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Abstract— An easily retrofittable stereo vision based system
for quick and temporary measurement of a mining shovel’s
swing angle is presented. The stereo camera is mounted
externally to the upper swingable shovel house, with a clear
view of the shovel’s lower carbody. As the shovel swings from
its 0

◦ swing angle position, the camera revolves with the shovel
house, seeing differing views of the carbody. In real-time, the
camera position is tracked, which in turn is used to calculate the
swing angle. The problem was solved using the Simultaneous
Localization and Mapping (SLAM) approach in which the
system learns a map of 3D features on the carbody while
using the map to determine the camera pose. The contribution
includes a locally maximal Harris corner selection technique
and a novel use of 3D feature clusters as landmarks, for
improving the robustness of visual landmark matching in an
outdoor environment. Results show that the vision-based sensor
has a maximum error of +/- 1◦ upon map convergence.

I. I NTRODUCTION

A key process at open-pit mines is the digging of mineral
rich earth and the loading of the earth into haul trucks by
large electric rope shovels (Figure 1). Two types of collisions
can occur during this process: 1) the shovel bucket hitting
the haul truck and, 2) the bucket hitting the shovel’s own
protruding tracks.
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Fig. 1. Haul truck loading by a shovel.

A proof-of-concept collision avoidance system is being
developed to provide advance warning of these collisions to
the shovel operator [1]. The first objective is to design a set
of shovel sensors that can obtain the necessary information
for such a collision avoidance system. One necessary infor-
mation is the shovel swing angle, which is the angle between
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the upper revolvable shovel house and lower carbody about
the shovel’s vertical rotation axis. This work focuses on a
measurement subsystem for the shovel swing angle.

An important design goal of the sensors is that they are
easily and quickly retrofittable and removable, without sig-
nificant modification to the shovel and without interference
to existing shovel systems. The reason is that there is no
dedicated research shovel. A shovel is only available for
several hours each time it is down for scheduled maintenance
at a mine. Sensors are removed after each experiment. A
set of easily retrofittable and removable sensors provides the
flexibility of quickly working with any available shovel at
any mine. Several options have been explored for obtaining
the swing angle:

A. Tracking Swing Motor Shaft Rotations with an Encoder

With this method, a custom-made stub shaft with a smaller
shaft diameter must be first connected to the motor shaft,
then the encoder can be attached to the stub shaft. The
installation is highly time-consuming. The shovel swing
motor must be taken apart and the stub shaft must be trued
to minimize wobble when the motor spins. A re-design may
also be needed for each shovel model due to the mechanical
differences between models. Nevertheless, an encoder was
installed on one shovel to use as a reference in measuring
the accuracy of the swing angle sensing system reported here.

B. Counting Swing Gear Teeth with Inductive Sensors

There is a large swing gear sandwiched between the house
and the carbody, that is fixed to the carbody. A less intrusive
way of measuring swing angle is to count the number of
swing gear teeth that have passed by as the shovel house
revolves. This can be done using a pair of inductive sensors
mounted underneath the house, separated90◦ phase apart in
terms of a tooth cycle. However, the immediate area near the
swing gear is difficult to work in. Also, the inductive sensors
must be adjusted as closely to the gear teeth as possible,
and be placed precisely90◦ degrees phase apart for proper
measurement. Thus, installation time can be significant on
each machine and it is not the ideal solution for our goal.

C. Measuring Swing Angle with Stereo Vision

This paper presents a vision-based swing angle sensor
that is non-invasive, has little installation requirement, and
can work on a wide variety of mining shovels. A Point
Grey Bumblebee 2 stereo camera for 3D measurements is
clamped externally to the bottom outer edge of the shovel
house, aimed toward the carbody, so that the carbody fills the
view of the camera. As the shovel swings from its0◦ swing
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Fig. 2. White box indicates the stereo camera location.

angle position, the camera revolves with the shovel house in
a circular orbit about the shovel’s vertical swing axis, seeing
differing views of the carbody. The camera position relative
to the start is tracked, which in turn is used to calculate the
swing angle.

This system can be easily and quickly retrofitted. The
camera mounting location is easily accessible from the
shovel tracks (Figure 2). Furthermore, the vision algorithm
does not require the camera be mounted precisely at a pre-
determined position or view direction. The camera can be
mounted freely, as long as the carbody fills the majority
of the camera view. After mounting, it is not needed to
physically measure the camera position and view direction.

The Simultaneous Localization and Mapping (SLAM) ap-
proach is used to estimate the camera pose. While the shovel
swings, the stereo camera records observed 3D features on
the carbody as landmarks, and incrementally builds a global
3D map of these features as it revolves around the carbody.
At the same time, the camera localizes itself by matching
observed features in camera view to the landmarks in the
map. This method has the advantage that ana priori model
for each shovel type is not required. Also, unlike motion
tracking methods, drift error is limited and can be reduced.

D. Contributions

This paper presents a visual SLAM algorithm that is
robust under the presence of directional sunlight illumination
causing shadows and non-uniform scene lighting. To achieve
this, a “Locally Maximal” Harris corner selection method is
used to select features evenly across the image and to select
features more consistently in an outdoor scene. Secondly,
“3D Feature Cluster” landmarks are used, contrasting with
the standard practice of using a single feature as a single
landmark. The 3D Feature Cluster landmark allows highly
consistent and robust landmark measurements due to the
large number of features per cluster. The ability to make
reliable and consistent measurements for each landmark in
turn reduces the number of landmarks needed for a robust

SLAM algorithm. Thus, the computational cost of the SLAM
filter can be lowered significantly.

The work also demonstrates that an easily retrofittable
swing angle sensor can quickly and flexibly be used for field
measurements on large mining shovels and on other rotating
heavy machines.

II. RELATED WORK

The general Simultaneous Localization And Mapping
(SLAM) problem aims to localize a mobile robot in a global
coordinate system. In this work, the robot is simply our stereo
camera. The SLAM problem assumes that the environment is
unknown and that the robot starts in a pre-defined pose in the
global coordinate system. The robot is only equipped with
sensors that take relative measurements of the environment.
Examples include a laser scanner or a camera mounted to a
robot which measures feature positions relative to the robot
coordinate system. As the robot explores, it records observed
features as landmarks and estimates landmark global po-
sitions, building a map of the environment. At the same
time, these landmarks are re-referenced by the robot to help
localize itself.

A key problem to solve in SLAM is drift error correction
at loop closure. As the robot traverses a large loop from a
starting position, the estimated robot pose accumulates more
drift error and is more uncertain, as are the estimated global
positions of new landmarks initialized by the robot. However,
when the robot returns to its starting area and re-detects the
initial landmarks, it should be able to correct the drift error
in its pose estimate. This drift error correction should also
propagate back to all previously observed landmarks for a
consistent map.

An approach that allows this drift error correction was
proposed by Smithet al. [2]. The solution is to estimate
the robot pose and landmark global positions in a single
state vector with a single covariance matrix, updated by an
Extended Kalman Filter (EKF). This method has been shown
to allow the map to converge monotonically to a perfect
relative map with zero uncertainty in the limit as the number
of landmark observations increases [3]. It is the method used
in this work. However, a drawback of this method is its
O(N2) computational complexity whereN is the number
of landmarks estimated in the EKF.

Solving the SLAM problem using the EKF and vision
as the sensor has been demonstrated in works such as [4],
[5]. In these works, each landmark is a single visual feature.
Due to the EKF’sO(N2) computational complexity, they
are limited to estimating a maximum of 100 features in
their map for real-time processing. For example, Davison
et al. [5] constrain their algorithm to track at most 12 single
feature landmarks at any one time to keep the total number
of landmarks under 100. However, a problem is that vision
algorithm robustness can degrade with a reduced number
of tracked features. Furthermore, these vision algorithms
have not been tested in outdoor environments with extreme
directional sunlight causing shadows and highly non-uniform
scene illumination.
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III. M ETHOD

A. Algorithm Design and Overview

The algorithm flow is based on the operation of the EKF.
For each camera frame, the following are performed:

1) EKF Prediction Update: The current camera pose is
predicted from its previous estimate.

2) 3D Feature Detection: Using current stereo images, 3D
features are detected.

3) Landmark Measurement: Feature Cluster landmarks
are matched to observed 3D features. Landmark poses
relative to the camera are found.

4) EKF Measurement Update: The measured Feature
Cluster landmark positions are fed into the EKF. Cam-
era pose and landmark position estimates are updated.

5) Swing Angle Computation: From the updated camera
position estimate, swing angle is found.

6) New Landmark Initialization: If no Feature Cluster
landmarks are well-tracked, a new Feature Cluster
landmark extracted from the current frame is added
to the system.

7) Landmark Feature Management: Landmark features
that have often failed to be matched are removed from
the landmark database.

B. EKF Overview

Within the EKF SLAM framework, all states such as the
camera pose and the landmark positions are estimated using
a single EKF. That is, the EKF state vectorx̂ is a large
column vector in which the states are stacked:
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where x̂v is a non-landmark state vector which will be
described in detail, and̂ol1

, ôl2
, . . . , ôln

are landmark states.
A landmark stateôli

(3 × 1) represents the global 3D
position of thei’th Feature Cluster landmark. Whenever a
new landmark is added to the system,x̂ is enlarged by a
landmark state.

The non-landmark state vector̂xv (12× 1) is:
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Here,ôc (3×1) is the camera origin, and the camera rotation
vectorr̂c (3×1) represents the camera frameC

c
(3×3). The

vectorr̂c can be transformed intoC
c

by matrix exponential:
Ĉ

c
= er̂c×. Next, ôr (3 × 1) is the rotation centre of the

shovel house. The direction of the rotation axis is represented
with its inclination angleφ̂r and azimuth anglêθr. Lastly, ω̂
is swing angular speed in radians per frame interval.

For EKF prediction update, the landmarks are assumed
to be stationary in the global coordinate system so their
predicted positions remain unchanged from their previous
estimates. To predict the camera pose, a non-landmark states
prediction functionx̂vt|t−1

= fv(x̂vt−1
, wnt−1

) is defined,
wherewn is a zero-mean white gaussian process noise mod-
elling the prediction uncertainty. A constant swing angular
speed model is used in the prediction function:

ω̂t|t−1 = ω̂t−1 + wnt−1
(3)

For EKF measurement update, a landmark measurement
zi is defined as the measured position of a landmark relative
to the camera coordinate system. Thus, the measurement
observation functionzi = h(xv,oli

,v) is:
[
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wherev is a zero-mean white gaussian process modelling
sensor noise.

C. Initialization and Calibration

After mounting the camera,̂x = x̂v needs to be ini-
tialized. In this work, the initial camera pose{ôc, r̂c} is
used to define the global coordinate system so its values are
initialized to zeros. The rotation centrêor and the rotation
axis {φ̂r, θ̂r} are estimated by a vision-based calibration
procedure, requiring no physical measurement. The shovel
makes a small calibration swing of approximately +/-25◦

during which the camera pose is tracked. The tracked trajec-
tory arc of the camera is then used to estimate the rotation
centre and axis.

EKF SLAM guarantees map convergence to a perfect rel-
ative map only [3]. Thus, a swing angle reference landmark
located at0◦ is also needed for computing the swing angle.
For obtaining the reference landmark, the shovel operator is
expected to swing the shovel to rest at0◦, before starting
the system. When the system starts, the first camera frame
is captured; the system initializes the first landmark, which
also becomes the reference landmark.

D. 3D Feature Detection

Input images come from a pre-calibrated Point Grey
Bumblebee 2 stereo camera consisting of a left and a right
camera with 12 cm baseline. Stereo images are rectified using
manufacturer-provided code before any processing by our
algorithm, and are of size512× 384 pixels.

The right camera is the reference camera. Features and
their descriptors are found using the right image. The left
image is used during stereo matching only, to obtain the 3D
positions of features detected in the right image.

1) Locally Maximal Harris Corners:The Harris corner
detector has been chosen for this work as feature scale
invariance is not needed. Also, it has been shown to have
high repeatability over a range of conditions such as view-
point change and rotation, compared to other interest point
detectors [6], [7]. However, these findings were conducted
indoors and it has been found that in our outdoor setting,
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Fig. 3. Comparison of the two corner selection methods. Blue dots indicate
corners. Left: Percent Threshold corner selection. Threshold set as 0.01 of
highest corner measure in image. Right: Locally Maximal cornerselection.

the traditional Harris corner selection method does not work
well. The problem and solution are explained below.

To select corner locations, the Harris corner measure is
first evaluated for each pixel location. Then, corners are
selected based on a corner threshold. However, the Harris
corner measure is sensitive to image contrast. That is, given
two identical image structure but with one image structure
having a higher contrast, the higher contrast image structure
will have higher Harris corner measure. Thus, selecting a
suitable corner threshold for all lighting conditions can be
difficult. Traditionally, the corner threshold is simply set as
a percentage (e.g. 1%) of the highest corner measure found
in the image [6], [8]. In this paper, this is referred to as the
“Percent Threshold” corner selection method.

The Percent Threshold corner selection method has been
found to be unsuitable for our outdoor scene where there
are shadow patterns created from sunlight casting through
handrails and metal mesh walkways behind the camera.
“Corners” formed by these shadow patterns have the highest
corner measures due to their high local contrast. Using the
Percent Threshold corner selection method, most corners are
selected on the shadow patterns. This is shown in the left
image of Figure 3. The selection of most features on the
shadow patterns is highly problematic because the shadow
patterns move, so the selected shadow features cannot be
reliably used to reference the camera pose.

A problem also occurs when the camera swings from the
scene region under shadow to the scene region directly-lit
by sunlight. The shadow boundaries between the two regions
create “corners” of high corner measures, boosting the corner
threshold. Yet, the camera shutter time shortens dramatically
as the camera swings toward the directly-lit scene region,
causing features originally detected in the shadow scene
region to become less exposed and their local image contrast
to fall. As a result, corner measures of these features quickly
fall below the corner threshold and these features become
undetected (Figure 4).

A novel metric is used to select corners more consistently
and evenly without a corner threshold. Here, it is called the
“Locally Maximal” Harris corner selection. A pixel location
is identified as a corner if and only if its corner measure is
locally maximal within a(2W+1 × 2W+1) neighborhood
region centered about the pixel location. Compared to the
method used in [9] which divides the whole image into

Fig. 4. Corner selection using the Percent Threshold method.Shown are 2
sequential snapshots, where left image is the earlier snapshot and the right
image is latter. Snapshots were taken by the camera as it swingsleft toward
the directly-lit scene region from the shadow scene region.The directly-lit
scene region is located on left sides of the images and the shadow scene
region is located on right sides of the images. Corner measuresof features
in the shadow scene region fall dramatically as camera swings toward the
directly-lit scene region. Many features in the shadow scene region detected
in the earlier snapshot are no longer detected in the latter snapshot.

Fig. 5. Using the locally maximal criteria, corners are more consistently
selected over changing image exposure.

square blocks and selects the strongest feature in each block,
this method is more flexible and does not force the selection
of a single feature when neighboring features from different
image blocks become in the same block.

The parameterW of the Locally Maximal corner selection
method controls the neighborhood size and can be used to
tune the desired number of features per camera frame. The
value ofW has been set to 4, which results in the detection
of roughly 600 features per frame. Processing this number of
features has been found to provide a good balance between
algorithm accuracy and speed.

Figures 3 and 5 show corner detection results using the
new method. Although some corners are still selected on
shadow patterns, they can be eliminated in latter processing.
Many of these non-physical corners are non-distinctive and
most will not be matched during the feature matching pro-
cess. The few matched non-physical corners will not agree
with the change in observed 3D positions of other physical
features, and can be eliminated in a geometric verification
step described in the landmark measurement section.

2) Stereo Matching:Once features are detected in the
right image, they are stereo matched to the left image. For
each feature in the right image, a5×5 image patch around the
feature is obtained and shifted along the corresponding scan-
line in the left image. Using normalized cross-correlation, the
feature’s best match in the left image is found. The match
is cross-validated [10]. Finally to obtain sub-pixel disparity
a parabola is fitted to the similarity scores centered about
the best match. The position of the parabola peak is used
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to determine the sub-pixel disparity. The 3D position of the
feature relative to the camera is then calculated as:

cz = fB/d
cx = (u− u0)

cz/f
cy = (v − v0)

cz/f
(5)

wheref is the camera focal length,B is the camera baseline,
d is the disparity,(u0, v0) is the pixel coordinate of the image
center, while(u, v) is the feature’s image location.

Most features on the carbody lie 2–3m from the camera.
Assuming the range of 3m and disparity accuracy of +/- 0.2
pixels, the stereo camera’s depth measurement accuracy is
expected to be +/- 4cm.

3) Descriptor: Once the detected Harris corners are suc-
cessfully stereo-matched, the image region centered about
each corner is transformed into the corner’s descriptor. The
SIFT descriptor [11] has been selected for use, based on the
finding that it has one of the best matching performances
under changes in various imaging conditions such as view
point [12].

E. Feature Cluster Landmarks

For all vision-based EKF SLAM works the authors are
aware of, each landmark is a single visual feature. As features
are initialized and tracked as landmarks, the EKF state
vector expands and the computational cost of the EKF grows
quadratically. Thus, for real-time processing the number of
features tracked as landmarks is highly constrained. For
example, the number of tracked landmark features at any
moment was limited to 12 in [5].

However, single features are unreliable landmarks. Few
features can be consistently re-detected in subsequent frames
due to the feature detector’s limited repeatability. Also,a
feature can sometimes fail stereo match validation, become
occluded, or become over- or underexposed. Another prob-
lem is erroneous feature measurements. A landmark feature
may be matched to the wrong observed feature, or the 3D
position of the landmark feature’s match may be poorly
measured. Lastly, a landmark feature may not even be a real
physical feature, such as a feature found on a moving shadow
pattern. Such a non-physical feature cannot be reliably used
as a reference for finding the camera pose.

Tracking many landmark features can improve the vision
algorithm’s robustness. If some landmark features are not
re-detected in subsequent frames, there are numerous other
landmark features that can be matched, providing references
for finding the current camera pose. In addition, a large
number of landmark feature matches allows confident 3D
geometric verification which can eliminate erroneous feature
matches. Yet, increasing the number of landmark features
will significantly slow down the vision algorithm due to the
EKF’s quadratic computational complexity.

An ideal landmark is one that can be detected consistently
across frames and measured reliably up to a large swing
angle away from the camera position at which it was initial-
ized. Given such ideal landmarks, the number of landmarks
estimated in the EKF can be reduced. Unfortunately, no
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Fig. 6. Left: Detected cluster features from a keyframe. Roughly 350 3D
features form the feature cluster. Right: The feature cluster and its coordinate
system.

single feature is highly reliable. Thus, this inspired the use
of a “higher level” landmark which can be consistently and
robustly measured. Here, it is called the Feature Cluster
landmark. The proposed landmark is a cluster of numerous
3D features detected in a single camera frame (keyframe).
The cluster of detected 3D features is treated as a single
rigid object. An object coordinate system is attached to the
cluster representing its pose, and individual cluster feature
positions are represented in terms of the cluster coordinate
system (Figure 6). It is the cluster’s relative pose to the
camera that is measured and the cluster’s global position that
is filtered in the EKF, rather than the individual features.
Such a landmark’s pose can be consistently and reliably
measured. Even if some cluster features are undetected
in subsequent frames, there are many others that can be
matched, still allowing the cluster pose with respect to the
camera estimated. In addition, cluster feature matches canbe
geometrically verified during the cluster’s relative pose esti-
mation. Erroneous feature matches would not agree with the
cluster pose estimated from the majority of matches. Figure
7 illustrates the Feature Cluster landmark pose estimation.

1) Feature Cluster Landmark Initialization:The system
initializes a new Feature Cluster landmark when no existing
landmark is well-tracked in the current frame. The first step
is to select features observed in the current frame that will
make up the feature cluster. Essentially, all detected features
in the current frame are selected as cluster features, with
some criteria. Firstly, features are selected using a slightly
larger neighborhood blockW = 5 rather than the normal
W = 4 to allow for higher repeatability of their detection in
subsequent frames. Lastly, only features in the top two-third
portion of the camera image are selected as cluster features,
to avoid selecting too many features from the shovel tracks.

Once cluster features are selected, a cluster coordinate
system{C

l
, ol} needs to be attached to the cluster and

cluster feature positions need to be represented in terms
of this cluster coordinate system. The cluster coordinate
system can be placed anywhere relative to the cluster fea-
tures. As long as it remains fixed relative to the cluster
features, consistent landmark measurements can be made
and the camera pose can be properly estimated by the
EKF. The cluster coordinate system is simply placed at
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Fig. 7. Once a minimum of 3 non-collinear landmark features are matched
to observed features, the landmark rotationR and positionz relative to the
camera can be found. In actual, a landmark consists of over 100 features
so there will be numerous feature matches. Iterative Gauss-Newton least
squares procedure is used to solve for the landmark’s relative pose{R,z}
such that cluster features’ landmark coordinates{lP1,

l
P2,

l
P3, . . .} trans-

form into their observed camera coordinates{cP1,
c
P2,

c
P3, . . .}. Geomet-

ric verification is performed simultaneously during this poseestimation as
erroneous feature matches will become outliers.

the same location relative to the cluster features as the
current camera coordinate system. Then, cluster features’
landmark coordinates{lP1,

lP2,
lP3, . . .} are simply their

camera coordinates{cP1,
cP2,

cP3, . . .} in the current frame.
The cluster features’ landmark coordinates and descriptors
are stored to the system database as the full description of
the new Feature Cluster landmark.

Next, the EKF state vector is expanded by size3 × 1
for filtering the new cluster’s global position (or origin).
Given the selection of the cluster coordinate system as the
current camera coordinate system, a cluster’s global position
is equivalent to the camera’s global position at which the
cluster was initialized. Thus, the cluster’s estimated position
in the EKF is initialized as the estimated current camera
position. Figure 8 shows a snapshot of landmark positions
as the camera swings clockwise before making loop closure;
it can be seen that the landmarks are initialized along the
circular trajectory of the camera.

F. Landmark Measurement

1) Active Landmark Feature Matching:After EKF predic-
tion update and 3D feature detection, the system proceeds
to match Feature Cluster landmarks to the observed 3D
features. An active approach is taken where each landmark
is predicted if it is visible to the camera in the current
frame. Once a landmark is predicted visible, its features’
locations in the current image are predicted. Then each
cluster feature is matched against observed features within
a search window centered about its own predicted location.
The similarity measure is the angle between the landmark
feature descriptor vector and a candidate descriptor vector.
The candidate that gives the smallest angle is the match.
Then, a nearest neighbor ratio test [11] is applied to remove
ambiguous matches. In particular, it has been observed that
many non-distinctive features such as those formed from the
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Fig. 8. Snapshot of the system map as camera swings clockwise before
making loop closure. Map is plotted in the 3D global coordinate system,
which is defined by the initial camera pose att = 0. Axis scales are in
meters. Plot view is set looking down the shovel house rotation axis. Note
that the rotation axis is not aligned with any axes of the global coordinate
frame because the camera was not mounted in alignment to the shovel
rotation axis. Camera coordinate system at the time of the snapshot is
indicated by the thick RGB lines. Landmark positions are indicated by ‘+’.
As discussed, landmarks sit on the circular trajectory of thecamera.

metal mesh walkway’s shadow pattern are eliminated after
this step.

2) Relative Landmark Pose Estimation:If a Feature Clus-
ter landmark has at least 16 feature matches, its pose is
estimated, otherwise the landmark is discarded from the
pose estimation. For theM number of cluster features that
have been matched, their positions in landmark coordinates
{lP1,

lP2,
lP3, . . . ,

lPM}, and their corresponding positions
as observed by the camera{cP1,

cP2,
cP3, . . . ,

cPM} are
obtained. The goal is to find the feature cluster’s rotation
er× and positionz with respect to the camera, so that:

cP1 = [ er× ][ lP1 ] + z
cP2 = [ er× ][ lP2 ] + z
cP3 = [ er× ][ lP3 ] + z

...
cPM = [ er× ][ lPM ] + z

(6)

Here an overdetermined non-linear system of equations is
established. The relative landmark pose[z; r] is found as
the least squares solution of the above equation using the
iterative Gauss-Newton algorithm [13] [14].

Geometric verification of the feature matches is simultane-
ously performed in each Gauss-Newton iteration. Erroneous
feature matches will not agree with the parameter corrections
and will have large residuals compared to the average.
Feature match pairs with residuals twice the average are dis-
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carded from the Gauss-Newton estimation. The elimination
of bad matches enables robust and accurate landmark pose
measurement. The procedure is stopped once no match pair is
discarded and that the change in average residual stabilizes.
Figure 9 shows match results after geometric verification.

Landmark 
Keyframe 

Current 
Frame 

Fig. 9. Remaining feature matches after geometric verification.

It was observed that generally, the further the camera
swings away from a landmark, the larger the landmark’s pose
estimation residual becomes. The average residual ranged
from approximately 0.3cm when the camera viewed the
landmark directly, up to 3.0cm when the camera revolved
25◦ away from the landmark. Past that, most landmarks
cannot be measured due to an insufficient number of feature
matches. The growing residual can be attributed to the fact
that detected feature positions tend to shift as the camera
view angle increases.

G. Swing Angle Computation

After the visual landmark measurements are made and the
EKF measurement update performed, swing angle is found
using the updated estimates of the camera positionôc, the
reference landmark position̂ol1

, the rotation center̂or, and
the rotation axis direction{φ̂r, θ̂r}.

First, the two vectorsv = [ôc−ôr] andw = [ôl1
−ôr] are

computed. Next, the unit vector̂rr pointing in the direction
of the rotation axis, is found from{φ̂r, θ̂r}. Then,v, w are
projected onto a plane perpendicular tor̂r, giving v⊥, w⊥

respectively. Finally, the swing angleθs is found as the angle
betweenv⊥ andw⊥ (Figure 10).

H. Landmark Feature Management

Each feature cluster landmark can be consistently and
reliably measured once added to the map. Thus, there is
minimal management of landmarks; a landmark generally
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Fig. 10. View looking down̂rr , in direction of shovel rotation axis. Vectors
v⊥, w⊥ are respectively the projections of[ôc− ôr ] and[ôl1

− ôr ] on a
plane perpendicular tôrr . Swing angle found as angle betweenv⊥, w⊥.

stays in the map permanently. However, the features of
a landmark are managed. A landmark feature is removed
if more than 50% of the time its match fails geometric
verification. Such a landmark feature is either undistinctive
so is often erroneously matched; or that it is a non-physical
corner such as a shadow point whose world position is
unstable. A landmark feature having a poorly initialized 3D
position compared to others will be removed as well. Figure
11 shows features of a landmark at initialization and after.

Fig. 11. Left: Initial features of a landmark. Right: After pruning of bad
features over time. Note shadow features at the bottom have been pruned.

IV. RESULTS

A. Swing Angle Results

The vision algorithm was tested on 3 separate video
sequences taken on different days, with each sequence over
5000 frames (4min) long . Results for one sequence is
discussed. During this sequence, the shovel swung 2 counter
clockwise revolutions, then 2 clockwise revolutions, and then
randomly. The stereo-vision based sensor output was verified
with the output of an encoder installed on the shovel swing
motor shaft. Both outputs are shown in Figure 12.

Initially, the vision system’s error grew up to5.5◦ as
drift accumulated. At around Frame 3000, the camera made
its first full revolution; the first landmark was re-detected
and the loop was closed. As expected of the EKF SLAM
behavior, the drift error of the camera pose estimate was
immediately corrected so the error in the estimated swing
angle dropped to0.5◦. At the same time, this drift error
correction propagated to the landmark position estimates.
Thus, subsequent swing angle estimates improved. Landmark
position estimates continued to converge as more obser-
vations were made and swing angle errors settled within
+/- 1◦. Given that the camera was located 4.5m from the
rotation center, the camera positional error was equivalent to

1720



1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
-200

-150

-100

-50

0

50

100

150

200

Camera Frame

S
w

in
g 

A
ng

le
 [

de
g]

 

 
Encoder

Vision

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
-1

0

1

2

3

4

5

6

Camera Frame

S
w

in
g 

A
ng

le
 E

rr
or

 [
de

g]

Fig. 12. Top: Vision and encoder outputs. Bottom: Differencebetween
vision and encoder outputs.

+/- 0.08m over a 28m circular trajectory, or +/- 0.3%. This
swing angular error was also equivalent to +/- 17cm shovel
bucket localization error, assuming a truck loading distance
of 10m. This was within the accuracy requirement of the
aforementioned collision avoidance system.

In total, only 19 Feature Cluster landmarks were initialized
along the entire circular path traversed by the camera. This
was owing to the fact that each Feature Cluster landmark,
consisting over 100 features, could be tracked reliably up to
+/- 20◦ swing angle. Compared to previous works which fil-
tered 100 single feature landmarks, the number of landmarks
estimated in our EKF was much lower but yet the number
of tracked features was much higher.

The algorithm is still in a prototype stage and is imple-
mented in a mixture of C++ and Matlab. The algorithm ran
at 4Hz on a single core of a 1.8GHz Intel Core2 CPU with
3GB RAM.

B. Comparison of Harris Corner Selection Methods

The Locally Maximal Harris corner selection method was
compared to the traditional Percent Threshold corner selec-
tion method. In one comparison, it was found that the number
of features detected in each frame fluctuated wildly between
200-2000 with the Percent Threshold method, versus the
stable number of 450-700 with the Locally Maximal method.

In another comparison, the SLAM algorithm was run
using the Percent Threshold method instead of the Locally
Maximal method. A feature cluster was detected from a
selected starting keyframe and then tracked as the camera
swung away. The fraction of the cluster features tracked as
the camera swung from its initial position was recorded and
compared to the original results using the Locally Maximal
method. The test was performed for 3 different starting
keyframes representing different lighting conditions. With
the Percent Threshold method, the tracking results varied
depending on the lighting condition of the starting keyframe.
In the worst case in which the starting keyframe contained
moving shadow patterns, cluster features were tracked to2◦

swing angle only. With the Locally Maximal method, cluster
features could be consistently tracked to20◦ for all 3 starting
keyframes.

V. CONCLUSIONS

This paper has presented a visual SLAM algorithm that
is robust in the presence of directional sunlight illumina-
tion causing shadows, and non-uniform scene lighting. The
Locally Maximal Harris corner selection allows features to
be selected evenly across the image and more consistently
compared to the traditional Percent Threshold method. The
use of Feature Cluster Landmarks allows the algorithm to
make robust and consistent landmark measurements due to
the large number of features per landmark. Moreover, the
total number of landmarks estimated in the EKF can be
reduced, lowering the EKF computational cost .
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