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Abstract— We aim at experimental verification of the effi-
ciency of natural-motion path tracking (i.e. tracking speed in
proportion to the determinant of the Jacobian) in comparison to
constant-speed path tracking. This is done first via simulations,
with a simple planar manipulator and then with a six-DOF
manipulator. From the results it becomes apparent that natural-
motion path tracking outperforms constant-speed path tracking
in terms of peak joint speed, peak joint torque and total
mechanical power, ensuring thereby a higher average tracking
speed. The results are also confirmed via experiments with a
real six-DOF robotic limb.

I. INTRODUCTION

There are robotic application tasks where exact path
tracking of a given workspace path is of primary importance,
while the tracking speed along the path can be preset freely.
This freedom has been exploited in past studies to meet
mainly two objectives: minimum-time path tracking [2]–[4]
and keeping control efforts within prescribed limits [5]–[7].
Hollerbach [5], for instance, introduced the concept of time-
scaling to handle control torque constraints within a dynamic
framework. Also, the objectives can be combined in a single
optimization framework [8]. Another example is the work of
Sampei and Furuta who have shown how time-scaling may
help in linearization problems [9], and have applied the idea
to ensure stability of motion around kinematic singularities
[10]. Generally speaking, the additional DOF gained via
relaxing a strict time constraint along the path can be used
to decrease control efforts [11]. This, in turn, will enable
the controller to deal with uncertainties and lead to robust
performance. The method has also been referred to as path-
following and has been exploited not only in the field of
robotic control, but also in that of vehicle control, e.g., flight
control [12] and autonomous marine craft control [13].

In our previous work [1], [14] we have shown that when
the path tracking speed is set to be in proportion to the
determinant of the Jacobian, there is an important impact
on the motion dynamics: the dynamic system is transformed
into an autonomous system, and in addition, the control
torque can be derived from a pure (configuration-dependent)
potential function. We called this type of motion “natural
motion,” in harmony with both the kinematic constraint,
deduced from the “natural parameter” of a certain curve in
augmented configuration space, and the dynamic properties
of energy-conserving “natural systems” [15].
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So far, path tracking under natural motion has not been
studied in detail. The aim of this work is to examine exper-
imentally the performance of natural motion path tracking
with a nonredundant robotic limb. Our goal is to expose
quantitatively the advantages of natural motion when com-
pared to a constant-speed path tracking task with the same
limb.

II. BACKGROUND AND NOTATION

Consider a robot limb with n joint variables q =
(q1, q2, ..., qn) and m end-link position/orientation variables
x = (x1, x2, ..., xm). The velocity relation is given by:

ν = J(q)q̇, (1)

where ν ∈ �m denotes the coordinates of the end-link twist
and J(q) is the limb Jacobian. Here and henceforth, we
will assume that all joint variables represent angles. The
configuration space C, a subspace of �n, will be then uniform
in terms of physical units1. Euclidean vector norm ‖◦‖ can be
employed then. The last equation solves the direct kinematics
problem for the velocities.

A. Singularity-Consistent Inversion

The inverse kinematics problem plays an important role
in path planning and tracking control. We will make use
here of the singularity-consistent solution method because of
its inherent stability property in the vicinity of singularities.
The notation is briefly reviewed below, for further details
interested readers are referred to [16].

First, we assume the end-link moves along a smooth
parameterized path x(q∗), q∗ denoting the path parameter.
The end-link twist, at a given point q∗, can be represented
as

ν(q∗, q̇∗) = t∗(q∗)q̇∗ (2)

where t∗(q∗) is the normalized end-link twist, obtained when
the speed of the parameter is q̇∗ = 1 rad/s. Further on, it is
convenient to augment the configuration space with the path
parameter q∗. We then obtain the augmented configuration
space C∗, a subspace of �n+1, with elements q̄ ≡ (q, q∗).
With this notation, (1) can be represented in homogeneous
form as:

J(q̄) ˙̄q = 0, (3)

where
J(q̄) ≡ [

J(q) −t∗(q∗)
]

1In case of a mixed-joint structure (with rotational and translation joints),
uniformity can be ensured with proper scaling.
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is called the column-augmented Jacobian.
Besides being homogeneous, (3) is underdetermined and

hence, the number of solutions is infinite. Therefore, all
solutions must be in the kernel of matrix J . Let us assume
now that the limb is nonredundant: m = n. For a full-rank
column-augmented Jacobian, the kernel contains a single
nonzero element then. The set of solutions of (3) is:

˙̄q = bn̄(q̄), (4)

where b is an arbitrary scalar, and n̄(q̄) ∈ kerJ(q̄) ⊂ �n+1.
A vector from the kernel can be derived in analytical form
with the help of the cofactors of matrix J [17]:

n̄(q̄) =
[

C1 C2 ... Cn+1

]T
(5)

where Ci = (−1)i+1 detJ i is the i-th cofactor, and J i is
obtained from matrix J by removing the i-th column. The
last expression can be rewritten as:

n̄(q̄) ≡ [
nT (q̄) detJ(q)

]T
(6)

where n(q̄) ≡ [adjJ(q)] t∗(q∗) , adj(◦) denotes the adjoint
matrix [18]. Note that n(q̄) maps vectors from the aug-
mented configuration space to the tangent space of C at q:
{n(q̄) : C∗ ⊂ �n+1 → TCq ⊂ �n}.

Equation (4) can be split into two parts to obtain the joint
motion differential

q̇ = b n(q̄) (7)

and the path parameter differential

q̇∗ = b detJ(q). (8)

Usually, path parameter q∗ is considered an independent
variable. Then, one determines the scalar b from (8), and
substitutes it back into (7) to obtain the joint velocity.
Note, however, that in the vicinity of kinematic singularities
this may lead to instability since the determinant of the
Jacobian is close to zero. The above formulation can alleviate
this problem by taking b as the independent parameter.
Ultimately, this leads to the inherent stability of the method
as will be seen herein (see also [16]).

Finally, it might be worth noting that the physical meaning
of parameter b can be understood as a dimensional map
adjusting the dimension of the null vector n̄(q̄) (volume
element in �n) to the dimension of joint speed ([rad/s] for
rotational joints).

B. The Natural Motion of a Robotic Limb

The trivial reparameterization, b being a nonzero constant,
plays an important role throughout this work. Note that
when b is constant (constant quantities will be underlined
henceforth), (4) can be regarded as an autonomous dynamic
system. The flow of vector field n̄(q̄) is represented then
by a set of spatial curves in augmented configuration space
C∗. Motion along a specific curve (determined from the
initial condition) can be associated with the so called self
motion of a kinematically redundant limb obtained from the
original limb by adding a virtual joint with q∗ as the joint

variable. The curve will be referred to as the self-motion
manifold [19]. We will restrict our analysis to self-motion
manifolds made of regular points of the autonomous dynamic
system2. The self-motion manifold can then be characterized
by the invariant arc length λ, also called natural parameter.
λ is determined uniquely up to an additive constant, from
λ̇ = ‖n̄‖. It should be apparent then that under natural
motion the magnitude of the end-link twist and hence, the
path tracking speed, will be in proportion to | detJ |.
C. Natural Motion Dynamics

The conventional form of the equation of motion is:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (9)

where M(q) is the symmetric positive-definite limb inertia
matrix, C(q, q̇)q̇ and g(q) denote Coriolis and centrifugal,
and gravity forces, respectively, τ stands for the driving joint
torque. Making use of the joint velocity representation (7)
and the respective time differential, the equation of motion
can be rewritten as:(

ḃM (q) + bA(q̄)
)

n(q̄) + g(q) = τ , (10)

where

A(q̄) ≡ bM(q)
∂n(q̄)

∂q̄
+ C(q, q̇).

We are referring to (10) as the singularity-consistent param-
eterization of the equation of motion [1], [14].

Next, note that under natural motion, the force component
ḃM(q)n(q̄) in the direction of generalized momentum is
zero since b is constant. Then, (10) becomes:

bA(q̄)n(q̄) + g(q) = τ . (11)

It is easy to show that this is a pure potential system. Natural
motion can be also characterized as nondissipative motion
along the prespecified path, with initial energy derived from
the specified constant b. Note also that the energy is quadratic
in b, while the instantaneous mechanical power is cubic.

III. NATURAL MOTION PATH TRACKING: A
COMPARATIVE ANALYSIS

Tracking performance under natural motion along a spec-
ified path in the workspace will be examined below and
compared with results from constant-speed tracking along
the same path.

A. Simple Example

First, we consider a simple planar 2R limb tracking a circle
with its end-tip. The current point on the circle is determined
by the path parameter angle q∗, (xc, yc) denote the circle
center coordinates, r is its radius (see Fig. 1). For this simple
example all quantities can be derived in analytical form (see
[1], p. 19). Each link is modeled as a thin rod of one meter
length, having a mass of 1 kg, with respective link inertia
and center of mass located in the middle. The initial limb

2The regular points of the autonomous system are the points where the
linear system (1) is nonsingular or where it is singular with codimension
one (an inconsistent system) [1].
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Fig. 1. Simple 2R limb tracking a circular path.

TABLE I

PATH-TRACKING CASES WITH THE 2R LIMB (NOMINAL MODEL).

case CS-1 NM-1 NM-2 NM-3 CS-2

distance
traveled [m] 8.85 8.85 30.43 24.75 24.75
peak joint

speed [rad/s] 2.9 0.84 2.9 2.26 7.73
peak joint

torque [Nm] 5.31 0.73 8.74 5.31 37.8
total mechanical

power [W] 626.7 149.15 5,751.0 2,747.4 11,167.3
NM: natural motion CS: constant-speed

configuration is set to −60 and 120 deg. The desired path
radius is 0.7 m, while the center of the circle is determined
via the initial q∗ = 120 deg. The initial configuration as
well as the location of the circle within the workspace are
those shown in Fig. 1. It should be apparent that the circle
passes through the vicinity of a kinematic singulary near the
workspace outer boundary.

The desired path is tracked for two full cycles, with
the well known resolved acceleration dynamic feedback
controller. The natural motion tracking speed is set via the
constant b = 1.2 rad/s m−2. Constant-speed tracking is
achieved, on the other hand, through the constant q̇∗ = 0.85
rad/s. These two values have been choosen so that the same
distance (two full cycles) is tracked for the same time.

In the first set of simulations, we assume the model
is perfect and no external disturbances are present. This
assumption is not realistic, but initially it helps for better
understanding the difference in path tracking performance.
The results from natural-motion path tracking are shown
on the left side of Fig. 2, and those from constant-speed
tacking on the right side. They include graphs for the joint
angles, the joint speeds including the path parameter speed
q̇∗, the end-tip speeds, the determinant and the joint torque.
The first feature clearly seen is the significant difference in

peak joint speed and peak joint torque: 2.9 rad/s and 5.31
Nm, respectively, for constant-speed tracking versus 0.84
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Fig. 2. 2R path tracking with perfect model and no external disturbance.

rad/s and 0.73 Nm for natural motion. This is over three
times higher peak speed and over seven times larger joint
torque requirement for constant-speed tracking. These peak
values are due to the singularity, as can be inferred from
the determinant graphs. In addition, we calculated the total
mechanical power for each run. The results, given in Table
I (cases CS-1 and NM-1 respectively), show that natural
motion can be performed with one quater or less of the total
power requirement of constant-speed tracking along the same
path for the same distance and time.

Another notable feature of natural motion is the smooth-
ness of the joint space curves when compared to those of
constant-speed tracking. Indeed, from Fig. 2 it is clearly
seen that in the case of constant-speed tracking, both the
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Fig. 3. 2R path tracking with imperfect model.

joint velocity and the joint torque increase rapidly when
approaching the singularity. On the other hand, the respec-
tive curves for natural motion are quite smooth. This can
be explained with the fact that the curvature of the self-
motion manifold increases rapidly in the neighborhood of
the singularity, which also influences the motion dynamics.
Constant-speed tracking does not account for the changes
in curvature, hence the large fluctuations. In workspace, on
the other hand, the end-tip speed is uniform for constant-
speed tracking, while under natural motion the end-tip speed
fluctuates a bit more, decelerating when approaching the
singularity neighborhood, and accelerating when departing
from it. The fluctuations are not as large, though, as in joint
space.

Two more simulations were performed under natural mo-
tion, one with the peak joint speed and the other with the
peak joint torque obtained during the previous simulation.
From Table I (case NM-2) it is seen that with the same
peak joint velocity as constant-speed motion, under natural
motion the end-tip could travel more than three times farther.
Since we didn’t change the tracking time (17 s), this clearly
shows that a much higher average speed can be achieved
under natural motion. A similar result was obtained when
the same peak joint torque was used while tracking (case
NM-3). Again, natural motion outperformed constant-speed
tracking in terms of distance traveled, and hence, average
speed. We confirmed once again the ratio between the peak
values and the power obtained earlier, by tracking the path
for the same distance as in case NM-3, with constant-speed
(see Table I, case CS-2).

In the next set of simulations, path tracking in the presence
of modeling errors was examined. In the resolved acceler-
ation controller, the masses and moments of inertia of the
links were modified to have 10% deviation from the nominal
values. The same desired path and same initial conditions as
in the previous simulation set were assigned. The results in
terms of joint torque and end-tip path tracking errors are

shown in Fig. 3. Note that joint angle, joint speed, end-
tip speed and determinant data graphs are same as those
shown in Fig. 2. This can be inferred from the small tracking
errors. Comparing the torque graphs, one can draw similar
conclusions as in the previous case. Both the peak torque
values and the torque variations are much larger in the case of
constant-speed tracking. The power requirement for constant-
speed tracking was also much larger (over four times) than
that for natural motion.

It is interesting to note that the path tracking errors behave
in a similar way: the maximum error for constant-speed
tracking was over 1.5 mm, while for natural motion it was
less than 0.6 mm, the error graphs for natural motion being
much smoother than those for constant-speed tracking. This
can be explained again with the rapidly increasing curvature
in the neighborhood of the singularity, which also influences
the error dynamics.

B. Six-DOF Example

The next simulation example is a 6R manipulator, the end
link tracking a circular path and keeping thereby a constant
orientation. The same manipulator will be used later for the
experiments. This is a seven-DOF Mitsubishi Heavy Indus-
tries PA-10 manipulator (see Fig. 4). Since we have restricted
the scope to nonredundant manipulators in this study, the
third joint is immobilized during the experiments. The link
lengths are 0.45 m, 0.5 m and 0.08 m respectively for the
lower arm, upper arm and the wrist. The initial configuration
is

[
15.0 −37.0 0.0 80.0 15.0 −45.0 −15.0

]
deg.

The desired circular path is centered at a distance (radius)
of r = 0.2 m from the initial position along xa. Further on,
a relevant set of kinematic singularities3 is displayed in the
figure as a vertical line along the z0 axis. The desired path
passes by this singularity set, the closest distance being 0.07
m.

The desired path was tracked again for two full cycles.
We used an inverse Jacobian kinematics controller as a path
tracking controller. The joint torque was calculated from the
nominal model with suitably chosen dynamic parameters.
We assumed that the gravity torque is fully compensated.
The natural motion tracking speed was set via the constant
b = 1.361 rad/s m−1, while that for constant speed tracking
— through the constant q̇∗ = 0.277 rad/s. Since we are
going to track the same path with the real robot, we had to
insert acceleration/deceleration portions along the path. For
this purpose we used a fifth order spline in the parameters
(b and q̇∗) of 2 s at the beginning/end of a 60 s interval
for path tracking. The results are shown in Fig. 5. The
main conclusion made in the previous simulation with the
2R limb can be reaffirmed. Constant-speed tracking yields
larger variations in joint velocity and joint torque than natural
motion, which is clearly due to the vicinity of the kinematic
singularity, as can be inferred from the determinant graphs.
The peak values are given in Table II (cases NM-1 and CS-1).
Similar to the 2R example, it can be seen that constant-speed

3The set of so-called “shoulder singularities”.
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tracking requires about three times larger peak joint speed
than natural motion, and also about three times larger peak
joint torque. The total power requirement was about twice
as that for natural motion. From the other cases (NM-2 and
NM-3) it is seen that a higher average motion speed can be
achieved under natural motion if the peak speed (case NM-2)
or the peak torque (case NM-3) is applied, since the distance
traveled is larger, for the same tracking time.

Finally, we present experimental data from the real robot
in Fig. 6. The velocity data derived from the joint encoders
matches well with the simulation data in Fig. 5. The torque
data obtained via the electrical current sensors of the con-
troller, on the other hand, are quite different from those
in the simulations. The reason is that unmodeled dynamic
components such as joint friction, model uncertainty, etc.
are prevailing in some of the joints. For instance, from
the constant-speed simulation torque graph in Fig. 5, it
may be seen that Joint 1 and Joint 2 are driven with peak
torque around the singularity. The respective graph in the
experiments (Fig. 6) shows that only Joint 1 appears to be
experiencing such peak torque. A comparison for the torque
requirement in that joint while tracking with natural motion
and with constant speed can be made with the help of Fig.
7. The advantage of natural motion can be confirmed in this
case (about 40% less peak torque requirement). A video
clip is attached to the paper showing the results from this
simulation by overlaid movie images for natural motion and
constant-speed tracking.

It should be mentioned that although the specific path
examined here was a planar curve, the results obtained are
valid for any spatial curve since the (Riemannian) structure of
the self-motion manifold in augmented configuration space
does not depend upon the particular end-effector path. We
should note also that the advantages of natural motion are
most apparent for paths inducing larger manifold curvatures,
i.e. those paths that pass close by singularities. In practice,

Fig. 4. 6R manipulator tracking a circular path. This is actually a model
of a seven-DOF manipulator with one joint locked (Joint 3, not shown).
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Fig. 5. Path tracking simulation with the 6R manipulator.

such paths shouldn’t be considered as special cases; paths
passing close by spherical wrist singularities, for example,
are quite common.

IV. CONCLUSIONS

We examined end-link path tracking with a special speed
profile obtained while a robotic limb performs natural mo-
tion. The comparative analysis with constant-speed path
tracking revealed that natural motion is superior in terms
of smoothness of motion in joint space, requiring thereby
less peak joint velocity and peak joint torque. This also
implies that higher average tracking speeds can be ensured.
Moreover, natural motion also significantly outperformed
constant-speed tracking in terms of the total mechanical
power requirement.
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TABLE II

PATH-TRACKING CASES WITH THE 6R MANIPULATOR.

CS-1 NM-1 NM-2 NM-3

distance
traveled [m] 2.51 2.51 7.63 4.18
peak joint

speed [rad/s] 0.803 0.268 0.803 0.460
peak joint

torque [Nm] 0.750 0.258 2.27 0.750
total mechanical

power [W] 486.65 222.78 5939.3 1100.2
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Fig. 6. Path tracking experiment with the 6R manipulator.

It must be noted that natural motion does not directly
optimize such quantities as time and/or control efforts.
The approach is quite different from the existing methods
mentioned in the Introduction, since none of them makes
explicit use of the natural metrics and the Riemannian
structure of the embedded self-motion manifold. It would
be interesting to extend the comparative analysis in this
direction. Nevertheless, we believe that the advantages of
natural motion highlighted here in comparison to constant-
speed path tracking, plus the easy implementation and the
capability of motion through singularities, known from a pre-
vious work, make natural motion path tracking an appealing
motion generation alternative.

Finally, we should mention that inspite of the present
focus on nonredundant robotic limbs, it should be possible
to extend the results to redundant limbs by expanding the
dimension of the self-motion manifold and by involving
relevant geometrical concepts.
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