase apart for proper
measurement. Thus, installation time can be significant on

A proof-of-concept collision avoidance system is bein§aCh machine and it is not the ideal solution for our goal.
developed to provide advance warning of these collisions
the shovel operator [1]. The first objective is to design a se
of shovel sensors that can obtain the necessary informationThis paper presents a vision-based swing angle sensor
for such a collision avoidance system. One necessary infdhat is non-invasive, has little installation requiremesd

mation is the shovel swing angle, which is the angle betweéi®n work on a wide variety of mining shovels. A Point
Grey Bumblebee 2 stereo camera for 3D measurements is
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SLAM algorithm. Thus, the computational cost of the SLAM
filter can be lowered significantly.

The work also demonstrates that an easily retrofittable
swing angle sensor can quickly and flexibly be used for field
measurements on large mining shovels and on other rotating
heavy machines.

Il. RELATED WORK

The general Simultaneous Localization And Mapping
(SLAM) problem aims to localize a mobile robot in a global
coordinate system. In this work, the robot is simply ourester
camera. The SLAM problem assumes that the environment is
unknown and that the robot starts in a pre-defined pose in the
\ global coordinate system. The robot is only equipped with
sensors that take relative measurements of the environment
Examples include a laser scanner or a camera mounted to a

Fig. 2. White box indicates the stereo camera location. robot which measures feature positions relative to the trobo
coordinate system. As the robot explores, it records oleserv
. ) features as landmarks and estimates landmark global po-
angle position, the camera revolves with the shovel house Sions, building a map of the environment. At the same

a circular orbit about the shovel's vertical swing axis,is8€ (ime these landmarks are re-referenced by the robot to help
differing views of the carbody. The camera position regtiv |, jize itself.

to the start is tracked, which in turn is used to calculate the A key problem to solve in SLAM is drift error correction

swing angle. ) . ) at loop closure. As the robot traverses a large loop from a

This system can be easily and quickly retrofitted. Th@arting position, the estimated robot pose accumulates mo
camera mounting location is easily accessible from thgt error and is more uncertain, as are the estimated globa
shovel tracks (Figure 2). Furthermore, the vision alganith ,qsitions of new landmarks initialized by the robot. Howeve
does npt require _the camera b_e m_ounted precisely at @ P{gren the robot returns to its starting area and re-deteets th
determined position or view direction. The camera can biiial landmarks, it should be able to correct the driftaerr
mounted freely, as long as the carbody fills the majority, jts pose estimate. This drift error correction shouldbals
of the camera view. After mounting, it is not needed tq,opagate back to all previously observed landmarks for a
physically measure the camera position and view directior,qncistent map.

The Simultaneous Localization and Mapping (SLAM) ap- ap approach that allows this drift error correction was
prqach is used to estimate the camera pose. While the Shoﬁ%posed by Smittet al. [2]. The solution is to estimate
swings, the stereo camera records observed 3D featuresifR ropot pose and landmark global positions in a single
the carbody as landmarks, and incrementally builds a globg{ate vector with a single covariance matrix, updated by an
3D map of these features as it revolves around the carbog¥ended Kalman Filter (EKF). This method has been shown
At the same time, _the camera _Iocalizes itself by mat_ching) allow the map to converge monotonically to a perfect
observed features in camera view to the landmarks in thgjative map with zero uncertainty in the limit as the number
map. This method has the advantage thaagmiori model  of |andmark observations increases [3]. It is the method use
for each shovel type is not required. Also, unlike motion, this work. However, a drawback of this method is its

tracking methods, drift error is limited and can be reducedO(Nz) computational complexity wherd/ is the number

of landmarks estimated in the EKF.

Solving the SLAM problem using the EKF and vision

This paper presents a visual SLAM algorithm that isas the sensor has been demonstrated in works such as [4],
robust under the presence of directional sunlight illuiora  [5]. In these works, each landmark is a single visual feature
causing shadows and non-uniform scene lighting. To achie®ue to the EKF'sO(N?) computational complexity, they
this, a “Locally Maximal” Harris corner selection method isare limited to estimating a maximum of 100 features in
used to select features evenly across the image and to selbetir map for real-time processing. For example, Davison
features more consistently in an outdoor scene. Secondét, al. [5] constrain their algorithm to track at most 12 single
“3D Feature Cluster” landmarks are used, contrasting witfeature landmarks at any one time to keep the total number
the standard practice of using a single feature as a singd landmarks under 100. However, a problem is that vision
landmark. The 3D Feature Cluster landmark allows highlglgorithm robustness can degrade with a reduced number
consistent and robust landmark measurements due to thietracked features. Furthermore, these vision algorithms
large number of features per cluster. The ability to makbave not been tested in outdoor environments with extreme
reliable and consistent measurements for each landmarkdirectional sunlight causing shadows and highly non-unifo
turn reduces the number of landmarks needed for a robustene illumination.

D. Contributions
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[1l. METHOD For EKF prediction update, the landmarks are assumed
to be stationary in the global coordinate system so their
. . . redicted positions remain unchanged from their previous
Fo-:lzg*gggmer:;l?rgrﬁeb?;:?oﬁgvc?negogzrzz?% ronzgé? EKngtinjaFes. To predict the camera pose, a non—llandmarls state
o ' ) prediction functionz,,,, _, = Sfo(&w,_,,wn,_,) is defined,
1) EKF Prediction Update: The current camera pose Ijherew,, is a zero-mean white gaussian process noise mod-
predicted from its previous estimate. _ elling the prediction uncertainty. A constant swing angula
2) 3D Feature Detection: Using current stereo images, 35beed model is used in the prediction function:
features are detected.
3) Landmark Measurement: Feature Cluster landmarks Welt—1 = Wt—1 + Wn,_, (3

are matched to observed 3D features. Landmark POSeS- | EKE measurement update, a landmark measurement

relative to the camera are found. z; is defined as the measured position of a landmark relative

4) EKF Measurement Update: The measured Featu :
o . h . Th h
Cluster landmark positions are fed into the EKF. Camfg the camera coordinate system us, the measurement

era pose and landmark position estimates are updatgé;).servatlon functiors; = h(x., o, v) is:

5) Swing Angle Computation: From the updated camera z; C. o T o v
position estimate, swing angle is found. { 1 } - { 000 1 ] { 11 } + { 1 } “)

6) New Landmark Initialization: If no Feature Cluster . . . .
landmarks are well-tracked, a new Feature Cluste herev 'S. a zero-mean white gaussian process modelling
landmark extracted from the current frame is added® ~°' NOIS€:
to the system. C. Initialization and Calibration

7) Landmark Feature Management: Landmark features .. mounting the camerai — #, needs to be ini-

that have often failed to be matched are removed froq?alized In this work, the initial camera pos@e, 7.} is

the landmark database. used to define the global coordinate system so its values are
B. EKF Overview initialized to zeros. The rotation centfi. and the rotation
xis {¢,,0,} are estimated by a vision-based calibration
cedure, requiring no physical measurement. The shovel
kes a small calibration swing of approximately 25°
during which the camera pose is tracked. The tracked trajec-
tory arc of the camera is then used to estimate the rotation

A. Algorithm Design and Overview

Within the EKF SLAM framework, all states such as the®
camera pose and the landmark positions are estimated usmg
a single EKF. That is, the EKF state vectdris a large m
column vector in which the states are stacked:

Lo centre and axis.
on EKF SLAM guarantees map convergence to a perfect rel-
&= Ob (1) ative map only [3]. Thus, a swing angle reference landmark

: located at)° is also needed for computing the swing angle.

5 For obtaining the reference landmark, the shovel operator i

] ) ) expected to swing the shovel to rest(&t before starting
where &, is a non-landmark state vector which will beéthe system. When the system starts, the first camera frame
described in detail, and, , o1, . . ., &1, are landmark states. js captured; the system initializes the first landmark, Wvhic

A landmark stateo;, (3 x 1) represents the global 3D 5150 pecomes the reference landmark.

position of thei'th Feature Cluster landmark. Whenever a

new landmark is added to the systetin,is enlarged by a D. 3D Feature Detection

landmark state. Input images come from a pre-calibrated Point Grey
The non-landmark state vecta, (12 x 1) is: Bumblebee 2 stereo camera consisting of a left and a right
be camera with 12 cm baseline. Stereo images are rectified using
o manufacturer-provided code before any processing by our
b, algorithm, and are of siz&12 x 384 pixels.
Ty = by (2 The right camera is the reference camera. Features and

their descriptors are found using the right image. The left
image is used during stereo matching only, to obtain the 3D
positions of features detected in the right image.

Here,6. (3x 1) is the camera origin, and the camera rotation 1) Locally Maximal Harris Corners:The Harris corner
vector?, (3x1) represents the camera frai@g (3x3). The detector has been chosen for this work as feature scale
vector,. can be transformed int€’, by matrix exponential: invariance is not needed. Also, it has been shown to have
Qc = ef<X. Next, 6, (3 x 1) is the rotation centre of the high repeatability over a range of conditions such as view-
shovel house. The direction of the rotation axis is represen point change and rotation, compared to other interest point
with its inclination anglep,. and azimuth anglé,.. Lastly,&  detectors [6], [7]. However, these findings were conducted
is swing angular speed in radians per frame interval. indoors and it has been found that in our outdoor setting,

Or

w
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Fig. 3. Comparison of the two corner selection methods. Blug iidicate  Fig. 4. Corner selection using the Percent Threshold metBoodwn are 2
corners. Left: Percent Threshold corner selection. Thulestet as 0.01 of sequential snapshots, where left image is the earlier snapsid the right
highest corner measure in image. Right: Locally Maximal cossection.  image is latter. Snapshots were taken by the camera as it sleiitgeward
the directly-lit scene region from the shadow scene regidme directly-lit
scene region is located on left sides of the images and theoshacene
region is located on right sides of the images. Corner measiirfesmatures
the traditional Harris corner selection method does nokworin the shadow scene region fall dramatically as camera swingart the

wel. The problem and solution are explained below. rectyltscene rgion. Uary features i the shadow somgin detected
To select corner locations, the Harris corner measure is
first evaluated for each pixel location. Then, corners ar;
selected based on a corner threshold. However, the Hari
corner measure is sensitive to image contrast. That isngive
two identical image structure but with one image structure
having a higher contrast, the higher contrast image strectu™ "
will have higher Harris corner measure. Thus, selecting
suitable corner threshold for all lighting conditions ca@ b
difficult. Traditionally, the corner threshold is simplytsas
a percentage (e.g. 1%) of the highest corner measure found _ _ o _
in the image [6], [8]. In this paper, this is referred to as th{é?écstéd g\fg:gcagené?ﬁgl!i’ng‘gaexg‘glogﬂtr‘;r_'a’ corners are moresistantly
“Percent Threshold” corner selection method.
The Percent Threshold corner selection method has been

found to be unsuitable for our outdoor scene where thergjuare blocks and selects the strongest feature in eadk bloc
are shadow patterns created from sunlight casting throughis method is more flexible and does not force the selection
handrails and metal mesh walkways behind the camergt a single feature when neighboring features from differen
“Corners” formed by these shadow patterns have the highggiage blocks become in the same block.

corner measures due to their high local contrast. Using the The parametefl’ of the Locally Maximal corner selection
Percent Threshold corner selection method, most corners @fiethod controls the neighborhood size and can be used to
selected on the shadow patterns. This is shown in the l&fine the desired number of features per camera frame. The
image of Figure 3. The selection of most features on thgalue of W has been set to 4, which results in the detection
shadow patterns is highly problematic because the shad@#roughly 600 features per frame. Processing this number of
patterns move, so the selected shadow features cannotfbgtures has been found to provide a good balance between
reliably used to reference the camera pose. algorithm accuracy and speed.

A problem also occurs when the camera swings from the Figures 3 and 5 show corner detection results using the
scene region under shadow to the scene region directly-iew method. Although some corners are still selected on
by sunlight. The shadow boundaries between the two regioshadow patterns, they can be eliminated in latter procgssin
create “corners” of high corner measures, boosting thestornMany of these non-physical corners are non-distinctive and
threshold. Yet, the camera shutter time shortens drantigticamost will not be matched during the feature matching pro-
as the camera swings toward the directly-lit scene regiosess. The few matched non-physical corners will not agree
causing features originally detected in the shadow scemdth the change in observed 3D positions of other physical
region to become less exposed and their local image contréséatures, and can be eliminated in a geometric verification
to fall. As a result, corner measures of these features tyickstep described in the landmark measurement section.
fall below the corner threshold and these features become2) Stereo Matching:Once features are detected in the
undetected (Figure 4). right image, they are stereo matched to the left image. For

A novel metric is used to select corners more consistentlyach feature in the rightimageba 5 image patch around the
and evenly without a corner threshold. Here, it is called th&eature is obtained and shifted along the corresponding-sca
“Locally Maximal” Harris corner selection. A pixel locatio line in the left image. Using normalized cross-correlatiie
is identified as a corner if and only if its corner measure ifeature’s best match in the left image is found. The match
locally maximal within a(2W +1 x 2WW +1) neighborhood is cross-validated [10]. Finally to obtain sub-pixel digpa
region centered about the pixel location. Compared to thee parabola is fitted to the similarity scores centered about
method used in [9] which divides the whole image intahe best match. The position of the parabola peak is used
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to determine the sub-pixel disparity. The 3D position of the
feature relative to the camera is then calculated as:

%= fB/d
@ =(u—uy) %/f (5)
Y= (v—wo) %/f

wheref is the camera focal lengtli is the camera baseline,
d is the disparity(uo, vo) is the pixel coordinate of the image
center, while(u, v) is the feature’s image location. LA NP D NS MO S SO
Most features on the carbody lie 2-3m from the camera. N e
Assuming the range of 3m and disparity accuracy of +/- 0.2
pixels, the sfereo camerals depth measurement accuracyi, . (o Deerel e s o o eviene, BOT00
expected to be +/- 4cm. system.
3) Descriptor: Once the detected Harris corners are suc-
cessfully stereo-matched, the image region centered about
each corner is transformed into the corner’s descriptoe Thsingle feature is highly reliable. Thus, this inspired thse u
SIFT descriptor [11] has been selected for use, based on thea “higher level” landmark which can be consistently and
finding that it has one of the best matching performancasbustly measured. Here, it is called the Feature Cluster
under changes in various imaging conditions such as vielindmark. The proposed landmark is a cluster of numerous
point [12]. 3D features detected in a single camera frame (keyframe).
The cluster of detected 3D features is treated as a single
rigid object. An object coordinate system is attached to the
For all vision-based EKF SLAM works the authors arecluster representing its pose, and individual clusterufeat
aware of, each landmark is a single visual feature. As featurpositions are represented in terms of the cluster coomlinat
are initialized and tracked as landmarks, the EKF statgystem (Figure 6). It is the cluster's relative pose to the
vector expands and the computational cost of the EKF groweamera that is measured and the cluster’s global positan th
quadratically. Thus, for real-time processing the numtfer ds filtered in the EKF, rather than the individual features.
features tracked as landmarks is highly constrained. F&uch a landmark’'s pose can be consistently and reliably
example, the number of tracked landmark features at amyeasured. Even if some cluster features are undetected
moment was limited to 12 in [5]. in subsequent frames, there are many others that can be
However, single features are unreliable landmarks. Fematched, still allowing the cluster pose with respect to the
features can be consistently re-detected in subsequemédra camera estimated. In addition, cluster feature matchebean
due to the feature detector’s limited repeatability. Also, geometrically verified during the cluster’s relative posé-e
feature can sometimes fail stereo match validation, beconneation. Erroneous feature matches would not agree with the
occluded, or become over- or underexposed. Another probluster pose estimated from the majority of matches. Figure
lem is erroneous feature measurements. A landmark featutdllustrates the Feature Cluster landmark pose estimation
may be matched to the wrong observed feature, or the 3D1) Feature Cluster Landmark InitializationThe system
position of the landmark feature’s match may be poorlynitializes a new Feature Cluster landmark when no existing
measured. Lastly, a landmark feature may not even be a réahdmark is well-tracked in the current frame. The first step
physical feature, such as a feature found on a moving shadd@svto select features observed in the current frame that will
pattern. Such a non-physical feature cannot be reliablg usenake up the feature cluster. Essentially, all detectedifeat
as a reference for finding the camera pose. in the current frame are selected as cluster features, with
Tracking many landmark features can improve the visiosome criteria. Firstly, features are selected using a tbligh
algorithm’s robustness. If some landmark features are nirger neighborhood blocki” = 5 rather than the normal
re-detected in subsequent frames, there are numerous otiér= 4 to allow for higher repeatability of their detection in
landmark features that can be matched, providing refeeenceubsequent frames. Lastly, only features in the top twatthi
for finding the current camera pose. In addition, a largportion of the camera image are selected as cluster features
number of landmark feature matches allows confident 3B avoid selecting too many features from the shovel tracks.
geometric verification which can eliminate erroneous femtu  Once cluster features are selected, a cluster coordinate
matches. Yet, increasing the number of landmark featuregstem{C;, o;} needs to be attached to the cluster and
will significantly slow down the vision algorithm due to the cluster feature positions need to be represented in terms
EKF’'s quadratic computational complexity. of this cluster coordinate system. The cluster coordinate
An ideal landmark is one that can be detected consistentbystem can be placed anywhere relative to the cluster fea-
across frames and measured reliably up to a large switgres. As long as it remains fixed relative to the cluster
angle away from the camera position at which it was initialfeatures, consistent landmark measurements can be made
ized. Given such ideal landmarks, the number of landmarkad the camera pose can be properly estimated by the
estimated in the EKF can be reduced. Unfortunately, nBEKF. The cluster coordinate system is simply placed at

E. Feature Cluster Landmarks
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Fig. 7. Once a minimum of 3 non-collinear landmark features artetmea g : F | gﬁmga "
to observed features, the landmark rotati®rand positionz relative to the g § S?sot:erlr?“ae
camera can be found. In actual, a landmark consists of over dffQres [ ; y ;
so there will be numerous feature matches. Iterative Gausgedeleast 0 : : ‘
squares procedure is used to solve for the landmark’s relatise{ R, z} i
such that cluster features’ landmark coordingteR; , 'P2,'Ps, . ..} trans- ;
form into their observed camera coordinaf{€# , P, “Ps, . ..}. Geomet- |
ric verification is performed simultaneously during this pestimation as 5| i i \ ‘ i -‘
erroneous feature matches will become outliers. 8 6 4 o 0 2 4 5

Global x-axis

the same location relative to the cluster features as tlé@. 8. Snapshot of the system map as camera swings clockwiseebe

current camera coordinate system. Then, cluster featurd&king loop closure. Map is plotted in the 3D global coordinaystem,
which is defined by the initial camera posetat= 0. Axis scales are in

landmark coordinateg'Py,'P,,'Ps,...} are simply their meters. Plot view is set looking down the shovel house ratadixis. Note

camera (;oordina_te‘PCP17 P,,Ps, .. } in the current frame. that the rotation axis is not aligned with any axes of the glamordinate

The cluster features’ landmark coordinates and descsiptoffame because the camera was not mounted in alignment to thel shove
. _"““rotation axis. Camera coordinate system at the time of theskoaps

are stored to the system database as the full description iﬁlf?cated by the thick RGB lines. Landmark positions aredatid by “+'.

the new Feature Cluster landmark. As discussed, landmarks sit on the circular trajectory ofcéera.
Next, the EKF state vector is expanded by ske 1
for filtering the new cluster’s global position (or origin).

Given the selection of the cluster coordinate system as tifaétal mesh walkway's shadow pattern are eliminated after

current camera coordinate system, a cluster’s globaliposit this step. . o

is equivalent to the camera’s global position at which the 2) Relative Landmark Pose Estimatioli:a Feature Clus-
cluster was initialized. Thus, the cluster's estimateditips 1€ landmark has at least 16 feature maiches, its pose is
in the EKF is initialized as the estimated current camer§Stimated, otherwise the landmark is discarded from the
position. Figure 8 shows a snapshot of landmark positiorR0Se estimation. For th&/ number of cluster features that
as the camera swings clockwise before making loop closurd@ve been matched, their positions in landmark coordinates

it can be seen that the landmarks are initialized along th 1,'Pe,'Ps,...,'Ppr}, and their corresponding positions
circular trajectory of the camera. as observed by the camefdPy,P;,Ps,...,Ppm} are
obtained. The goal is to find the feature cluster’s rotation
F. Landmark Measurement e™* and positionz with respect to the camera, so that:
1) Active Landmark Feature Matchingdsfter EKF predic- Pp=[e [P ]+2
tion update and 3D feature detection, the system proceeds Pr=[e [P ]+ 2
to match Feature Cluster landmarks to the observed 3D Pz=[e ][ Ps]+2 (6)

features. An active approach is taken where each landmark .

is predicted if it is visible to the camera in the current o T orx

frame. Once a landmark is predicted visible, its features’ Pr = [ [P ] +2

locations in the current image are predicted. Then eadtere an overdetermined non-linear system of equations is
cluster feature is matched against observed featuresnwitheéstablished. The relative landmark pdzer] is found as

a search window centered about its own predicted locatiothe least squares solution of the above equation using the
The similarity measure is the angle between the landmaiterative Gauss-Newton algorithm [13] [14].

feature descriptor vector and a candidate descriptor kecto Geometric verification of the feature matches is simultane-
The candidate that gives the smallest angle is the matabusly performed in each Gauss-Newton iteration. Erroneous
Then, a nearest neighbor ratio test [11] is applied to removeature matches will not agree with the parameter correstio
ambiguous matches. In particular, it has been observed ttatd will have large residuals compared to the average.
many non-distinctive features such as those formed from theeature match pairs with residuals twice the average are dis
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carded from the Gauss-Newton estimation. The elimination *
of bad matches enables robust and accurate landmark pose

v
measurement. The procedure is stopped once no match pair is y
discarded and that the change in average residual stabilize
Figure 9 shows match results after geometric verification. \95 .
e Oy,
6r,f'r w,

Fig. 10. View looking down?,., in direction of shovel rotation axis. Vectors
vy, w_ are respectively the projections [@c — 6] and[6;, — 6] On a
plane perpendicular té,.. Swing angle found as angle between , w .

Landmark
Keyframe &

stays in the map permanently. However, the features of
a landmark are managed. A landmark feature is removed
if more than 50% of the time its match fails geometric
verification. Such a landmark feature is either undistigcti
so is often erroneously matched; or that it is a non-physical
corner such as a shadow point whose world position is
unstable. A landmark feature having a poorly initialized 3D
position compared to others will be removed as well. Figure
11 shows features of a landmark at initialization and after.

Current
Frame

Fig. 9. Remaining feature matches after geometric verification

It was observed that generally, the further the camefigg 11. Left: Initial features of a landmark. Right: Afteryming of bad
swings away from a landmark, the larger the landmark’s poseatures over time. Note shadow features at the bottom hase jpeined.
estimation residual becomes. The average residual ranged
from approximately 0.3cm when the camera viewed the
landmark directly, up to 3.0cm when the camera revolved IV. RESULTS
25° away from the landmark. Past that, most landmarka  Swing Angle Results
cannot be measured due to an insufficient number of feature

matches. The growing residual can be attributed to the fac’[The vision algorlthm was  tested on 3 separate video
sequences taken on different days, with each sequence over

that detected feature positions tend to shift as the cameld oo r - mes (4min) long . Results for one sequence is
view angle increases. discussed. During this sequence, the shovel swung 2 counter
G. Swing Angle Computation clockwise revolutions, then 2 clockwise revolutions, ameit

After the visual landmark measurements are made and tf@ndomly. The stereo-vision based sensor output was \erifie

reference landmark positiody, , the rotation centeé,, and ~ [nitially, the vision system's error grew up t6.5° as
the rotation axis directiof ¢, , 0, }. drift accumulated. At around Frame 3000, the camera made

First, the two vectors = [6.—6,.] andw = [6;, —6,] are  its first full revolution; the first landmark was re-detected
computed. Next, the unit vectay, pointing in the direction and the loop was closed. As expected of the EKF SLAM
of the rotation axis, is found froni¢,., 6,}. Then,v, w are behavior, the drift error of the camera pose estimate was
projected onto a plane perpendicularg giving v, , w, immediately corrected so the error in the estimated swing
respectively. Finally, the swing angfe is found as the angle angle dropped td).5°. At the same time, this drift error

betweenv, andw, (Figure 10). correction propagated to the landmark position estimates.
Thus, subsequent swing angle estimates improved. Landmark
H. Landmark Feature Management position estimates continued to converge as more obser-

Each feature cluster landmark can be consistently antions were made and swing angle errors settled within
reliably measured once added to the map. Thus, there 4% 1°. Given that the camera was located 4.5m from the
minimal management of landmarks; a landmark generalltation center, the camera positional error was equivaten
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swing angle only. With the Locally Maximal method, cluster
features could be consistently tracke®€s for all 3 starting
keyframes.

V. CONCLUSIONS

This paper has presented a visual SLAM algorithm that
is robust in the presence of directional sunlight illumina-
tion causing shadows, and non-uniform scene lighting. The
Locally Maximal Harris corner selection allows features to
be selected evenly across the image and more consistently
compared to the traditional Percent Threshold method. The
use of Feature Cluster Landmarks allows the algorithm to
make robust and consistent landmark measurements due to
the large number of features per landmark. Moreover, the
total number of landmarks estimated in the EKF can be

reduced, lowering the EKF computational cost .

/
VT /
H \
AN \
/ \
- —
; / vl
A N W s Y

Fig. 12. Top: Vision and encoder outputs. Bottom: Differetegween

vision and encoder outputs.
(1]

+/- 0.08m over a 28m circular trajectory, or +/- 0.3%. This
swing angular error was also equivalent to +/- 17cm shove
bucket localization error, assuming a truck loading dis¢éan
of 10m. This was within the accuracy requirement of the
aforementioned collision avoidance system.

In total, only 19 Feature Cluster landmarks were initialize
along the entire circular path traversed by the camera. This
was owing to the fact that each Feature Cluster landmark?]
consisting over 100 features, could be tracked reliablyaup t
+/- 20° swing angle. Compared to previous works which fil- [5]
tered 100 single feature landmarks, the number of landmarks
estimated in our EKF was much lower but yet the numbetg
of tracked features was much higher.

The algorithm is still in a prototype stage and is imple-
mented in a mixture of C++ and Matlab. The algorithm ran
at 4Hz on a single core of a 1.8GHz Intel Core2 CPU with
3GB RAM.

2]

(3]

(7]

(8]

B. Comparison of Harris Corner Selection Methods [°]

The Locally Maximal Harris corner selection method was
compared to the traditional Percent Threshold corner sele[(io]
tion method. In one comparison, it was found that the number
of features detected in each frame fluctuated wildly between
200-2000 with the Percent Threshold method, versus tHE"
stable number of 450-700 with the Locally Maximal method.

In another comparison, the SLAM algorithm was run12]
using the Percent Threshold method instead of the Locally
Maximal method. A feature cluster was detected from @3
selected starting keyframe and then tracked as the camera
swung away. The fraction of the cluster features tracked ‘?154]
the camera swung from its initial position was recorded and
compared to the original results using the Locally Maximal
method. The test was performed for 3 different starting
keyframes representing different lighting conditions.ttwi
the Percent Threshold method, the tracking results varied
depending on the lighting condition of the starting keyfeam
In the worst case in which the starting keyframe contained
moving shadow patterns, cluster features were tracked to
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