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Abstract— This article considers pole assignment control
of nonlinear dynamic systems described by State Dependent
Parameter (SDP) models, with a particular focus on a Brokk 40
mobile robot and Hydro–Lek HLK–7W two–arm manipulator
used for nuclear decommissioning tasks. The UK nuclear legacy
comprises a number of facilities that are significantly con-
taminated by radioactivity and non–radiological toxins. Here,
the use of remote and teleoperated robotic solutions provide
an invaluable option for the safe retrieval and disposal of
contaminated materials. Since the behaviour of hydraulically–
driven manipulators is dominated by the nonlinear, lightly–
damped dynamics of the actuators, existing systems can suffer
from a relatively slow and imprecise control action. For this
reason, the research utilises a non–minimal state variable
feedback approach to control system design, in which the
control gains are updated at each sampling instant.

I. INTRODUCTION

The UK nuclear legacy stems in part from the dawn
of the nuclear industry and presents scientists and engi-
neers with a host of semi–intractable challenges [1]. This
legacy comprises a number of facilities that are significantly
contaminated by radioactivity and non–radiological toxins,
are sometimes in a relatively poor state of repair and for
which knowledge of their use can be incomplete. In areas of
significant contamination, it is often necessary to resort to the
use of remote and teleoperated mobile robots. These provide
an invaluable option for the safe retrieval and disposal
of contaminated materials in high–hazard legacy facilities,
whilst safeguarding the environment and minimising radia-
tion exposure to operators [2] [3] [4].

In the early stages of clean–up, expensive, bespoke ma-
chines were designed, built and commissioned. However,
these have suffered from reliability problems and were rarely
transferable to other challenges. More recently, off–the–shelf
remote solutions are strived for but these suffer from a
converse restriction: they offer the benefits of generic design
but not the ease of control afforded by high–specification be-
spoke solutions. The research described in this article aims to
alleviate this unsatisfactory situation by affording optimized,
widely applicable control architectures that will be developed
and tested on an off–the–shelf mobile robotic platform, with
a particular focus on the coordinated control of its dual–
arm manipulators. These potentially have many advantages
over single–arm robots because they introduce additional
flexibility to, for example, generic cutting operations, whilst
not risking the enormous expense of bespoke robotic design.
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The research utilises a BROKK 40 decommissioning
robot, consisting of a moving vehicle with a single ma-
nipulator (Fig. 1). The multi–arm system attached to the
Brokk 40 is the Hydro–Lek HLK–7W, which takes the form
of two seven-function manipulators, i.e. six rotary joints
and a gripper. Such dual arm mobile robots now offer a
powerful tool for various types of decommissioning activity.
Unfortunately, devices initially developed for heavy lifting
are not necessarily suitable for ‘soft touch’ duties such as
picking up relatively fragile objects. Indeed, under automatic
(rather than remote) control, the manipulator above can suffer
from a relatively slow and imprecise control action because
of limitations in existing linear feedback algorithms.

Since the behaviour of hydraulically–driven manipulators
is dominated by the nonlinear, lightly–damped dynamics
of the actuators, high performance depends on the intro-
duction of some type of nonlinear control structure. Re-
search into nonlinear control embraces approaches such
as sliding mode [5], adaptive [6], quasi–linear parameter
varying [7] and state dependent Riccati equation (SDRE)
control, among others. SDRE methods utilise a direct param-
eterisation to transform the nonlinear system into a linear–
like structure [8]. Using this model, it mimics the Linear
Quadratic (LQ) regulator, but yields a state variable feed-
back algorithm with time varying coefficients. Unfortunately,
while some theoretical advances have been made regarding
the asymptotic stability of SDRE methods, the conditions
obtained can be difficult to check and/or fulfill.

The idea of designing control systems that assign the
closed–loop eigenvalues (poles) at, or at least near to,
specified desirable locations is appealing to many control
engineers. For linear systems, the most powerful general
method of pole assignment is state variable feedback (SVF).
It is well known that a linear SVF control law can arbitrarily
assign the closed–loop poles, provided the linear system is
controllable [9]. Many approaches have been proposed to
extend this concept to nonlinear systems, including local
linearization, exact linearization by feedback [10] and the
use of nonlinear transformations [11].

The present article focuses on a recently developed ap-
proach to nonlinear pole assignment using State Dependent
Parameter (SDP) models [12]. Here, the control parameters
are functionally dependent on the measured state variables
of the system, such as joint angle or velocity. The nonlinear
system is first modelled using the quasi–linear SDP structure,
in which the parameters vary as functions of the state
variables [13]. Using an analogy with linear Non–Minimal
State Space (NMSS) methods [14] [15], state variable feed-
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Fig. 1. Brokk mobile robot and Hydro–Lek dual–arm manipulator.

back control is subsequently implemented directly from the
measured input and output signals and their delayed values.
Linear NMSS methods have been successfully applied to mo-
bile construction robots, such as automated excavators [16]
and vibro–lance systems [17].

However, initial research into nonlinear SDP–NMSS con-
trol necessarily assumed global controllability and used
linear methods such as pole assignment or LQ design to
update the control parameters at each sampling instant (cf.
SDRE design). Although such control systems have already
proven useful in control of hydraulically–driven manipula-
tors [18], the expected design response (even stability) does
not necessarily follow in the nonlinear case. By contrast,
the present article discusses a new transformation method
that does guarantee stability at the design stage, and appears
ideal for the control of the Hydro–Lek manipulator.

II. CONTROL FRAMEWORK

Consider the following nth order SDP model,

yk = −a1 {χk} yk−1 − a2 {χk} yk−2 − . . .
− an {χk} yk−n + b {χk}uk−τ (1)

Here yk and uk are the output and control input variables
respectively, while ai {χk} (i = 1 · · ·n) and b {χk} are state
dependent parameters. The latter are assumed to be functions
of a non–minimal state vector χk. These states are typically
derived from the delayed control input and output signals,
but could also be functions of any other measured variables.
Finally, τ is the pure time (transport) delay of the system
where, for the purposes of discrete–time control system
design, τ ≥ 1. For brevity, the SDP model parameters will
henceforth be denoted with a subscript k, representing the
sample number. Hence, (1) is equivalently,

yk = −a1,kyk−1 − . . .− an,kyk−n + bkuk−τ (2)

Numerous articles have described an approach for the identi-
fication of such models; and have illustrated their application
to a wide range of practical examples: see e.g. [13] [19] and
the references therein. Note that (2) represents a subset of the
entire class of SDP models. Nonetheless, it encompass a wide
range of nonlinear structures and has recently proven useful
for the control of hydraulically operated mobile robots, as
used by the construction and nuclear industries [18].

Previous articles [12] have also considered the SDP–
NMSS representation of equation (2):

xk+1 = Fkxk + gkuk + drk+1 ; yk = hxk (3)

where the n+ τ dimensional state vector is:

xk =
[
yk · · · yk−n+1 uk−1 · · · uk−τ+1 zk

]T
(4)

and zk = zk−1 + [rk − yk] is the integral–of–error between
the reference or command input rk and the sampled output
yk. As usual for NMSS design, inherent type 1 servomech-
anism performance is introduced by means of this integral–
of–error state [14]. The time invariant command d and
observation h vectors are,

d =
[

0 0 . . . 0 1
]T ; h =

[
1 0 . . . 0

]
(5)

For τ > 1, the state transition matrix Fk and input vector
gk = g are defined as follows,

Fk =
[

F1,k|F2,k|d
]

g =
[

0 0 · · · 0 1 0 · · · 0 0
]T

(6)

where the (n+ 1)th row element of gk is unity, F1,k =

−a1,k+1 · · · −an−1,k+1 −an,k+1

1 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

a1,k+1 · · · an−1,k+1 an,k+1


and,

F2,k =



0 · · · 0 bk+1

0 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 −bk+1


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Note that F2,k has dimension (n+ τ) × (τ − 1), while the
(n + 1)th row of Fk consists entirely of zeros. Finally, in
the case that τ = 1, the state transition matrix is reduced to
Fk = [F1,k|d] and the input vector becomes,

gk =
[
b1,k+1 0 · · · 0 −b1,k+1

]T
The quasi–linear structure of the SDP–NMSS model means
that, at each sampling instant, it can be considered as a
‘frozen’ linear system. This formulation is then used to
design a state variable feedback control law,

uk = −ckxk (7)

where,

ck =
[
f0,k . . . fn−1,k g1,k . . . gτ−1,k −kI,k

]
(8)

is the state dependent control gain vector. Applying the
control algorithm (7) to the open–loop NMSS model (3),
yields the closed–loop control system,

xk+1 = Akxk + drk+1 ; yk = hxk (9)

where Ak = (Fk − gkck). The following section derives an
algorithm for determining ck such that, for an externally
specified command rk, equations (9) yield a closed–loop
output response yk equal to that chosen by the designer.

III. NONLINEAR POLE ASSIGNMENT

To develop a nonlinear pole assignment algorithm, define a
n+τ square matrix D with user specified (arbitrary) eigenval-
ues pi (i = 1, . . . , n+ τ). To satisfy formating constraints,
D is shown in Fig. 2 and Fig. 3 for the cases that τ = 1
and τ > 1 respectively. In both cases, the eigenvalues of
D are equivalent to the roots of the desired closed–loop
characteristic polynomial,

D(z−1) = 1 + d1z
−1 + . . .+ dn+τz

−(n+τ) (10)

where di are design coefficients and z−1 is the backward
shift operator, i.e. z−iyk = yk−i.

A. SDP–NMSS Pole Assignment with τ = 1

With τ = 1 the nonlinear pole assignment solution fol-
lows directly from an analogy with linear systems, here by
equating either the top or bottom row of D in Fig. 2 with
Ak = (Fk − gkck) at each sampling instant k. This approach
yields an equivalent solution to that obtained in the linear
case [14], albeit here with the control gains expressed as state
dependent functions of time a1,k+1 · · · an,k+1 and bk+1.

Proposition 1 Assuming no model mismatch and τ = 1,
the SDP control algorithm (7), where ck is obtained as
stated above, applied to the nonlinear model (2) or its
equivalent (3), yields the following output response: yk =
(1 + d1 + . . .+ dn+1) rk−1/D(z−1), i.e. the same solution
as for linear pole assignment. With stable design poles,
closed–loop stability clearly follows.

Demonstration Under these conditions, it is straightfor-
ward to show that the closed–loop state transition matrix Ak
in (9) is time invariant and equal to D ∀k.

B. SDP–NMSS Pole Assignment with τ > 1

With τ > 1, a transformation of the state vector (4) is
required, i.e. x̄k = Tkxk where Tk is the n+τ square matrix
defined in Fig. 4. The transformed open–loop model is,

Tk+1xk+1 = FkTkxk + guk + drk+1 ; yk = hTkxk

Substituting from equation (7) and rearranging yields,

xk+1 = T−1
k+1 (Fk − gck) Tkxk + T−1

k+1drk+1 (11)

Equating the closed–loop state transition matrix above with
the desired matrix D in Fig. 3, and re–arranging yields,

T−1
k+1FkTk − D = T−1

k+1gckTk (12)

With the particular transformation chosen here, the first n
and last τ − 1 rows of both T−1

k+1FkTk −D and T−1
k+1gckTk

consist only of zeros. By equating the (n+ 1)th row of equa-
tion (12), and solving the resultant set of n+τ simultaneous
equations, suitable control gains (8) are obtained.

This approach yields the same control gains as those
quoted in another recent article by the authors [12]. However,
the latter utilises an algebraic approach. By contrast, the
present discussion has obtained the control gains directly
from the NMSS model, which better lends itself to control-
lability and stability analysis, as shown below.

Proposition 2 Assuming no model mismatch and τ > 1,
the SDP control algorithm (7), where ck is obtained using
equation (12), applied to the nonlinear model (2) or its
equivalent (3), yields the following output response: yk =
(1 + d1 + . . .+ dn+τ ) rk−τ/D(z−1), i.e. the same solution
as for linear pole assignment. With stable design poles,
closed–loop stability clearly follows.

Demonstration When the SDP–NMSS control gains are
determined as described above, the closed–loop transition
matrix in (9), can always be decomposed into Ak =
(Fk − gkck) = Tk+1DT−1

k . Hence, pre–multiplying the state
equations in (9) by T−1

k+1 yields,

x̃k+1 = Dx̃k + T−1
k+1drk+1 ; yk = hx̃k (13)

where x̃k = T−1
k xk. The closed–loop transition matrix is now

in a linear time invariant form D, albeit for a transformed
state vector x̃k. Successive substitutions using (13) yields,

x̃k = Dn+τ x̃k−n−τ + Dn+τ−1drk−n−τ+1 + . . .+ D0drk

Note from the characteristic polynomial (10) and the Cayley-
Hamilton theorem that Dn+τ+d1Dn+τ−1+. . .+dn+τ−1D+
dn+τ I = 0, i.e. a matrix of zeros. Hence, taking x̃k +
d1x̃k−1 + . . .+ dn+τ x̃k−n−τ and re-arranging yields,

x̃k = −d1x̃k−1 − d2x̃k−2 − . . .− dn+τ x̃k−n−τ
+

(
Dn+τ−1 + d1Dn+τ−2 + . . .+ dn+τ−1I

)
drk−n−τ+1

+ . . .+ (D + d1I) drk−1 + drk (14)

from which the time response of each state can be determined
for given rk. Furthermore, since the observation equation is
yk = hx̃k = hT−1

k xk = hxk, the transformation does not
affect the first element of the state vector and it is a trivial
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D =


d2 + · · ·+ dn+1 d3 + · · ·+ dn+1 · · · dn+1 1 + d1 + d2 + · · ·+ dn+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

−d2 − · · · − dn+1 −d3 − · · · − dn+1 · · · −dn+1 −1− d1 − d2 − · · · − dn+1



Fig. 2. Design matrix based on the polynomial (10) for SDP–NMSS nonlinear pole assignment with τ = 1.

0 0 · · · 0 0 · · · 1 0
1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
dn+τ + · · ·+ dn+1, dn+τ + · · ·+ dn+2, · · · dn+τ −1− d1 · · · −1− d1 − · · · − dτ−1, 1 + d1 + · · ·+ dn+τ

0 0 · · · 0 1 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −1 1


Fig. 3. Design matrix D based on the polynomial (10) for SDP–NMSS nonlinear pole assignment with τ > 1.

1 0 · · · 0 · · · 0 0 0
0 1 · · · 0 · · · 0 0 0
...

...
...

...
...

...
0 0 · · · 1 · · · 0 0 0

−aτ−1,k+1 + · · · −aτ,k+1 + · · · · · · −an+τ−2,k + · · · · · ·
...

...
...

...
...

...
−a2,k+1 + a1,ka1,k+1 −a3,k+1 + a2,ka1,k+1 · · · −an+1,k + an,ka1,k+1 · · · bk+1 −bka1,k+1 0

−a1,k −a2,k · · · −an,k · · · −an+τ−2,k bk 0
0 0 · · · 0 · · · 0 0 1


Fig. 4. Transformation matrix T−1

k−1 for SDP–NMSS nonlinear pole assignment (inverse at sample k − 1 shown for brevity; ai,k = 0 for i > n).

matter to obtain the output response from equation (14).
In this regard, note that hId = 0, hAd = 0 (etc.) and
hAn+τ−1d = 1 + d1 + . . .+ dn+τ , hence, yk = −d1yk−1 −
d2yk−2 − . . .− dn+τyk−n−τ + (1 + d1 + . . .+ dn+τ ) rk−τ .
Expressed as a discrete–time Transfer Function in z−1, this
has the desired characteristic polynomial (10), time invariant
scalar numerator and a time delay of τ samples, as required.

C. Controllability

Substitution [20] using the open–loop SDP–NMSS state
equation (3), yields the following controllability matrix for
the τ > 1 case at sample k,

Sk =
[

g, Fk+n+τ−2g, . . . , Fk+n+τ−2 . . .Fkg
]

(15)

which is non–singular if and only if bk 6= 0,∀k. This result
is equivalent to the pole assignability proposition developed
by [12]. Examination of the time indices in Tk shows that
the algorithm requires a forward shift of the parameters. In
this regard, it is important to recall their state dependent
form. For many engineering devices, these parameters are
functions of the delayed input and output signals, hence a
forward shift does not usually cause problems.

IV. SIMULATION EXAMPLE

Preliminary open–loop step experiments on the Hydro–Lek
manipulator suggest that a first order linear difference equa-
tion, i.e. yk = −a1yk−1 + buk−τ , provides an approximate
representation of individual joints, with the time delay τ
depending on the chosen joint and sampling interval. Here,
yk is the joint angle and uk is the scaled voltage in the range
±1000, while {a1, b} are time invariant parameters.

Further analysis of open–loop data collected from the
Hydro–Lek HLK–7W, reveals limitations in the linear model.
In particular, the value of b depends on the presently applied
voltage to the system. In these cases, SDP analysis suggests
that a more appropriate model for individual joints is (2)
with n = 1,

yk = −akyk−1 + bkuk−τ (16)

where (for brevity) ak,1 is denoted ak. Preliminary SDP
analysis of open–loop data from one particular joint, sampled
at 16Hz, suggests τ = 3. In the following discussion,
this model is used as a worked example to illustrate the
control approach. The SDP–NMSS model (3) is defined by
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xk =
[
yk uk−1 uk−2 zk

]T
, g =

[
0 1 0 0

]T
and,

Fk =


−ak+1 0 bk+1 0

0 0 0 0
0 1 0 0

ak+1 0 −bk+1 1

 (17)

The transformation matrix (based on Fig. 4) is,

Tk =


1 0 0 0
0 1

bk+2

ak+2
bk+2

0
ak+1
bk+1

0 1
bk+1

0
0 0 0 1

 ; (18)

The design transition matrix (Fig. 3) is,

D =


0 0 1 0
d4 −1− d1 −1− d1 − d2 d̃
0 1 0 0
0 0 −1 1

 (19)

where d̃ = 1+d1 +d2 +d3 +d4. Substituting these into (12)
and equating yields,

f0,k =
−ak+1 (1 + d1 + d2 − ak+2 (1 + d1 − ak+3))− d4

bk+3

g1,k =
bk+2 (1 + d1 − ak+3)

bk+3

g2,k =
bk+1 (1 + d1 + d2 − ak+2)

bk+3
(20)

kI,k =
1 + d1 + d2 + d3 + d4

bk+3

The closed–loop transition matrix in equations (9) can be
written as Ak+1 = Tk+1DT−1

k , where Tk and D are defined
by (18) and (19) respectively. Hence, using Proposition 1,
the closed–loop response is defined by the following linear
Transfer Function,

yk =
1 + d1 + d2 + d3 + d4

1 + d1z−1 + d2z−2 + d3z−3 + d4z−4
rk (21)

In other words, the nonlinear terms are eliminated in the
closed–loop and so the nature of the state dependency does
not influence the theoretical response.

To illustrate, Fig. 5 shows the response of the closed–
loop system based on d1 = d2 = d3 = d4 = 0 and
using arbitrarily defined state dependencies for ak and bk.
Following various step changes in the command at sample k,
the SDP controller (20) yields the expected deadbeat output
response. Of course, this is an unrealistic simulation example
and deadbeat design would not be used in practice. It was
chosen to illustrate the stability of the solution, even in this
extreme case. Naturally all the results above assume zero
model mismatch, the same assumption as for linear pole
assignment design. The robustness to model mismatch and
disturbances is the subject of current research by the au-
thors. However, simulation and experimental results support
the practical utility of the approach [12]. The authors are
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Fig. 5. Deadbeat simulation example. Top subplot: command input (thin
trace) and closed–loop response of the nonlinear model (16) with τ = 3.
Lower subplot: control input. All these variables are plotted against sample
number.

presently developing control systems for the Brokk Hydro–
Lek system using this new pole assignment approach, and
will report on the experimental results in future publications.
In this regard, the recently developed hardware arrangements
are summarised below.

V. HARDWARE FRAMEWORK

The hardware configuration consists of two human arm–
like off–the–shelf manipulators, whose joints are controlled
using potentiometer sensors and hydraulic actuators; and a
mobile platform to support and transport the multi–arm robot
system (Fig. 1). The movements of the manipulator joints
are controlled through the integration of the hardware and
software using National Instrument (NI) tools. Full details
of these arrangements are given by [3] and [4].

The Brokk 40 base machine [21] consists of a moving
vehicle with a single 5–Degree–of–Freedom (DOF) manipu-
lator and five linear actuators; a hydraulic tank; a controller
and a remote control device designed to operate the vehicle
and its manipulator. The Brokk 40 is the smallest robot in
the Brokk family and is an off–the–shelf machine which was
designed for heavy demolition tasks and to pass through nar-
row spaces such as 650mm wide doorways. It is electrically
powered to facilitate internal use.

The Hydro–Lek HLK–7W [22] is a 6–degree–of-freedom
manipulator with a continuous jaw rotation mechanism and
dual function gripper fitted with a pressure sensor. The
gripper is designed to grip an object and also to cut ropes
up to 19mm diameter. The azimuth yaw, shoulder pitch,
elbow pitch, forearm roll and wrist pitch joints are fitted
with potentiometer feedback sensors. The mounting bracket
is designed to hold the weight of the two arms with full
payloads. The other side of the bracket is designed to be
fitted to the end of the Brokk machine manipulator where it
can be rotated forward and backwards. The system provides a
stable platform for the attached tools. Locking facilities such
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as non–return valves or self–locking actuators can be used
to lock the manipulator joints at any position and orientation
even when the robot is de–powered.

To illustrate the feasibility of the SDP approach, equa-
tion (16) is fitted to preliminary data collected from one
Hydro–Lek HLK–7W joint. In this case, bk has a clear rela-
tionship with the delayed input signal, as illustrated in Fig. 6,
in which parameter estimates (circles) and a polynominal fit
are shown. Note that the deadband of the device ensures
no arm movement until the voltage exceeds 1.2 (scaled
units) in Fig. 6, hence the bk 6= 0 requirement discussed
in section III-C is not a problem. Also, the results in Fig. 6
are based on an initial linear analysis of the step response
data, rather than the SDP identification approach discussed
above. Nonetheless, these preliminary results pressage the
likely utility of the SDP modelling approach. Detailed SDP
analysis, model evaluation and control implementation are
the subject of current research by the authors.

VI. CONCLUSIONS

The Brokk Hydro–Lek configuration is a good example
of a robotic system that can be designed for hazardous
nuclear decommissioning applications. It demonstrates the
complexity of such a system from a number of aspects, such
as the need for mobility, control, sensors, system design,
integration and interfacing using modern tools that are avail-
able off–the–shelf. However, under automatic control, the
manipulator can sometimes suffer from a relatively slow and
imprecise control action because of limitations in existing
linear feedback algorithms.

This paper has developed a pole assignment algorithm
for the control of nonlinear dynamic systems described by
State Dependent Parameter (SDP) models. The state variable
feedback control algorithm is derived from a non–minimal
state space model, necessitating the introduction of a state
dependent transformation matrix. The new approach yields
equivalent control gains to those already presented (without
derivation) by [12]. However, the state space derivation here,
lends itself to a more concise and transparent description of
the closed–loop behaviour. In this regard, the paper shows
that the closed–loop system reduces to a linear transfer
function with the specified stable (design) poles.

Control gains are determined for a worked example, based
on preliminary modelling results for an illustrative robot
arm joint. However, the present paper concentrates on a
presentation of the new control methodology, hence is limited
to a simplistic simulation example. Clearly the next stage of
the research is to develop practical control systems for each
joint using the new pole assignment approach and to evaluate
these for the full Brokk Hydro–Lek system.

VII. ACKNOWLEDGEMENTS

The authors are grateful for the support of the UK Nuclear
Decommissioning Authority (NDA).

1.2 1.4 1.6 1.8 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u
k−1

b k

Fig. 6. State dependent parameter bk plotted against state variable uk−1

based on experimental data collected from one Hydro–Lek joint.
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